
EE102 Prof. S. Boyd

EE102 Homework 7 and 8 Solutions

69. Stability analysis of a PI controller. Suppose that PI control,

C(s) = kp +
ki

s
,

is used with the plant

P (s) =
1

s2 + 2s+ 2
,

in the standard feedback control configuration:
PSfrag replacements

r y
PC

Find the conditions on kp and ki for which the closed-loop transfer function T from r to y is
stable. You can assume that kp > 0 and ki > 0.

Express your conditions in the simplest form possible.

Solution:

The transfer function T is

T =
PC

1 + PC
=

kps+ ki

s(s2 + 2s+ 2) + kps+ ki

.

We need to check when the denominator,

s3 + 2s2 + (kp + 2)s1 + kis
0,

is Hurwitz. Using the result from lecture 13, we find the conditions are

2 > 0, kp + 2 > 0, ki > 0, (2)(kp + 2) > ki.

We already assume that kp and ki are positive, so the condition is just ki < 2(kp + 2).

70. Local versus global feedback: dynamic analysis. We consider two amplifiers, each with a
transfer function H(s) = 100/(1 + s). We are going to use these amplifiers, together with
feedback, to design a system with DC gain 40dB. (Roughly speaking, then, we have 40dB of
‘extra’ gain.)

Global feedback. In this arrangement we connect the two amplifiers in cascade, and then use
feedback around the cascade connection, as shown below.
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Local feedback. In this arrangement we use feedback around each amplifier, and then put the
two closed-loop systems in cascade, as shown below. (To simplify things, we’ll assume the
two feedack gains are the same.)

PSfrag replacements

u yloc

H(s)H(s)

flocfloc

In both arrangements, the feedback consists of a positive gain (independent of s).

(a) Find the value of fglob that makes the closed-loop DC gain from u to yglob, in the global
feedback arrangement, equal to 40dB.

(b) Find the value of floc that makes the closed-loop DC gain from u to yloc, in the local
feedback arrangement, equal to 40dB.

We’ll define the settling time of a system as the time it takes for the unit step response
to settle to within about 10% of its final (asymptotic) value. If the system is unstable,
we’ll say the settling time is ∞.

(c) Using the value for fglob found in part 3a, find the settling time Tglob of the global
feedback system.

(d) Using the value for floc found in part 3b, find the settling time Tloc of the local feedback
system.

(e) Give a one sentence intuitive explanation of the results of 3c and 3d.

(f) You can estimate the settling times, provided you explain how you obtain the estimate.
An accuracy of ±30% is fine.

Solution:

Let’s first consider global feedback. This is the same as putting feedback around a single
amplifier with transfer function (100/(1 + s))2. The (open-loop) DC gain is 10000, and we
need a closed loop gain of 40dB, i.e., 100. We can find fglob from

100 =
10000

1 + 10000fglob

,
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which gives fglob = 0.0099 (i.e., very nearly 0.01).

Now let’s find the resulting transfer function from u to yglob:

Tglob(s) =
10000/(s+ 1)2

1 + 0.0099 · 10000/(s+ 1)2
=

104

s2 + 2s+ 100
.

(We can check that the DC gain is indeed 100, as required.) The poles are −1± j
√
99.

The decay rate is given by the real part, so we expect convergence in about Tglob ≈ 2sec or so
(two time constants, e−2 ≈ 0.13). Note also that the dynamics are highly oscillatory, which
is probably very undesirable.

Now let’s consider local feedback. Each feedback amplifier must have a closed-loop gain of
10, so we solve

10 =
100

1 + 100floc

,

to get floc = 0.09. The resulting transfer function from u to ygloc is

Tloc(s) =

(

100/(s+ 1)

1 + 0.09 · 100/(s+ 1)

)2

=
1002

(s+ 10)2
.

(Yes, the DC gain is 100.) The poles are real and repeated, at −10. The step response will
therefore have a constant term, and terms of the form e−10t and te−10t. A good approximation
of the 10% settling time is about two time constants, which is around 0.2 seconds. Notice
that this setling time is far smaller than the one for global feedback. Moreover, instead
of a very oscillatory response, we get a nice, critically damped response. So evidently the
local feedback arrangement is far better, in terms of dynamic response, than the global
feedback arrangement. But remember from a homework exercise that in terms of reduction
of sensitivity to amplifer gain, the global arrangement is better.

Here’s one sentence that explains it: Delay around a feedback loop, along with too much
loop gain, can yield oscillatory or even unstable response; the global feedback arrangment
has more delay and more loop gain, so we were asking for trouble.

94. Feedback amplifier design. In this problem, you’ll use the standard feedback amplifier config-
uration, described by the equations

y = Ae, e = u− Fy.

The raw amplifier, denoted A, is linear and time invariant, with transfer function given by

A(s) =
Adc

1 + sT
,

and the feedback F is a simple gain (i.e., a constant). The constant Adc (which is positive)
is the DC gain of the raw amplifier, and T (which is also positive) is the 63% rise time of
the raw amplifier. The DC gain of the amplifier varies over a range (say, with temperature,
manufacturing variations, etc.). For simplicity, we’ll assume that the rise time T does not
vary, and that the feedback F is implemented using high precision components, and so does
not vary.

You can choose among four different raw amplifiers, with characteristics:
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• Raw amplifier 1: DC gain is 40± 3dB; rise time is 0.5µsec.

• Raw amplifier 2: DC gain is 65± 5dB; rise time is 2µsec.

• Raw amplifier 3: DC gain is 80± 10dB; rise time is 15µsec.

Choose one of the raw amplifiers and an appropriate feedback gain F according to the fol-
lowing design rules:

• The (nominal) closed-loop DC gain is 30dB.

• The variation in closed-loop DC gain is no more than ±5%.

• The closed-loop 63% rise time is as small as possible.

For calculating the closed-loop rise time you can use the nominal gain of the raw amplifier
(i.e., 50dB for raw amplifier 1, etc.), and ignore the gain variation.

Solution.

First some quick analysis to figure out the effect of the feedback on the rise-time. The closed-
loop transfer function is

G(s) =
A(s)

1 +A(s)F
=

Adc/(1 + sT )

1 +AdcF/(1 + sT )
=

Adc

1 +AdcF

1

1 + sT̃
,

where T̃ = T/(1 + AdcF ). In other words, the closed-loop system is also first order, with
the obvious DC gain, and a time constant (or rise-time) that is a factor S(0) faster than the
open-loop amplifier.

Now let’s consider each choice. For each one we solve for S(0) using the formula G(0) =
AdcS(0).

Raw amplifier 1. Here S(0) is 10dB = 3.16. So the closed-loop rise-time is 0.5µsec/3.16 =
0.156µsec. The variation is DC gain is given by (approximately) 3dB/3.16 = 0.95dB, which
is around 11%, so we don’t meet the DC gain variation requirement.

Raw amplifier 2. Here S(0) is 35dB = 56.2. The closed-loop rise-time is 2µsec/56.2 =
0.0356µsec. The variation is DC gain is given by (approximately) 5dB/ = 0.089dB, which is
around 1%, so we meet the DC gain variation requirement, with a healthy margin.

Raw amplifier 3. Here S(0) is 50dB = 316. The closed-loop rise-time is 15µsec/316 =
0.0475µsec. The variation is DC gain is given by (approximately) 10dB/316 = 0.032dB,
which is around 0.365%, so we meet the DC gain variation requirement, with a healthy
margin.

Conclusion: Raw amplifier 2 is best. The appropriate F is given by

1778

1 + 1778F
= 31.6

(using 65dB = 1778, 30dB = 31.6). We can solve this to get F = 0.0311.
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