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EE102 Homework 5 and 6 Solutions

The vertical dynamics of a vehicle suspension system, when the vehicle is driving on level
ground, are given by
(my +my)d" (t) + bd'(t) + kd(t) = 0.

Here

e { is time (in seconds)

d(t) is the vertical displacement of the vehicle, with respect to its neutral position (in
meters)

m, = 103kg is the vehicle mass

my > 0 (also given in kg) is the mass of the vehicle load (passengers, cargo, etc.)

b=2.2-10*N/m/s is the suspension damping
e k = 10°N/m is the suspension stiffness
The initial conditions are d(0) = 0.1m, d'(0) = Om/s.

What is the smallest load mass m; for which d is oscillatory? (By oscillatory, we mean that
d(t) passes through zero infinitely many times.)

Solution. Let m = m, + m;. Then, taking the Laplace transform of the given differential
equation, we obtain

ms*D(s) —msd'(0) — md(0) 4+ bsD(s) — bd(0) + kD(s) =0
The above equation can be rewritten as

msd'(0) + (m + b)d(0)
ms? 4+ bs + k

D(s) =

The system will exhibit oscillatory behavior when the roots of the characteristic polynomial
ms? +bs + k are complex. The roots are given by the solution of the quadratic equation, i.e.,

b+ VB —dmk

2m

A

Therefore, the roots will be complex when b? — 4mk < 0. We can rewrite this condition as

2

b
> _ 1910
™k

Finally, since m = m, + m; and m, = 1000, we obtain that m; > 210 for d to become

oscillatory.

Four functions f1, fo, f3, and f4, are shown below. Their Laplace transforms are Fy, Fo, F3,
and Fy, respectively. You can assume Fi, ..., Fy are rational functions, with no more than
three poles (counting multiplicities).

Please note carefully the vertical scales — they are mot the same!
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Estimate the poles of Fi,..., Fy, using the smallest number needed to give a reasonable

match. If you can get a reasonable match with one pole, then give just one pole; if two poles
suffice then give just two. Give three poles only if three poles are required to match the given

fi-

e We want specific numbers, not just qualitative answers such as ‘one positive real, one
complex pair’ or o + jw (without specifying o or w). Make clear indications on the plots
how you got the numbers.

e Give complex poles separately, as in ‘1 + j, 1 — j’; we will not automatically supply
conjugates of complex numbers.

e Give multiple poles by repeating them in your answers, e.g., ‘—3, —1, —1’ (meaning, one
pole at s = —3, and another pole of multiplicity two at s = —1).

Solution:

(a) From the graph of fi, we see that there is no sinusoidal ringing, and something like only
one exponential decay towards a nonzero value, —2. Therefore, we have only 2 real poles:
one corresponding to the decaying term and one corresponding to the constant term.
The cosntant term corresponds to a pole at s = 0. The exponentially decaying term
starts with amplitude 1—(—2) = 3, and it reaches 37% of the amplitude in approximately
1sec. Therefore, that pole is at —1.

So the poles are: —1, 0.

(b) From the plot of f, we note that the waveform exhibits some sinusoidal ringing, and the
amplitude of the ringing is approximately constant, neither growing nor decaying. This



suggests a complex pole pair along the imaginary axis. Furthermore, when we draw a
line down the middle of the oscillations we find that there is also a real, exponentially
decaying term with a negative coefficient. So, the third pole is real and negative.

Let’s find approximate numerical values for the poles. We see around 9.5 periods of the
signal in 6 time units, so the oscillation frequency is roughly w ~ 6?& ~ 10. So we have
the poles £=510. As for the third pole, we see that it decays to 37% of the amplitude in
approximately lsec. Therefore, the third pole is at —1.

The poles are: 105, —1075, —1.

(¢) From the plot of f3, we see a sinusoidal ringing with an exponentially growing amplitude,
which suggests a complex pole pair in the right half plane. The oscillation frequency of
the ringing is the same as in fo, i.e., w = 10. At time zero, the amplitude of the ringing
is about 0.5. At 4 seconds, the amplitude is, say, 1.1 or 1.2. Thus we have e* = 1.2, so
o ~log(1.2/0.5)/4 =~ 0.2 or so. Therefore, the poles are 0.2 & j10.

Drawing a line down the middle of the oscillation indicates that there is also a constant
offset of —1, which corresponds to a pole at s = 0.

The poles are: 0.2 4+ 107, 0.2 — 104, 0.

(d) In the last plot, we see no sinusoidal ringing; We see only one exponential growth (mul-
tiplied by negative coefficient). At time zero, f4(t) is about —2; at time equals 6, f4(t)
is about —12. So, the growth rate is approximately log(—12/ —2)/6 ~ 0.3. So, the pole
is at 0.3.

55. Reducing the rise-time of a signal. In a certain digital system a voltage signal should ideally
switch from OV to 5V infinitely fast, i.e., with zero rise-time. But due to the finite bandwidth
of the electronics that generates the signal, it has the form

vin(t) =5 (1 - e_t/T> fort >0

where T' = 1usec. Thus, the signal has a rise-time around a few psec.

An engineer claims that the circuit shown below can be used to reduce the rise-time of the
signal, provided the component values R and C' are chosen correctly. Specifically, the engineer
claims that by choosing R and C correctly, we can have

Vout(t) = a (1 — e‘lOt/T) fort >0

where a is some nonzero constant. Thus, the rise-time of vyt is a factor of 10 smaller than
the rise-time of vj,, i.e., a few hundred nsec.
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Here is the problem: determine whether the engineer’s claim is true or false. If the claim is
true, find specific, numerical values of R and C that validate the claim. If the claim is false,
briefly explain why the engineer’s idea will not work.

(You can assume the circuit starts in the relaxed state, i.e., no charge on the capacitor. And
no, you cannot use negative R or C'.)

Solution:
First we’ll find the relationship between v, (¢) and voy ().

1000 1000(1 + sRC)

Vou = ‘/in— = Vin
’ 1000 + R || L (1000 + R) + s1000RC

Now let’s assume that the engineer’s claim is true, i.e., for some value of R and C we have
Vout(t) = a(1 — e~ 10T, Then:

a  a _(5 5 >s+1/RC

Vout(s) = =
10 T 1000+ R
5 Stipe 5 s+ 15/ St To00rC

Simplifying, we get

107 (5-10°) ( s+1/RC
sr107~ \s10s) ooz )
We need to choose R and C' to make this equality hold.
But how can this be? The left hand side has only one pole, while the right hand side has two
... The only way this can happen is if the zero on the right hand side, at s = —1/RC, cancels

the pole at —10°, i.e., we take 1/RC = 10°. This yields

10%a  5-10°
s+107 54 10004E

Now we want the remaining pole to be at s = —107, so we have (1000 + R)/(1073) = 107.
This yields R = 9k{2, so C = 111pF.

So we see the engineer’s claim is true.

Note that a = 0.5V. Thus we see one disadvantage of this circuit — the rise-time is ten times
faster but the signal level has been cut by a factor of 10!

Let’s also mention another method of solving this problem. Once we have Vi, and Vi, we
divide to find out what the transfer function must be to make the claim true. Then we
simply see whether we can choose the parameters R and C' to make the transfer function of
our circuit equal to the one we require, i.e., Vout/Vin. (Of course you get the same answer.)

The top plot below shows the step response of a system described by a transfer function.
Below that is a plot of an input w(t) that we apply to this system. Sketch the response

(output) y(t).
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Solution:

Perhaps the easiest way to solve this problem is to differentiate the step response to get the
impulse response, then convolve the impulse response with the input to find the output. The
impulse response is zero except between ¢t = lnsec and ¢t = 2nsec, where it has the value 10°
(note the time axis; if you just ingore the units everything works out OK anyway!).

Thus the output at time ¢ is just the integral of the input between ¢ — 2 and ¢ — 3 nanoseconds
ago, multiplied by 10°. It is zero until + = 1; then it ramps up quadratically (since we are
integrating a ramp) until ¢ = 2. Between ¢ = 2 and t = 3 we integrate part of a ramp and
part of the constant 1; this yields another quadratic. The maximum value is achieved right
at t = 3, when we integrate the constant 1, so the output is 1. In the next two nanoseconds
the same thing happens, backwards in time. The final solution is shown below:
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If you don’t get that fluffy derivation, or simply must see formulas to believe, here is another
derivation. The step response evidently has the form

0 0<t<1
st)=¢ t—1 1<t<2
1 t>2

where t is in nanonseconds. Differentiate to get the step response h:

0 0<t<1
h(t) = 1 <t<2
> 2
The input u has the form:
t 0<t<1
1 1<t<2
wh=9141_3 2<t<3
0 t>3

Hence the output y is just:

t—1
/hth d’T—/ u(T) dr.
t—2

The output will have 5 separate segments, i.e., different formulas, depending on ¢t. We’ll just
work out an interesting case, and let you check the others. We'll find y(t) for 2 < ¢ < 3. From
our formula above,

y(t):/tt_lu(T)dT:/t127d7'+/1t_11d7':;(1(t2)2)+t2

-2

which corresponds to the quadratic that starts at value 1/2 for ¢ = 2 and ends up at value 1
(and slope zero) at t = 1.
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You could also work this problem using Laplace transforms, but it’s not a pretty sight. The
transfer function is

Thus we have

e S — 6725 1—e 5 — 6725 + 6733
2

S S
eSS — 26—25 + 26—43 _ 6—55
83

which you will instantly recognize as the Laplace transform of our solution shown in the plot.

The circuit below is a simple one-pole lowpass filter.

Q

R
—\WW—
AW i:>——%ﬂﬂ
+

Find (positive) R and C' such that:

e The (magnitude of the) DC gain is +12dB.
e The magnitude of the transfer function at the frequency 1kHz is 3dB less than the
magnitude of the DC gain.
You can assume the op-amp is ideal. Give numerical values for R and C. An acurracy of 10%
will suffice.
Solution.

First, let’s find the transfer function from v;, to vout- You could use standard circuit analysis,
but by now you should just recognize this circuit as an inverting amplifier and know that the
transfer function is given by

Vour(s) _ Rllzz _ R/10KQ
Vin(s) — 10kQ 1+ sRC

H(s) =

7
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This circuit has only one pole, at s = —1/RC. The DC gain is found by setting s = 0:
H(0) = —R/10kQ2. (You can also see this by looking at the circuit with the capacitor
removed.)

We are given that the (magnitude of the) DC gain is +12dB, which is roughly 4 (6dB + 6dB;
each is a factor of around 2). Thus, |H(0)| = R/10kS2 = 4, so we must have R = 40kQ). (Note
that the DC gain is actually negative, i.e., H(0) = —4.)

The gain is 3dB less at 1kHz, which means that we have a pole at s = —1kHz = —20007.
Since the pole is at s = —1/RC, we have:

1

C= k0 20007~ mF

A simple two-way crossover circuit. A typical high-fidelity speaker has separate drivers for
low and high frequencies. (The driver is the physical device that vibrates to create the sound
you hear. The old terms for the low and high frequency drivers are woofer and tweeter,
respectively.)

The circuit shown below, called a speaker crossover network, is used to divide the audio signal
coming from the amplifier into a low frequency part for the low frequency driver (LFD) and a
high frequency part for the high frequency driver (HFD). Since the audio spectrum is divided
into two parts, this is called a two-way system (three-way are also common).

The amplifier is modeled as a voltage source (which is a very good model), and the low and
high frequency drivers are modeled as 8Q2 resistances (which is not a good model of real
drivers, but we will use it for this problem).

Vamp (t) Ct) Zspeaker =

82 HFD 80 § LFD

speaker

The crossover network is designed so that the transfer function from the amplifier to each
driver has magnitude —3dB at a frequency w, called the crossover frequency of the speaker.

(a) Choose C' and L so that the crossover frequency is 2kHz. Do this carefully as you will
need your answers in part b.

(b) Using the values for L and C found in 8a and 8b, find Zspeaker(s), the impedance of the
two-way speaker seen by the amplifier (as indicated in the schematic).
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Solution:

We can separate the analysis for the high frequency driver (HFD) and low frequency driver
(LFD) since the two circuits are driven in parallel by a voltage source. Notice the HFD is
just a simple RC high-pass filter and LFD is just a simple RL low-pass filter!

For the HFD, we have the transfer function:

VarD . 8 8sC'

Vamp _8+% - 1+8SC

Note that crossover frequency is the frequency at which the transfer function is —3dB, i.e.,
it is the (absolute value of the) pole location. With the crossover frequency at 2kHz, we have

1
So C =9.95uF.

Similarly, for the LFD we have the transfer function:

VLrD 8 1

Vomp  S+sL 1—|—s%

With the crossover frequency at 2kHz, we have
S _ (21)(2000)
S — (or
L

So L = 0.64mH.

Let’s denote the resistance of the HFD and LFD as R. Now since the poles of the HFD and
the LFD have already been designed to be 2kHz, we have RC' = L/R. Therefore,

R+ L)(R+sL)  (R+E)(R+sL)

— : — - — R
R+ s+ R+sL 2R+ 7 +sL

Zspeaker (3)

So we see that Zgpeaker(s) is constant — it is simply 82, independent of frequency. To the
amplifier, the speaker looks like a simple resistance of 8().

In practice, real drivers do not have constant 8() impedance, and also, 2 and 3 pole crossover
networks are more common than the simple 1 pole network described in this problem. But
the idea is the same.

The unit step response s(t) of a system described by a transfer function H, which has three
poles, is shown in the two plots below. The two plots have different ranges; the second plot
allows you to see details for small t.
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(a) Estimate the poles. An accuracy of +20% is acceptable.

(b) At high frequencies |H(jw)| becomes small. From the data given, can you determine
the rate at which it decreases for large frequency (e.g., 12 db/octave)? Either give the
rate (in dB/octave) or state “cannot determine” if the data given is not sufficient to
determine the high-frequency rolloff rate.

Solution:

We start by estimating the step response. We should see evidence of the three poles of the
transfer function H, along with a pole at s = 0 (i.e., a constant) associated with the step
input. There is a sinusoidal term that does not decay or grow, with an amplitude of about
0.1. The frequency of this term is easy to tell: two cycles fit in 0.1sec so the frequency is
40mrad/sec. Thus there are two poles at s = +j40m ~ 126rad/sec. Drawing a line through the
average value of this oscillation we see that something like 1 —e~* remains. This corresponds
to a pole at s = 0 (which comes from the step input) and s = —4. Thus the poles of H must
be about —4, =+ ;j126.

There are several ways to find the rate at which |H (jw)| decreases for large w. Perhaps the
easiest way is to remember the connection between the behavior of the step response for small
t and the rolloff rate of the frequency response. The step response has an initial nonzero slope,
so H must have one more pole than zero, i.e., two zeros. This means that the rolloff rate is
6dB/octave.

We can also find the rate by directly estimating the transfer function H from the step response
plot. The step response has the (approximate) form

s(t) = 1 — e + cos(126t + ¢).

We can figure out the phase of the sinusoid by examining the lower plot, and noting that
s(0) = cos(¢). This suggests that the step response is

s(t) ~ 1 — e +sin(126t).

10
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(Actually this method is extremely prone to approximation error.) It’s Laplace transform is
therefore

S(s) ~

1 1 ! _ 5s? +4s+4-126

s s+4 5241262 s(s+4)(s2+1262)

Therefore

_bs? +4s+4-1262

T (s +4)(s2 +1262)

which has three poles and two zeros. Hence for large w, the frequency response rolls off at
6dB/octave.

H(s) = sS(s)

Transfer function from rainfall to river height. The height of a certain river depends on the
past rainfall in the region. Specifically, let u(t) denote the rainfall rate, in inches-per-hour, in
a region at time ¢, and let y(¢) denote the river height, in feet, above a reference (dry period)
level, at time t. The time ¢ is measured in hours; we’ll only consider ¢ > 0.

Analysis of past data shows that the relation between rainfall and river height can be accu-
rately described by a transfer function:

10
(3s+1)(30s + 1)

Y(s) = H(s)U(s), H(s)=

(You don’t need to know any hydrology to do this problem, but you might be interested in the
physical basis of this two-pole transfer function. The fast pole is due to runoff from surface
water and small tributaries, which contribute a relatively small amount of water relatively
quickly. The slow pole is due to flow from larger tributaries and deeper ground water, which
contribute more water into the river, over a much longer time scale.)

A brief but intense downpour. (Parts a and b.) Suppose that after a long dry spell (i.e., no
rain) it rains intensely at 12 inches-per-hour, for 5 minutes. This causes the river height to
rise for a while, and then later recede.

(a) How long does it take, after the beginning of the brief downpour, for the river to reach
its maximum height? We’ll denote this delay as tpax (in hours).

(b) What is the maximum height of the river? We’ll denote this maximum height as ymax
(in feet).
Note: you can make a reasonable approximation provided you say what you are doing.

A continual rain. (Parts ¢ and d.) Suppose that after a long dry spell it starts raining
continuously at a rate of 1 inch-per-hour (and doesn’t stop). This causes the river height
to rise.

(c) What is the ultimate height of the river, i.e., yu = lims o0 y(t)7

(d) A flood occurs when the river height y(¢) reaches 8 feet. How long will it take, after the
onset of the steady rain, to reach flood condition? We’ll denote this time as tqo0q. If the
river never reaches 8 feet, give your answer as ‘never’.

Note: you can make a reasonable approximation provided you say what you are doing.

Solution:

11



(a)

First, we notice that the time duration of the downpour (5 min) is small in comparison
to the time constants of the poles (3 hours and 30 hours). Hence we can reasonably
approximate the intense downpour as an impulse function. The area under the rainfall
u(t) is (12 inches/hour)(1/12 hour), i.e., 1 (inch). So u(t) =~ §(t), and consequently the
river height y is (approximately) given by the impulse response of the transfer function.
(If you model the downpour more accurately as a step function which turns on at t =0
and off and ¢t = 1/12, the mathematic gets much more involved, and the final answer is
nearly the same.)

Thus Y (s) = H(s), so we use a partial fraction expansion:

10 —0.37 0.37
Y(S) = = +
Bs+1)(30s+1) s+1/3 " s+1/30

The inverse transform is then y(t) = 0.37(e~4/30 — ¢=1/3),

This is a good point at which to do a ‘reasonableness’ check. This y(t) starts at 0, rises
for a while, then decays — which does seem very reasonable!

We find the maximum of y(¢) by setting the derivative to zero:

=1 im0 1 43y
0.37( 30 ¢ +3e )=20
which can be solved to yield t = 7.675. Thus the river height peaks t,.x = 7.7 hours
later. This answer seems reasonable; the river peaks about at double the fast pole’s time

constant.

The maximum height of the river is found by substituting ¢ = 7.675 hours into our
expression for y(t) found above. We find ymax = 0.257 feet = 3.09 inches. Again, this
seems to correlate well with our intuitive feeling for a river’s behavior. A brief downpour
occurs, and the river rises 3 inches about 7 hours later.

The continual rain is just a unit step function, so the river height is just the step response
of the transfer function:
10 1 10 10/9 100/9

YO = G D@os 1) s s TsT1/3 s5+1/30

Hence y(t) = 10 + gﬁoe_t/‘g - %e_t/g’o. From inspection, we see that as t — oo, y — 10
feet!

Another way to solve this problem, which is probably easier, is to notice that we need
to find the limit of the step response, which is just the DC gain of the transfer function.
Plugging in s = 0 yields, again, the answer y,;; = 10.

The flood level is 8 feet, less than the final height of 10 feet we solved for in part (1c).
So we do reach flood condition; it’s just a question of when. Using our expression for y
found above, the flood occurs for ¢ with

1 1
8§ =10+ goe_t/g — %e‘t/?’o.

In fact, it is not so easy to solve this equation! Now is a very good time for a simple
approximation, as our note suggests. Note that the term %e*t/ 3 decays quickly, within

12



say 10 hours, after which the river height will be approximately given by 10 — %e‘t/ 30,

Thus we can find an approximate solution by solving

8 = 10— 10—t/
9

which yields ¢ = 51.4 hours. (Note that our assumption that the first term is small is
certainly correct when ¢ = 51.4 hours; e °14/3 is quite small!)

Hence we predict disaster crews have about 2 days to prepare for flooding after a big
storm hits! (Provided the rain continues at 1 inch/hour.)

13



