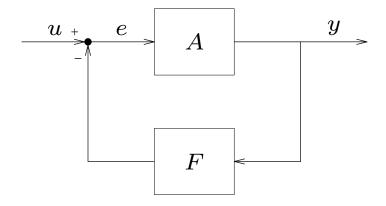
S. Boyd

Lecture 11 Feedback: static analysis

- feedback: overview, standard configuration, terms
- static linear case
- sensitivity
- static nonlinear case
- linearizing effect of feedback

Feedback: general

a portion of the output signal is 'fed back' to the input standard block diagram:



- ullet u is the input signal; y is the output signal; e is called the error signal
- ullet A is called the *forward* or *open-loop* system or *plant*
- F is called the feedback system

in equations: y = Ae, e = u - Fy

- feedback 'loop': e affects y, which affects e . . .
- overall system is called closed-loop system
- signals can be analog electrical (voltages, currents), mechanical, digital electrical, . . .
- ◆ the sign is a tradition only

feedback is very widely used

- in amplifiers
- in automatic control (flight control, hard disk & CD player mechanics)
- in communications (oscillators, phase-lock loop)

when properly designed, feedback systems are

- less sensitive to component variation
- less sensitive to some interferences and noises
- more linear
- faster

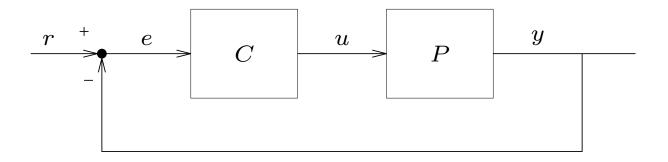
(when compared to similar open-loop systems)

we will also see some disadvantages, e.g.

- smaller gain
- possibility of instability

Other feedback configurations

we will also see other feedback configurations, e.g.

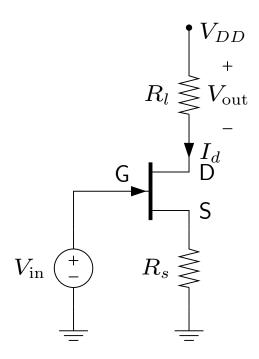


which is often used in automatic control

for now we stick to the 'standard configuration' (p.11-2)

Feedback: static analysis

sometimes the 'feedback loop' is not clear (e.g., in amplifier circuits)



here we have

$$V_{\text{out}} = R_l f(V_{GS}), \qquad V_{GS} = V_{\text{in}} - (R_s/R_l)V_{\text{out}},$$

where $I_d = f(V_{GS})$

Static linear case

static case: signals do not vary with time, i.e., signals u, e, y are (constant) real numbers

(dynamic analysis of feedback is *very* important — we'll do it later)

suppose forward and feedback systems are linear, i.e., A and F are numbers ('gains')

eliminate e from y = Ae, e = u - Fy to get y = Gu where

$$G = \frac{A}{1 + AF}$$

is called the *closed-loop system gain* (A is called open-loop system gain)

L=AF is called the *loop gain* — it is the gain around the feedback loop, cut at the summing junction

observation: if L=AF is large (positive or negative!) then $G\approx 1/F$ and is relatively independent of A

how close is G to 1/F?

consider relative error:
$$\frac{1/F - G}{1/F} = \frac{1}{1 + AF}$$
 (after some algebra)

$$S = \frac{1}{1 + AF} = \frac{1}{1 + L}$$

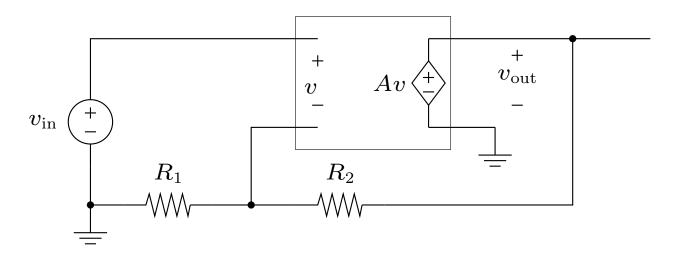
is called the sensitivity (and will come up many times)

for large loop gain, sensitivity $\approx 1/\text{loop gain}$

thus:

for $20 {\rm dB}$ loop gain, $G \approx 1/F$ within about 10% for $40 {\rm dB}$ loop gain, $G \approx 1/F$ within about 1% etc.

Example: feedback amplifier



described by: $v_{\text{out}} = Av$, $v = v_{\text{in}} - (R_1/(R_1 + R_2))v_{\text{out}}$

- $v_{\rm in}$ is the input u; $v_{\rm out}$ is the output y
- ullet v is the 'error signal' e
- ullet open-loop gain is A
- feedback gain is $F = R_1/(R_1 + R_2)$

 $v_{\mathrm{out}} = G v_{\mathrm{in}}$, where closed-loop gain is $G = \frac{A}{1 + AF}$

example: for F=0.1 and $A\geq 100$, $G\approx 10$ within 10%

as A varies from, say, 100 to 1000 (20dB variation), G varies about 10% (around 1dB variation)

in this example, large variations in open-loop gain lead to much smaller variations in closed-loop gain

Feedback: static analysis 11–10

Sensitivity to small changes in A

how do small changes in the open-loop gain A affect closed-loop gain G?

$$\frac{\partial G}{\partial A} = \frac{\partial}{\partial A} \frac{A}{1 + AF} = \frac{1}{(1 + AF)^2}$$

so for small change δA , we have

$$\delta G \approx \frac{1}{(1 + AF)^2} \delta A$$

express in terms of relative or fractional gain changes:

$$(\delta G/G) \approx \frac{1}{1 + AF} (\delta A/A) = S(\delta A/A)$$

hence the name 'sensitivity' for ${\cal S}$

for small fractional changes in open-loop gain,

$$S \approx \frac{\text{fractional change in closed-loop gain}}{\text{fractional change in open-loop gain}}$$

(so 'sensitivity ratio' is perhaps a better term for S)

for large loop gain (positive or negative), $|S| \ll 1$, so small fractional changes in A yield much smaller fractional changes in G:

feedback has $\it reduced$ the sensitivity of the gain $\it G$ w.r.t. changes in the gain $\it A$

we can relate (small) relative changes to changes in dB:

$$\delta(20\log_{10} X) = \frac{20}{\log 10}\delta \log X \approx \frac{20}{\log 10}(\delta X/X)$$

 $(20/\log 10 \approx 9, i.e., 10\%$ relative change ≈ 0.9 dB)

hence we have (for small changes in A),

$$\delta(20\log_{10}G) \approx S \,\delta(20\log_{10}A)$$

thus (for small changes in open-loop gain),

$$S pprox rac{\mathrm{dB \ change \ in \ closed-loop \ gain}}{\mathrm{dB \ change \ in \ open-loop \ gain}}$$

Example: $\pm 2 \mathrm{dB}$ variation in A, with $L \approx 10$, yields approximately $\pm 0.2 \mathrm{dB}$ variation in G

Summary:

for loop gain $|L| \gg 1$,

- ullet gain is reduced by about |L|
- ullet sensitivity of gain w.r.t. A is reduced by about |L|

thus, feedback allows us to trade gain for reduced sensitivity

e.g., convert amplifier with gain $30\pm2\mathrm{dB}$ to one with gain $20\pm0.7\mathrm{dB}$ or $10\pm0.2\mathrm{dB}$

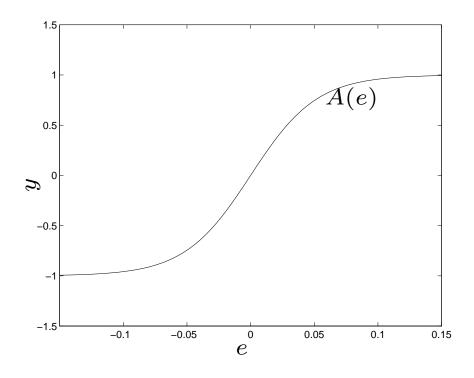
Remarks:

- feedback critical with vacuum tube amplifiers (gains varied substantially with age . . .)
- get benefits for 'negative' (AF > 0) or 'positive' (AF < 0) feedback makes little difference in static case
- ullet sensitivity w.r.t. F is not small need accurate, reliable feedback components
- ullet can also trade sensitivity for more gain, by setting AF pprox -1

Feedback: static analysis 11–15

Nonlinear static feedback

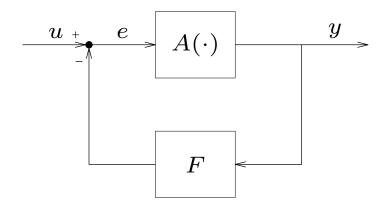
We suppose now that the forward system is nonlinear static, i.e., A is a function from \mathbf{R} into \mathbf{R} , e.g.,



very common for amplifiers, transducers, etc. to be at least a bit nonlinear A is called the *nonlinear transfer characteristic* of the forward system (never to be confused with transfer function!)

Feedback: static analysis 11–16

we'll keep the feedback system F linear for now

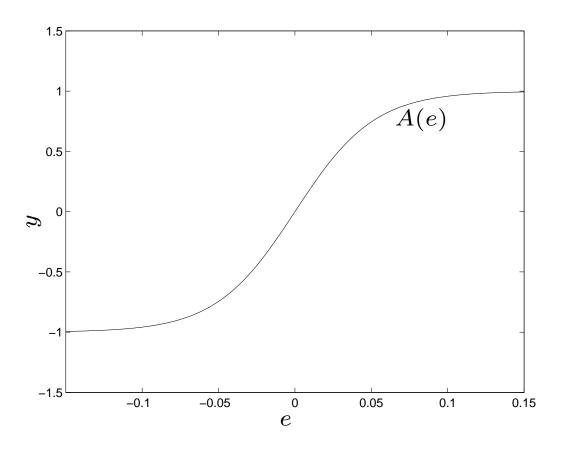


feedback system is described by y = A(e), e = u - Fy these are coupled *nonlinear* equations:

- maybe *multiple* solutions; maybe *no* solutions
- usually impossible to solve analytically
- can be solved graphically, or by computer

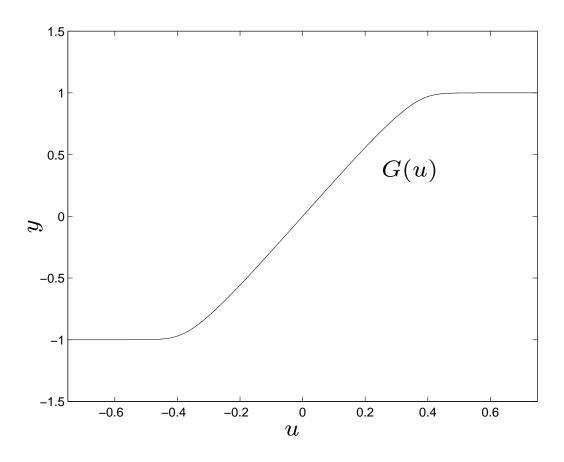
usually for each $u \in \mathbf{R}$ there is one solution y, so we can express the closed-loop transfer characteristic as a function: y = G(u)

Example: open-loop characteristic A:



Feedback: static analysis 11–18

with feedback gain F=0.2, yields closed-loop characteristic



(you should check a few points!)

Observations: with feedback

• 'gain' is lower (note different horizontal scales)

• characteristic is more linear (for |y| < 1)

these phenomena are general . . .

closed-loop transfer characteristic function G satisfies

$$G(u) = y = A(e),$$
 $e = u - FG(u)$

differentiate w.r.t. u:

$$G'(u) = A'(e)\frac{de}{du}, \qquad \frac{de}{du} = 1 - FG'(u)$$

eliminate de/du to get

$$G'(u) = \frac{A'(e)}{1 + A'(e)F}$$

conclusions: for u s.t. $|A'F| \gg 1$,

- $G' \approx 1/F$ (independent of u) *i.e.*, G is nearly linear!
- slope of G is smaller than slope of A (by factor 1 + A'F)

A measure of nonlinear distortion

let w=H(v) be a nonlinear I/O characteristic assume H(0)=0 and look at Taylor series

$$H(v) = H'(0)v + \frac{1}{2}H''(0)v^2 + \cdots$$

ratio of quadratic term to first order term is

$$\frac{H''(0)}{2H'(0)}v,$$

so H''(0)/H'(0) gives a measure of distortion (for a given input v, or a given output w)

now consider feedback system, with A(0) = 0

distortion measure for open-loop system is A''(0)/A'(0)

differentiate G' = A'/(1 + A'F) w.r.t. u to get

$$G''(u) = \frac{A''(e)}{(1 + A'(e)F)^2}$$

distortion measure for closed-loop system is

$$G''(0)/G'(0) = \frac{1}{1 + A'(0)F}A''(0)/A'(0)$$

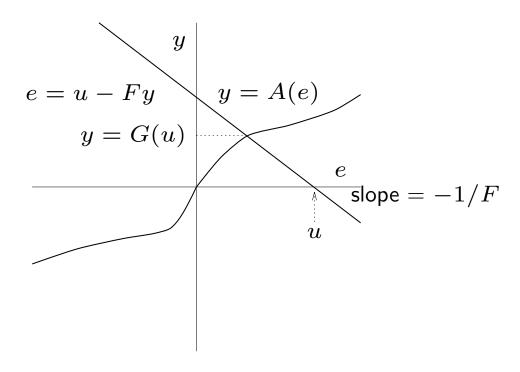
thus, nonlinear distortion measure is reduced by the sensitivity S of the linearized system!

Feedback: static analysis

Finding the closed-loop characteristic

Graphical method (load line): write feedback equations as y=A(e), e=u-Fy

for given u sketch both equations on e-y plane; intersection gives solution



easy to visualize what happens as u or F changes

Newton's method to solve y = A(e), e = u - Fy (given A, u, and F)

- 1. guess a value e_0 for e; set k=0
- 2. set $y_k := A(e_k)$
- 3. if $e_k = u Fy_k$, quit
- 4. replace nonlinear equation y = A(e) with first-order Taylor expansion near e_k ,

$$y \approx A(e_k) + A'(e_k)(e - e_k)$$

Then solve the linear equations

$$\hat{y} = A(e_k) + A'(e_k)(\hat{e} - e_k),$$

$$\hat{e} = u - F\hat{y}$$

for \hat{e} and \hat{y} ; set $e_{k+1} := \hat{e}$

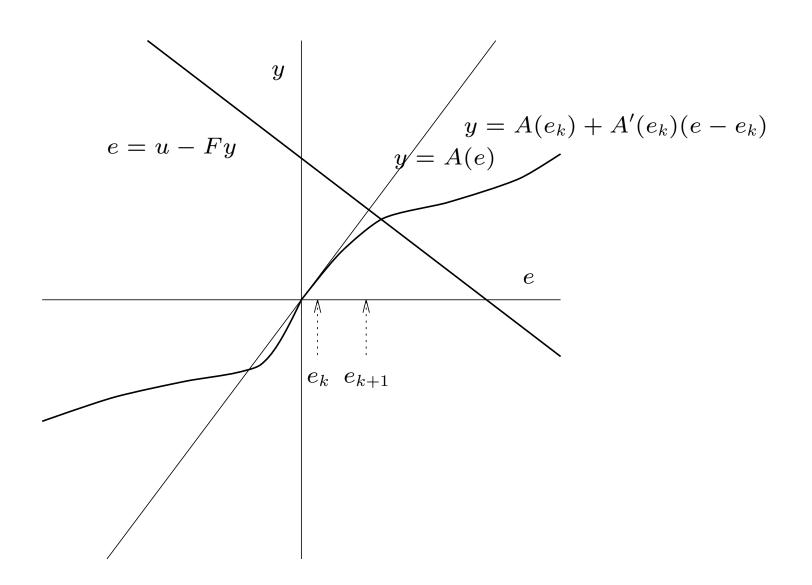
I.e., set
$$e_{k+1} := \frac{u - Fy_k + FA'(e_k)e_k}{1 + FA'(e_k)}$$

5. k := k + 1; go to 2

works very well when initial guess is good; may not converge for bad initial guess

Feedback: static analysis 11–26

Graphical interpretation of Newton's method



Feedback: static analysis 11–27

Tracing the closed-loop characteristic curve

write feedback equations as

$$y = A(e), \qquad u = e + Fy$$

given error e, we can easily find associated y and u!

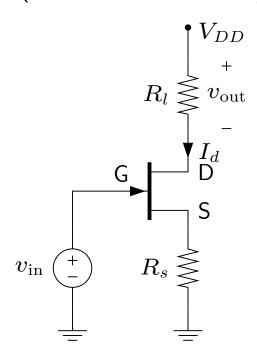
can use this to trace the curve, parametrized by e:

- 1. choose e_1, e_2, \ldots, e_n that cover an appropriate range for e
- 2. for i = 1 to n, set $y_i := A(e_i)$, $u_i := e_i + Fy_i$
- 3. plot $(u_1, y_1), \ldots, (u_n, y_n)$

note that here we don't specify the u values (as in Newton's method)

Feedback: static analysis

Example: JFET amplifier (we assume $v_{\rm GS} \leq 0$)



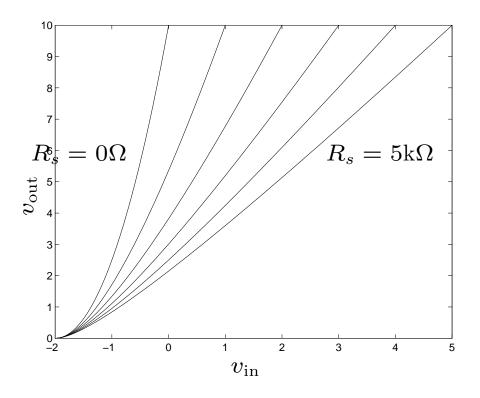
can express as static nonlinear feedback system:

$$v_{\text{out}} = A(v_{GS}), \qquad v_{GS} = v_{\text{in}} - Fv_{\text{out}},$$

with $F = R_s/R_l$ and

$$A(v_{GS}) = \begin{cases} R_l I_{DSS} (1 - v_{GS}/V_P)^2 & V_P \le v_{GS} \le 0\\ 0 & v_{GS} < V_P \end{cases}$$

we'll take $R_l=10\mathrm{k}\Omega$, $I_{DSS}=1\mathrm{mA}$, $V_P=-2\mathrm{V}$



plot shows $v_{\rm out}$ vs. $v_{\rm in}$ for $R_s=0,1,\ldots,5{\rm k}\Omega$ (corresponds to $F=0,0.1,\ldots,0.5$)

as feedback increases, closed-loop 'gain' is smaller; closed-loop characteristic is more linear

Summary

- using feedback we can trade raw gain for lower sensitivity, greater linearity
- benefits determined by S=1/(1+AF): sensitivity and nonlinearity are both reduced by S
- large loop gain L=AF (positive or negative) yields small S hence benefits of feedback