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Lecture 11

Feedback: static analysis

• feedback: overview, standard configuration, terms

• static linear case

• sensitivity

• static nonlinear case

• linearizing effect of feedback
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Feedback: general

a portion of the output signal is ‘fed back’ to the input

standard block diagram:
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• u is the input signal ; y is the output signal ; e is called the error signal

• A is called the forward or open-loop system or plant

• F is called the feedback system

in equations: y = Ae, e = u− Fy
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• feedback ‘loop’: e affects y, which affects e . . .

• overall system is called closed-loop system

• signals can be analog electrical (voltages, currents), mechanical, digital
electrical, . . .

• the − sign is a tradition only

feedback is very widely used

• in amplifiers

• in automatic control (flight control, hard disk & CD player mechanics)

• in communications (oscillators, phase-lock loop)
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when properly designed, feedback systems are

• less sensitive to component variation

• less sensitive to some interferences and noises

• more linear

• faster

(when compared to similar open-loop systems)

we will also see some disadvantages, e.g.

• smaller gain

• possibility of instability

Feedback: static analysis 11–4



Other feedback configurations

we will also see other feedback configurations, e.g.
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which is often used in automatic control

for now we stick to the ‘standard configuration’ (p.11–2)
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sometimes the ‘feedback loop’ is not clear (e.g., in amplifier circuits)
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here we have

Vout = Rlf(VGS), VGS = Vin − (Rs/Rl)Vout,

where Id = f(VGS)
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Static linear case

static case: signals do not vary with time, i.e., signals u, e, y are
(constant) real numbers

(dynamic analysis of feedback is very important — we’ll do it later)

suppose forward and feedback systems are linear, i.e., A and F are
numbers (‘gains’)

eliminate e from y = Ae, e = u− Fy to get y = Gu where

G =
A

1 +AF

is called the closed-loop system gain (A is called open-loop system gain)

L = AF is called the loop gain — it is the gain around the feedback loop,
cut at the summing junction
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observation: if L = AF is large (positive or negative!) then G ≈ 1/F and
is relatively independent of A

how close is G to 1/F?

consider relative error :
1/F −G

1/F
=

1

1 +AF
(after some algebra)

S =
1

1 +AF
=

1

1 + L

is called the sensitivity (and will come up many times)

for large loop gain, sensitivity ≈ 1/loop gain

thus:
for 20dB loop gain, G ≈ 1/F within about 10%
for 40dB loop gain, G ≈ 1/F within about 1%
etc.
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Example: feedback amplifier
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described by: vout = Av, v = vin − (R1/(R1 +R2))vout

• vin is the input u; vout is the output y

• v is the ‘error signal’ e

• open-loop gain is A

• feedback gain is F = R1/(R1 +R2)

vout = Gvin, where closed-loop gain is G =
A

1 +AF
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example: for F = 0.1 and A ≥ 100, G ≈ 10 within 10%

as A varies from, say, 100 to 1000 (20dB variation),
G varies about 10% (around 1dB variation)

in this example, large variations in open-loop gain lead to much smaller
variations in closed-loop gain
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Sensitivity to small changes in A

how do small changes in the open-loop gain A affect closed-loop gain G?

∂G

∂A
=

∂

∂A

A

1 +AF
=

1

(1 +AF )2

so for small change δA, we have

δG ≈
1

(1 +AF )2
δA

express in terms of relative or fractional gain changes:

(δG/G) ≈
1

1 +AF
(δA/A) = S(δA/A)

hence the name ‘sensitivity’ for S

Feedback: static analysis 11–11



for small fractional changes in open-loop gain,

S ≈
fractional change in closed-loop gain

fractional change in open-loop gain

(so ‘sensitivity ratio’ is perhaps a better term for S)

for large loop gain (positive or negative), |S| ¿ 1, so small fractional
changes in A yield much smaller fractional changes in G:

feedback has reduced the sensitivity of the gain G w.r.t. changes in the
gain A
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we can relate (small) relative changes to changes in dB:

δ(20 log10 X) =
20

log 10
δ logX ≈

20

log 10
(δX/X)

(20/ log 10 ≈ 9, i.e., 10% relative change ≈ 0.9dB)

hence we have (for small changes in A),

δ(20 log10 G) ≈ S δ(20 log10 A)

thus (for small changes in open-loop gain),

S ≈
dB change in closed-loop gain

dB change in open-loop gain

Example: ±2dB variation in A, with L ≈ 10, yields approximately ±0.2dB
variation in G
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Summary:

for loop gain |L| À 1,

• gain is reduced by about |L|

• sensitivity of gain w.r.t. A is reduced by about |L|

thus, feedback allows us to trade gain for reduced sensitivity

e.g., convert amplifier with gain 30± 2dB to one with gain 20± 0.7dB or
10± 0.2dB
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Remarks:

• feedback critical with vacuum tube amplifiers
(gains varied substantially with age . . . )

• get benefits for ‘negative’ (AF > 0) or ‘positive’ (AF < 0) feedback —
makes little difference in static case

• sensitivity w.r.t. F is not small — need accurate, reliable feedback
components

• can also trade sensitivity for more gain, by setting AF ≈ −1
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Nonlinear static feedback

We suppose now that the forward system is nonlinear static, i.e., A is a
function from R into R, e.g.,
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very common for amplifiers, transducers, etc. to be at least a bit nonlinear

A is called the nonlinear transfer characteristic of the forward system

(never to be confused with transfer function!)
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we’ll keep the feedback system F linear for now
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feedback system is described by y = A(e), e = u− Fy

these are coupled nonlinear equations:

• maybe multiple solutions; maybe no solutions

• usually impossible to solve analytically

• can be solved graphically, or by computer

usually for each u ∈ R there is one solution y, so we can express the
closed-loop transfer characteristic as a function: y = G(u)
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Example: open-loop characteristic A:
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with feedback gain F = 0.2, yields closed-loop characteristic
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(you should check a few points!)
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Observations: with feedback

• ‘gain’ is lower (note different horizontal scales)

• characteristic is more linear (for |y| < 1)

these phenomena are general . . .

closed-loop transfer characteristic function G satisfies

G(u) = y = A(e), e = u− FG(u)

differentiate w.r.t. u:

G′(u) = A′(e)
de

du
,

de

du
= 1− FG′(u)
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eliminate de/du to get

G′(u) =
A′(e)

1 +A′(e)F

conclusions: for u s.t. |A′F | À 1,

• G′ ≈ 1/F (independent of u) i.e., G is nearly linear!

• slope of G is smaller than slope of A
(by factor 1 +A′F )
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A measure of nonlinear distortion

let w = H(v) be a nonlinear I/O characteristic

assume H(0) = 0 and look at Taylor series

H(v) = H ′(0)v +
1

2
H ′′(0)v2 + · · ·

ratio of quadratic term to first order term is

H ′′(0)

2H ′(0)
v,

so H ′′(0)/H ′(0) gives a measure of distortion
(for a given input v, or a given output w)

now consider feedback system, with A(0) = 0

distortion measure for open-loop system is A′′(0)/A′(0)
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differentiate G′ = A′/(1 +A′F ) w.r.t. u to get

G′′(u) =
A′′(e)

(1 +A′(e)F )2

distortion measure for closed-loop system is

G′′(0)/G′(0) =
1

1 +A′(0)F
A′′(0)/A′(0)

thus, nonlinear distortion measure is reduced by the sensitivity S of the
linearized system!
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Finding the closed-loop characteristic

Graphical method (load line): write feedback equations as y = A(e),
e = u− Fy

for given u sketch both equations on e-y plane; intersection gives solution
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y = G(u)

y = A(e)e = u − Fy

slope = −1/F

easy to visualize what happens as u or F changes
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Newton’s method to solve y = A(e), e = u− Fy (given A, u, and F )

1. guess a value e0 for e; set k = 0

2. set yk := A(ek)

3. if ek = u− Fyk, quit

4. replace nonlinear equation y = A(e) with first-order Taylor expansion
near ek,

y ≈ A(ek) +A′(ek)(e− ek)

Then solve the linear equations

ŷ = A(ek) +A′(ek)(ê− ek),

ê = u− F ŷ

for ê and ŷ; set ek+1 := ê

I.e., set ek+1 :=
u− Fyk + FA′(ek)ek

1 + FA′(ek)

5. k := k + 1; go to 2
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works very well when initial guess is good; may not converge for bad initial
guess
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Graphical interpretation of Newton’s method
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y = A(e)e = u − Fy
y = A(ek) + A′(ek)(e − ek)
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Tracing the closed-loop characteristic curve

write feedback equations as

y = A(e), u = e+ Fy

given error e, we can easily find associated y and u!

can use this to trace the curve, parametrized by e:

1. choose e1, e2, . . . , en that cover an appropriate range for e

2. for i = 1 to n, set yi := A(ei), ui := ei + Fyi

3. plot (u1, y1), . . . , (un, yn)

note that here we don’t specify the u values (as in Newton’s method)
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Example: JFET amplifier (we assume vGS ≤ 0)
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can express as static nonlinear feedback system:

vout = A(vGS), vGS = vin − Fvout,

with F = Rs/Rl and

A(vGS) =

{

RlIDSS(1− vGS/VP )
2 VP ≤ vGS ≤ 0

0 vGS < VP
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we’ll take Rl = 10kΩ, IDSS = 1mA, VP = −2V
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Rs = 0Ω Rs = 5kΩ

plot shows vout vs. vin for Rs = 0, 1, . . . , 5kΩ
(corresponds to F = 0, 0.1, . . . , 0.5)

as feedback increases, closed-loop ‘gain’ is smaller; closed-loop
characteristic is more linear
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Summary

• using feedback we can trade raw gain for lower sensitivity, greater
linearity

• benefits determined by S = 1/(1 +AF ):
sensitivity and nonlinearity are both reduced by S

• large loop gain L = AF (positive or negative) yields small S hence
benefits of feedback
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