
Data Structures

Jaehyun Park

CS 97SI
Stanford University

June 29, 2015

Typical Quarter at Stanford

void quarter() {

while(true) { // no break :(

task x = GetNextTask(tasks);

process(x);

// new tasks may enter

}

}

◮ GetNextTask() decides the order of the tasks

2

Deciding the Order of the Tasks

◮ Possible behaviors of GetNextTask():
– Returns the newest task (stack)
– Returns the oldest task (queue)
– Returns the most urgent task (priority queue)
– Returns the easiest task (priority queue)

◮ GetNextTask() should run fast
– We do this by storing the tasks in a clever way

3

Outline

Stack and Queue

Heap and Priority Queue

Union-Find Structure

Binary Search Tree (BST)

Fenwick Tree

Lowest Common Ancestor (LCA)

Stack and Queue 4

Stack

◮ Last in, first out (LIFO)
◮ Supports three constant-time operations

– Push(x): inserts x into the stack
– Pop(): removes the newest item
– Top(): returns the newest item

◮ Very easy to implement using an array

Stack and Queue 5

Stack Implementation

◮ Have a large enough array s[] and a counter k, which starts
at zero

– Push(x): set s[k] = x and increment k by 1
– Pop(): decrement k by 1
– Top(): returns s[k - 1] (error if k is zero)

◮ C++ and Java have implementations of stack
– stack (C++), Stack (Java)

◮ But you should be able to implement it from scratch

Stack and Queue 6

Queue

◮ First in, first out (FIFO)
◮ Supports three constant-time operations

– Enqueue(x): inserts x into the queue
– Dequeue(): removes the oldest item
– Front(): returns the oldest item

◮ Implementation is similar to that of stack

Stack and Queue 7

Queue Implementation

◮ Assume that you know the total number of elements that
enter the queue

– ... which allows you to use an array for implementation
◮ Maintain two indices head and tail

– Dequeue() increments head

– Enqueue() increments tail

– Use the value of tail - head to check emptiness

◮ You can use queue (C++) and Queue (Java)

Stack and Queue 8

Outline

Stack and Queue

Heap and Priority Queue

Union-Find Structure

Binary Search Tree (BST)

Fenwick Tree

Lowest Common Ancestor (LCA)

Heap and Priority Queue 9

Priority Queue

◮ Each element in a PQ has a priority value
◮ Three operations:

– Insert(x, p): inserts x into the PQ, whose priority is p

– RemoveTop(): removes the element with the highest priority
– Top(): returns the element with the highest priority

◮ All operations can be done quickly if implemented using a
heap

◮ priority_queue (C++), PriorityQueue (Java)

Heap and Priority Queue 10

Heap

◮ Complete binary tree with the heap property:
– The value of a node ≥ values of its children

◮ The root node has the maximum value
– Constant-time top() operation

◮ Inserting/removing a node can be done in O(log n) time
without breaking the heap property

– May need rearrangement of some nodes

Heap and Priority Queue 11

Heap Example

Figure from Wikipedia

Heap and Priority Queue 12

Indexing the Nodes

◮ Start from the root, number the nodes 1, 2, . . . from left to
right

◮ Given a node k easy to compute the indices of its parent and
children

– Parent node: ⌊k/2⌋
– Children: 2k, 2k + 1

Heap and Priority Queue 13

Inserting a Node

1. Make a new node in the last level, as far left as possible
– If the last level is full, make a new one

2. If the new node breaks the heap property, swap with its parent
node

– The new node moves up the tree, which may introduce
another conflict

3. Repeat 2 until all conflicts are resolved

◮ Running time = tree height = O(log n)

Heap and Priority Queue 14

Implementation: Node Insertion

◮ Inserting a new node with value v into a heap H

void InsertNode(int v) {

H[++n] = v;

for(int k = n; k > 1; k /= 2) {

if(H[k] > H[k / 2])

swap(H[k], H[k / 2]);

else break;

}

}

Heap and Priority Queue 15

Deleting the Root Node

1. Remove the root, and bring the last node (rightmost node in
the last level) to the root

2. If the root breaks the heap property, look at its children and
swap it with the larger one

– Swapping can introduce another conflict

3. Repeat 2 until all conflicts are resolved

◮ Running time = O(log n)

◮ Exercise: implementation
– Some edge cases to consider

Heap and Priority Queue 16

Outline

Stack and Queue

Heap and Priority Queue

Union-Find Structure

Binary Search Tree (BST)

Fenwick Tree

Lowest Common Ancestor (LCA)

Union-Find Structure 17

Union-Find Structure

◮ Used to store disjoint sets
◮ Can support two types of operations efficiently

– Find(x): returns the “representative” of the set that x belongs
– Union(x, y): merges two sets that contain x and y

◮ Both operations can be done in (essentially) constant time

◮ Super-short implementation!

Union-Find Structure 18

Union-Find Structure

◮ Main idea: represent each set by a rooted tree
– Every node maintains a link to its parent
– A root node is the “representative” of the corresponding set
– Example: two sets {x, y, z} and {a, b, c, d}

Union-Find Structure 19

Implementation Idea

◮ Find(x): follow the links from x until a node points itself
– This can take O(n) time but we will make it faster

◮ Union(x, y): run Find(x) and Find(y) to find
corresponding root nodes and direct one to the other

Union-Find Structure 20

Implementation

◮ We will assume that the links are stored in L[]

int Find(int x) {

while(x != L[x]) x = L[x];

return x;

}

void Union(int x, int y) {

L[Find(x)] = Find(y);

}

Union-Find Structure 21

Path Compression

◮ In a bad case, the trees can become too deep
– ... which slows down future operations

◮ Path compression makes the trees shallower every time
Find() is called

◮ We don’t care how a tree looks like as long as the root stays
the same

– After Find(x) returns the root, backtrack to x and reroute all
the links to the root

Union-Find Structure 22

Path Compression Implementations

int Find(int x) {

if(x == L[x]) return x;

int root = Find(L[x]);

L[x] = root;

return root;

}

int Find(int x) {

return x == L[x] ? x : L[x] = Find(L[x]);

}

Union-Find Structure 23

Outline

Stack and Queue

Heap and Priority Queue

Union-Find Structure

Binary Search Tree (BST)

Fenwick Tree

Lowest Common Ancestor (LCA)

Binary Search Tree (BST) 24

Binary Search Tree (BST)

◮ A binary tree with the following property: for each node ðİŚč,
– value of v ≥ values in v’s left subtree
– value of v ≤ dvalues in v’s right subtree

Figure from Wikipedia

Binary Search Tree (BST) 25

What BSTs can do

◮ Supports three operations
– Insert(x): inserts a node with value x

– Delete(x): deletes a node with value x, if there is any
– Find(x): returns the node with value x, if there is any

◮ Many extensions are possible
– Count(x): counts the number of nodes with value less than or

equal to x

– GetNext(x): returns the smallest node with value ≥ x

Binary Search Tree (BST) 26

BSTs in Programming Contests

◮ Simple implementation cannot guarantee efficiency
– In worst case, tree height becomes n (which makes BST

useless)
– Guaranteeing O(log n) running time per operation requires

balancing of the tree (hard to implement)
– We will skip the implementation details

◮ Use the standard library implementations
– set, map (C++)
– TreeSet, TreeMap (Java)

Binary Search Tree (BST) 27

Outline

Stack and Queue

Heap and Priority Queue

Union-Find Structure

Binary Search Tree (BST)

Fenwick Tree

Lowest Common Ancestor (LCA)

Fenwick Tree 28

Fenwick Tree

◮ A variant of segment trees
◮ Supports very useful interval operations

– Set(k, x): sets the value of kth item equal to x
– Sum(k): computes the sum of items 1, . . . , k (prefix sum)

◮ Note: sum of items i, . . . , j = Sum(j) − Sum(i − 1)

◮ Both operations can be done in O(log n) time using O(n)
space

Fenwick Tree 29

Fenwick Tree Structure

◮ Full binary tree with at least n leaf nodes
– We will use n = 8 for our example

◮ kth leaf node stores the value of item k
◮ Each internal node stores the sum of values of its children

– e.g., Red node stores item[5] + item[6]

Fenwick Tree 30

Summing Consecutive Values

◮ Main idea: choose the minimal set of nodes whose sum gives
the desired value

◮ We will see that
– at most 1 node is chosen at each level so that the total

number of nodes we look at is log
2

n
– and this can be done in O(log n) time

◮ Let’s start with some examples

Fenwick Tree 31

Summing: Example 1

◮ Sum(7) = sum of the values of gold-colored nodes

Fenwick Tree 32

Summing: Example 2

◮ Sum(8)

Fenwick Tree 33

Summing: Example 3

◮ Sum(6)

Fenwick Tree 34

Summing: Example 4

◮ Sum(3)

Fenwick Tree 35

Computing Prefix Sums

◮ Say we want to compute Sum(k)

◮ Maintain a pointer P which initially points at leaf k

◮ Climb the tree using the following procedure:
– If P is pointing to a left child of some node:

◮ Add the value of P
◮ Set P to the parent node of P’s left neighbor
◮ If P has no left neighbor, terminate

– Otherwise:
◮ Set P to the parent node of P

◮ Use an array to implement (review the heap section)

Fenwick Tree 36

Updating a Value

◮ Say we want to do Set(k, x) (set the value of leaf k as x)

◮ This part is a lot easier

◮ Only the values of leaf k and its ancestors change

1. Start at leaf k, change its value to x

2. Go to its parent, and recompute its value

3. Repeat 2 until the root

Fenwick Tree 37

Extension

◮ Make the Sum() function work for any interval
– ... not just ones that start from item 1

◮ Can support more operations with the new Sum() function
– Min(i, j): Minimum element among items i, . . . , j

– Max(i, j): Maximum element among items i, . . . , j

Fenwick Tree 38

Outline

Stack and Queue

Heap and Priority Queue

Union-Find Structure

Binary Search Tree (BST)

Fenwick Tree

Lowest Common Ancestor (LCA)

Lowest Common Ancestor (LCA) 39

Lowest Common Ancestor (LCA)

◮ Input: a rooted tree and a bunch of node pairs

◮ Output: lowest (deepest) common ancestors of the given pairs
of nodes

◮ Goal: preprocessing the tree in O(n log n) time in order to
answer each LCA query in O(log n) time

Lowest Common Ancestor (LCA) 40

Preprocessing

◮ Each node stores its depth, as well as the links to every 2kth
ancestor

– O(log n) additional storage per node
– We will use Anc[x][k] to denote the 2kth ancestor of node x

◮ Computing Anc[x][k]:
– Anc[x][0] = x’s parent
– Anc[x][k] = Anc[Anc[x][k-1]][k-1]

Lowest Common Ancestor (LCA) 41

Answering a Query

◮ Given two node indices x and y

– Without loss of generality, assume depth(x) ≤ depth(y)

◮ Maintain two pointers p and q, initially pointing at x and y

◮ If depth(p) < depth(q), bring q to the same depth as p

– using Anc that we computed before

◮ Now we will assume that depth(p) = depth(q)

Lowest Common Ancestor (LCA) 42

Answering a Query

◮ If p and q are the same, return p

◮ Otherwise, initialize k as ⌈log2 n⌉ and repeat:
– If k is 0, return p’s parent node
– If Anc[p][k] is undefined, or if Anc[p][k] and Anc[q][k]

point to the same node:
◮ Decrease k by 1

– Otherwise:
◮ Set p = Anc[p][k] and q = Anc[q][k] to bring p and q up

by 2k levels

Lowest Common Ancestor (LCA) 43

Conclusion

◮ We covered LOTS of stuff today
– Try many small examples with pencil and paper to completely

internalize the material
– Review and solve relevant problems

◮ Discussion and collaboration are strongly recommended!

Lowest Common Ancestor (LCA) 44

	Stack and Queue
	Heap and Priority Queue
	Union-Find Structure
	Binary Search Tree (BST)
	Fenwick Tree
	Lowest Common Ancestor (LCA)

