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Problems with contemporary machine learning

e Sample Efficiency
e ScalingUp
e Generalization



Content

1. Hierarchical Planning
2. Analogical Reasoning vs. Brute Force Search
3. Meta-learning / One-shot learning with complex workflows



Hierarchical Planning
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Feudal Reinforcement Learning (Dayan & Hinton 1992)
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Fuster’s Hierarchy (Fuster, Joaquin 2001)



THIS 1S YOUR MACHINE LEARNING SYSTETM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN (OLLECT
THE ANSLERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LJRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT:

https://xkcd.com/1838/
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Neural Networks, Manifolds, and Topology (Olah 2014)
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Deep Neural Networks

Medium Neural Networks

Shallow Neural Networks

Performance

Traditional Machine Learning

Data

Sample complexity of machine learning algorithms
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STRIPS (Fikes & Nilsson 1971) SHAKEY
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Smooth, Robust Decomposition (Kirsch et. al. 2018)




Behavior generation loop
v Signals from environment

Controller Body ‘ Physical world

Behavior
b c . .
Flat controller Hierarchical controller
Proprioception Visual signals
Visual signals Task context — [ Higher-level
Task context Other signals controller
Other signals l
Controller
: ; Lower-level
Motor commands [—> Motor commands

Fig. 1 a Interaction cycle between an embodied control system and a physical environment to generate behavior. b A flat controller with no architectural
segregation of different inputs. € A basic, brain-inspired two-stage hierarchy: a lower-level motor controller directly generates motor commands to the
effectors based on input from proprioceptive sensors and modulatory input from a higher-level controller, which is responsive to additional signals,
including vision and task context signals.

(Merel et. al. 2017)
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(Merel et. al. 2017)



(Reed & Freitas 2016)

GOTO()  HGOTO() LGOTO() ACT(LEFT) LGOTO() ACT(LEFT) GOTO()  VGOTO()  DGOTO() ACT(DOWN) end state

Figure 1: Example execution of canonicalizing 3D car models. The task is to move the camera such
that a target angle and elevation are reached. There is a read-only scratch pad containing the target
(angle 1, elevation 2 here). The image encoder is a convnet trained from scratch on pixels.

Figure 2: Example execu-
tion trace of single-digit addi-
tion. The task is to perform
a single-digit add on the num-
bers at pointer locations in the

first two rows. The carry (row

3) and output (row 4) should

T T T T T T 7] be updated to reflect the addi-
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i L} L ' i L L (viewed from each pointer on

I ) [ 3 ¥ ¥ 3] a scratch pad) is encoded into
ADDA() 'c“?.z.wmr;) ADDA() - " CARRY() - AZT(:(_LEF'I; _WiAﬁti.—leﬁ—) a ﬁxed'length vector.




Analogical Reasoning
V.S.
Brute Force Search



Carl Friedrich Gauss

In the 1780s a provincial German schoolmaster gave his class the tedious assignment of summing the first
100 integers. The teacher's aim was to keep the kids quiet for half an hour, but one young pupil almost
immediately produced ananswer: 1+2+3+..+ 98+ 99 + 100 = 5,050. The smart aleck was Carl
Friedrich Gauss, who would go on to join the short list of candidates for greatest mathematician ever.
Gauss was not a calculating prodigy who added up all those numbers in his head. He had a deeper insight:
If you "fold" the series of numbers in the middle and add them in pairs—1 + 100, 2 + 99, 3 + 98, and so
on—all the pairs sum to 101. There are 50 such pairs, and so the grand total is simply 50x101. The more
general formula, for a list of consecutive numbers from 1 through n, is n(n + 1)/2.

- Gauss's Day of Reckoning
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Raven’s Progressive Matrices (Santoro et. al. 2018)
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Raven’s Progressive Matrices (Santoro et. al. 2018)




Novel Domain Transfer Novel Target Domain
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Figure 4: Results of the three experiments in the visual analogy domain for a network that
learns from random candidate answers, by contrasting abstract structures or both types of
question interleaved. Bar heights depict the means across eight seeds in each condition; standard
errors were < (.01 for each condition (not shown — see the appendix Table 4 for the values)

(Hill et. al. 2019)
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Figure 2: All trajectories of different agents on the
Discrete Platformer domain. Unsafe trajectories are
drawn in red. The brown, white, and grey squares
correspond to the different surface types: sand, ice,
and concrete, respectively. The agent starts in the
center of the leftmost island. The flag represents the
goal state.

(Roderick et. al. 2021)



Meta-learning / One-shot-learning
with Complex Workflows.



Children have inductive biases for
curiosity, homeostasis, and
imitation among others. The
environment provides affordances
for these rewards that the teacher
can manipulate to teach the child.
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(Abramson et. al. 2020)



RL(c) = argmin —H () + E;[¢(s, a)]

Cost Function
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(Ziebart et al., 2010;

Rust 1987)

(Ho, J., & Ermon, S. 2016)

Everything else Expert has
has high cost small cost
15



Performance on Multimodal Sequence Benchmarks
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(Lu et. al. 2021)



Thank you
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