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What Learming Systems do
Intelligent Agents Need”?
Complementary Learning
Systems Theory Updateo
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We update complementary learning systems (CLS) theory, which holds that
intelligent agents must possess two learning systems, instantiated in mamma-
lians in neocortex and hippocampus. The first gradually acquires structured
knowledge representations while the second quickly learns the specifics of
individual experiences. We broaden the role of replay of hippocampal memories
in the theory, noting that replay allows goal-dependent weighting of experience
statistics. We also address recent challenges to the theory and extend it by
showing that recurrent activation of hippocampal traces can support some
forms of generalization and that neocortical learning can be rapid for informa-
tion that is consistent with known structure. Finally, we note the relevance of the
theory to the design of artificial intelligent agents, highlighting connections
between neuroscience and machine learning.

Trends

Discovery of structure in ensembles of
experiences depends on an interleaved
learning process both in biological
neural networks in neocortex and in
contemporary artificial neural networks.

Recent work shows that once struc-
tured knowledge has been acquired in
such networks, new consistent infor-
mation can be integrated rapidly.

Both natural and artificial learning sys-
tems benefit from a second system that
stores specific experiences, centred on
the hippocampus in mammalians.




Reinforcement Learning and
Episodic Memory in Humans

An Integrative Framework
Samuel J. Gershman'! and Nathaniel D. Daw?

However, one cnallenge 1n tne study of RL is computational:
The simplicity of these tasks ignores important aspects of reinforcement
learning in the real world: (#) State spaces are high-dimensional, continuous,
and partially observable; this implies that () data are relatively sparse and,

indced,precisely the samesituation may never be encountered bwice; frthr-

distinct challenge is that, cognitively, theories of RL have largely involved
procedural and semantic memory, the way in which knowledge about action
values or world models extracted gradually from many experiences can drive

choice. This focus on semantic memory leaves out many aspects of mem-

e e o o
suggest that these two challenges are related. The computational challenge
can be dealt with, in part, by endowing RL systems with episodic memory,




| Global Neuronal Workspace model — Stanislas Dehaene & Bernard Baars
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See: https://arxiv.org/pdf/1912.00421.pdf#page=13
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Hopfield Networks is All You Need

Hubert Ramsauer® Bernhard Schafl* Johannes Lehner”*
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The transformer and BERT models pushed the performance on NLP tasks to new
levels via their attention mechanism. We show that this attention mechanism
1s_the update rule of a modern Hopfield network with continuous states. ‘This
new Hopfield network can store exponentially (with the dimension) many patterns,
converges with one update, and has exponentially small retrieval errors. The number
of stored patterns must be traded off against convergence speed and retrieval error.
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Figure 1: We generalized the energy of binary modern Hopfield networks for allowing continuous
states while keeping convergence and storage capacity properties. We defined for the new energy also
a new update rule that minimizes the energy. The new update rule is the attention mechanism of the
transformer. Formulae are modified to express softmax as row vector as for transformers.




NEURAL PROGRAMMER-INTERPRETER
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Scott E. Reed and Nando de Freitas. Neural programmer-interpreters. CoRR, arXiv:1511.06279, 2015.
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Modern Hopfield Networks for Few- and Zero-Shot Reaction Prediction
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In drug discovery,
a desired property can be the inhibition of a disease or a
virus and in material science, thermal stability. From the de-
sign idea of the molecule, a virtual molecule is constructed,
which enables to simulate or to predict the molecule’s prop-
erties by the means of computational methods
However, to eventually test its hypo-
thetical properties, the molecule has to be made physically
available through chemical synthesis. The chemical syn-
thesis problem, that is, how to assemble a given molecule
with a series of chemical reactions, 1s a multi-step process
with many possible choices at each step and, hence, highly
complex. New molecules only come into physical existence
if their synthesis route is known, otherwise, they are just an
idea.



Modern Hopfield Networks for Few- and Zero-Shot Reaction Prediction
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An essential step in the discovery of new drugs
and materials is the synthesis of a molecule that
exists so far only as an idea to test its biolog-
ical and physical properties. While computer-
aided design of virtual molecules has made large
progress, computer-assisted synthesis planning
(CASP) to realize physical molecules is still in its
infancy and lacks a performance level that would
enable large-scale molecule discovery. CASP sup-
ports the search for multi-step synthesis routes,
which is very challenging due to high branching
factors in each synthesis step and the hidden rules
that govern the reactions.

The central and repeat-
edly applied step in CASP is reaction prediction,
for which machine learning methods yield the best
performance. We propose a novel reaction predic-
tion approach that uses a deep learning architec-
ture with modern Hopfield networks (MHNS5s) that
1s optimized by contrastive learning. An MHN
1s an associative memory that can store and re-
trieve chemical reactions in each layer of a deep
learning architecture. We show that our MHN
contrastive learning approach enables few- and
zero-shot learning for reaction prediction which,
in contrast to previous methods, can deal with
rare, single, or even no training example(s) for a
reaction.



Modern Hopfield Networks for Few- and Zero-Shot Reaction Prediction
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Figure 2. Simplified schematic representation of our approach. Standard approaches only encode the molecule and predict a fixed set of
templates, in our MHN-based approach, the templates are also encoded and transformed to stored-pattern via the template encoder. The
Hopfield-layer learns to associate the encoded input molecule, the state pattern &, with the memory of encoded templates, the stored

patterns X.



Data-Efficient Image Recognition with Contrastive Predictive Coding

The masks are such
that the receptive field of each resulting context vector c; ;
only includes feature vectors that lie above it in the image

(ie. i g¢({zu,v}u$i,v))-

con-

.
&
2

S

g

c

&

:

=

)

g

=

Z

assigned to the target using a softmax, and rate this proba-
bility using the usual cross-entropy loss.

(van den Oord et al., 2018):

Lepe = — Z log p(Zitk.jlZitk.j: {21})

1,3,k
- St e )
i,j,k exp(2],, ;Zirk ) + 2o exp(2] ;21)

The negative samples {z;} are taken from other loca-
tions in the image and other images in the mini-batch.
This loss is called InfoNCE as it is inspired by Noise-
Contrastive Estimation (Gutmann & Hyvirinen, 2010; Mnih
& Kavukcuoglu, 2013) and has been shown to maximize the
mutual information between c; ; and z;4 ; (van den Oord
etal., 2018).




Data-Efficient Image Recognition with Contrastive Predictive Coding
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Figure 2. Overview of the framework for semi-supervised learning with Contrastive Predictive Coding. Left: unsupervised pre-training
with the spatial prediction task (See Section 2.1). First, an image is divided into a grid of overlapping patches. Each patch is encoded
independently from the rest with a feature extractor (blue) which terminates with a mean-pooling operation, yielding a single feature
vector for that patch. Doing so for all patches yields a field of such feature vectors (wireframe vectors). Feature vectors above a certain
level (in this case, the center of the image) are then aggregated with a context network (red), yielding a row of context vectors which are
used to linearly predict features vectors below. Right: using the CPC representation for a classification task. Having trained the encoder
network, the context network (red) is discarded and replaced by a classifier network (green) which can be trained in a supervised manner.
In some experiments, we also fine-tune the encoder network (blue) for the classification task. When applying the encoder to cropped
patches (as opposed to the full image) we refer to it as a patched ResNet in the figure.
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