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Generalization without Systematicity:
On the Compositional Skills of Sequence-to-Sequence Recurrent Networks
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Abstract

Humans can understand and produce new utter-
ances effortlessly, thanks to their compositional
skills. Once a person learns the meaning of a
new verb “dax,” he or she can immediately un-

then dax again.” This type of compositionality is central to
the human ability to make strong generalizations from very
limited data (Lake et al., 2017). In a set of influential and
controversial papers, Jerry Fodor and other researchers have
argued that neural networks are not plausible models of the
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‘Compositionality’ in static vs temporally correlated training data
Condition A
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Training Testing

Lifta __ Puta___ onabed /Put a___onabed \

boat boat
bus car bus car mug
helicopter helicopter hairdryer
keyboard keyboard picture frame
plane robot plane robot plate

rocket train rocket train potted plant
racket candle racket candle roof block
mug rubber dygk
hairdryer

picture frame

plate

potted plant

roof block — T

rubber duck




"Same" test of generalization in 3D first-person and 2D top-down

Condition A Condition B
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Environmental Drivers of Systematicity and Generalization in a Situated Agent. Hill et al. ICLR 2020




The agent's training experience affects ‘compositionality’
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Environmental Drivers of Systematicity and Generalization in a Situated Agent. Hill et al. ICLR 2020
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The agent's perspective affects ‘compositionality’

. 3D test

Chance performance
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Some things to think about

Why do some think that neural networks won't generalise in
ways that humans do?

What are some alternative approaches?

Why are people like me sceptical about these alternatives?
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What about 'higher' cognition?
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How does a model's training experience affect analogy learning?

28

Source Domain (shape quantity) Relation: Progress1on
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One shape Two shapes Three shapes "\\
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Light grey Medium grey Dark grey
Candidates

Target Domain (line colour)

Types of Domains
shape quantity
shape colour
shape type
shape size
shape position
line type

line colour

Types of Relations
Progression
XOR
OR
AND

Learning to make analogies by contrasting abstract relational structure. Hill et al. ICLR 2019
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Source Domain (line type)
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Some things to think about

What do these experiments suggest about ways to train
(or 'educate’) deep networks?

Could a symbolic model achieve the sort of generalisations
observed here?
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Back to a 3D world!
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Learning to use a word in one shot
\G PT-3

Prompt: To do a "farduddle” means to jump up and down really fast. An
example of a sentence that uses the word farduddle is:

GPT3: One day when | was playing tag with my little sister, she got really
excited and she started doing these crazy farduddles.

Language Models are Few Shot Learners. Brown et al. 2020. arXiv.
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The 'daX' taSk tO prObefast_mapping Private & Confidential
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Acquiring a Single New Word. Carey & Bartlett (1978).
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REPORT

Word Learning in a Domestic Dog: Evidence for "Fast
Mapping"

Juliane Kaminski, Josep Call, Julia Fischer*
+ See all authors and affiliations

Science 11 Jun 2004:
Vol. 304, Issue 5677, pp. 1682-1683
DOI: 10.1126/science.1097859

Article Figures & Data Info & Metrics elLetters PDF

Abstract

During speech acquisition, children form quick and rough hypotheses about the meaning of a
new word after only a single exposure—a process dubbed “fast mapping.” Here we provide
evidence that a border collie, Rico, is able to fast map. Rico knew the labels of over 200
different items. He inferred the names of novel items by exclusion learning and correctly
retrieved those items right away as well as 4 weeks after the initial exposure. Fast mapping

Private & Confidential
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Fast-mapping in a neural-network agent?




A simulated dax task

Presentation phase

Agent

@ \ "This is a dax"

"This is a blicket"

-

Randomize
positions

Instruction phase

Private & Confidential

"Pick up a blicket"

-

Agent
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DefaUIt LSTM—based agent Private & Confidential

Actions

Agent Core

' LSTM

multimodal code

language

visual codes
codes

“This is
a dax”
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multimodal code

rop-k matches External memory (DNC) agent ....scoens

multimodal code

multimodal code

multimodal code

multimodal code )
Actions

multimodal code

multimodal code

Agent Core
LSTM

multimodal code

language code visual code

“This is
a dax”
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Hybrid computing using a neural network with dynamic external memory, Graves et al. 2016




Top-k matches Private & Confidentia

Actions

visual

‘memory’

Agent Core

' LSTM
multimodal code

Dual-coding Episodic Memory (this work)
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visual code <;_ "82
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Reconstruction loss (semi-supervised learning)

visual
‘memory’

Agent Core
LSTM

multimodal code

visual code "ThiS iS a daX"

“This is
a dax”

Actions

Private & Confidential
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Performance on training tasks

Mean accuracy

Architecture (1e9) steps
LSTM 0.33
LSTM + Recons 0.65
DNC + LSTM 0.33
DNC + LSTM + Recons 0.45
TransformerXL 0.34
TransformerXL + Recons

DCEM + LSTM

DCEM + LSTM + Recons

Random object selection

Accuracy

o
'S

1.0

@8 DCEM +R
B TransformerXL + R
08 SEEM DNC +R

@ LSTM+R

o©
o

0.2

0.0
0.0

0.2

0.4

steps

0.6

Private & Confidential

0.8

1.0
1le9

o



Private & Confidential

Generalization of object quantity

(a) Trials with 3 objects (b) Trials with 5 objects (c) Trials with 8 objects
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Generalization to unfamiliar objects

Training

Evaluating

Presentation phase

Agent
Cb — "This is a dax"

"This is a blicket" /

—

Agent

"This is a dax”

"This is a blicket"

>

Random
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Random
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Instruction phase

FICK Up a DliIckel
Agent
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Agent

Private & Confidential
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Private & Confidential

Generalization to unfamiliar objects

Number of objects in the
training object set

Three

Accuracy on evaluation trials
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FaSt 'Category' learning Private & Confidential

Presentation phase Instruction phase
"Pick up a blicket"
Agent
@ —~ "This is a dax" ::
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‘ intervention
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ShapeNet categories can contain diverse exemplars

ShapeNet: An Information-rich 3D Model Repository. Chang et al. (2015). @



Zero-shot category extension

@ Exact recall condition 1.0

"This is a dax” "Pick up a dax”

>
............................................................................... o

@ Extension within training set g A
"This is a dax” "Pick up a dax” 8
m

'_ y 2 04
.............................................................................. -
(7]
. o

Testing = i

: Extension of novel categories : '

"This is a dax” "Pick up a dax"

- - % 0.0
et 0.0 0.2 0.4 0.6 0.8 1.0 1.2

S T S S S S Y S T S A e : steps leg



Integrating fast and slow knowledge
GPT-3

Prompt: To do a "farduddle’ means to jump up and down really fast. An

example of a sentence that uses the word farduddle is:

GPT3: One day when | was playing tag withw she got really
excited and she started doing these crazy :
"Slow" lexical knowledge

"Fast” lexical knowledge (o)



Integrating fast and slow knowledge

Agent

‘ \ "This is a dax"

ﬁ

"This is a blicket"

'Fast'/
episodic
knowledge

)

Random
Shuffle

"Put the blicket on the bed"

Private & Confidential

RN
'Slow' /
semantic
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Put a rusteak on a bed
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Task name

Fast-mapping
+lifting

Lifting

Putting

Fast-mapping
+putting
(novel objects)

This is a dax
“~> @
e

This is a car

(CIE,

>

s

This is a car

(5\;’“
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o

g

This is a dax
o <"/i
&

Pick up a dax

*

Pick up a car
h \l% >
S

&

Put a car
on the bed

2

-

@£ o

Put a dax
on the bed

O 606’

Minimal
training
regime

Evaluation

Train/test Evaluation accuracy
relationship fast-mapping + putting
Familiar objects,
familiar task Ui S
Familiar objects,
unfamiliar task 026 £2.8
Unfamllxar_ ijects, 071 +£3.8
familiar task
Unfamiliar objects,
unfamiliar task 0.68 +6.1
Placing movable
objects at random 0.17

(chance)
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Some thlngs to think about

What is realistic/unrealistic about these simulations when
considering human learners?

In what way could the agent's ability and memory be further
improved?

What effect does being surrounded by language have on the
way we learn, think and remember?
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TO COHCIUde / discuss Private & Confidential

e We have shown various examples of strong / systematic / compositional / out-of-distribution
generalization in neural nets
o An embodied agent that learns compositional generalization of nouns (objects) and verbs
(motor-processes)
o A model that can be taught to make visual analogies in a general way by exemplifying important
contrasts in the task domain
o An agent that can learn to fast-map new words in a highly general and flexible way

e The training 'experience seems to be a critical factor in the emergence of these capacities
o Greater ecological realism often implies better generalization
o  Thoughtful curricula or training methods clearly make a difference

e How far we can get using this ‘developmental approach’ to Al is unknown. Few people attempt it
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Thank you




