
  

Designing   Interactive,   Collaborative   Agents   
  

The  Interactive  Agents  Group  (IAG)  at  DeepMind  has  the  aspirational  goal  of  building  agents                
that  interact  with  humans  and  communicate  using  natural  language  to  collaboratively  solve              
problems.   The   abstract   of   their   2020   paper   summarizes   their   initial   attempt   to   achieve   this   goal:   

A  common  vision  from  science  fiction  is  that  robots  will  one  day  inhabit  our                
physical  spaces,  sense  the  world  as  we  do,  assist  our  physical  labors,  and               
communicate  with  us  through  natural  language.  Here  we  study  how  to  design              
artificial  agents  that  can  interact  naturally  with  humans  using  the  simplification  of              
a  virtual  environment.  This  setting  nevertheless  integrates  a  number  of  the             
central  challenges  of  artificial  intelligence  (AI)  research:  complex  visual           
perception  and  goal-directed  physical  control,  grounded  language         
comprehension  and  production,  and  multi-agent  social  interaction.  To  build           
agents  that  can  robustly  interact  with  humans,  we  would  ideally  train  them  while               
they  interact  with  humans.  However,  this  is  presently  impractical.  Therefore,  we             
approximate  the  role  of  the  human  with  another  learned  agent  and  use  ideas               
from  inverse  reinforcement  learning  to  reduce  the  disparities  between           
human-human   and   agent-agent   interactive   behavior.   [...]   

The   agents   in   the   IAG   paper   interact   in   a   simulated   environment   and   learn   to   perform   relatively   
simple   skills   that   involve   searching   for   and   identifying   objects   by   their   shape   or   color   and   then   
moving   them   to   different   locations.   During   training   two   agents   participate   in   what   are   referred   to   
as   language   games   –   borrowing   the   term   from   Wittgenstein.     
  

In   each   game,   one   agent   takes   the   role   of   the    setter    and   the   other   the   role   of   the    solver .   Both   
agents   can   move   around   and   examine   the   objects   in   the   environment.   Given   an   externally   
generated   prompt,   the   setter   issues   instructions   to   the   solver   constrained   by   the   prompt   and   the   
solver   attempts   to   carry   out   the   instructions.   

The   role   of   the   setter   was   therefore   primarily   to   explore   and   understand   the   situational   context   
of   the   room   (its   layout   and   objects)   and   to   initiate   diverse   language   games   constrained   by   the   
basic   scaffolding   given   by   the   prompt.   They   communicate   with   one   another   using   natural   
language   which   they   have   to   learn   through   their   interactions.   The   tasks   are   simple.   Learning   a   
language   is   complicated.   

  
  

  
  



  
In   class   this   year   we   will   carry   out   a   gedanken   experiment   for   the   purpose   of   exploring   whether   
something   like   the   approach   described   in   the   paper   might   be   employed   to   train   an   agent   to   take   
on   the   more   demanding   task   of   a   programmer’s   apprentice.   In   carrying   out   this   experiment,   we   
will   consider   seriously   the   problem   of   transforming   natural   language   descriptions   of   algorithms,   
computer   programs,   and   programming   strategies   into   the   unnatural   language   of   working   code.   

  

To  provide  technical  advice  and  direction  on  how  to  tackle  this  problem  we  have  enlisted  the                  
help  of  several  accomplished  research  scientists  from  DeepMind,  Google  Brain,  and  Stanford.              
Four  of  whom  have  volunteered  to  give  presentations  on  topics  directly  relevant  to  the                
experiment  we  are  conducting  and  contribute  to  class  discussions  during  the  first  half  of  the                 
quarter,  and  all  of  them  willing  to  provide  advice  on  class  projects  relating  to  their  expertise.  In                   
addition,  we  will  review  several  relevant  invited  talks  from  the  2018  and  2019  classes,  including                 
Peter  Battaglia,  Matt  Botvinick,  Jessica  Hamrick,   Tejas  Kulkarni,   Josh  Merl,  Randal  O’Reilly,   Neil               
Rabinowitz,    Oriol   Vinyals,   and   Greg   Wayne.   



  
  

Learning   your   first   language   is   generally   a   collaborative   effort   involving   the   child,   his   or   her   
parents,   and   siblings,   and   eventually   a   larger   cohort   of   teachers   and   playmates.   The   process   of   
creating   a   human   language   is   an   ongoing   collective   enterprise   with   the   lasting   products   of   that   
effort   being   culture   and   technology.   It's   no   exaggeration   to   claim   that   language   is   the   most   
important   invention   of   humanity   and   artificial   intelligence   hasn’t   begun   to   exploit   its   value.   
  

The   words   we   speak   or   write   belie   the   complexity   of   the   information   they   are   able   to   convey.   
This   is   because   those   words   tap   into   the   greater   context   of   our   collective   adaptation   and   
application   of   those   words.   The   fundamental   meaning   of   those   words   is   not   to   be   found   in   
dictionaries   or   encyclopedias   but   rather   in   our   shared   experience   of   the   world   we   all   live   in.     
  

We   say   that   our   use   of   language   is    grounded    in   that   shared   experience,   and   the   foundation   of   
that   experience   is   our   protracted   development   including   the   multi-year   process   during   which   we   
learned   our   first   language.   Eve   Clark   uses   the   term    common   ground    to   refer   to   the   larger   
context   established   between   individuals   engaged   in   conversation,   and   part   of   learning   language   
involves   learning   how   to   participate   and   contribute   in   the   construction   of   common   ground.   
  

Human   beings   are   good   at   constructing   narratives   to   share   with   one   another   and   in   the   process   
of   explaining   ourselves   to   others   and,   importantly,   to   ourselves.   These   narratives   are   essentially   

http://langcog.stanford.edu/expts/discon/disCon/literature/Clark.pdf


stories   that   can   convey,   among   other   things,   recipes,   plans   and   procedural   knowledge   of   all   
sorts   including   computer   algorithms.   Understanding   an   algorithm   often   requires   an   extended   
context   and   vocabulary   specific   to   the   practice   of   programming,   but   it   is   important   to   note   that   
the   words   in   that   vocabulary   still   derive   from   our   grounding   in   the   physical   world.     
  

  
  

The   agents   described   in   the   2020   AIG   paper   live   in   a   3D   virtual   environment   referred   to   as   a   
playground    consisting   of   a   set   of   rooms   populated   by   children’s   toys   and   various   domestic   
objects   like   tables   and   chairs.   The   environment   also   includes   a    prompter    that   sets   the   agenda   
for   each   learning   trial.   There   are   two   agents   that   populate   the   environment;   one   of   them   called   
the    setter    instructs   the   other   agent   called   the    solver    to   perform   a   task.     
  

The   environment   is   rich   enough   to   support   interactions   that   involve   reasoning   about   space   and   
the   relationships   between   objects   including   containment,   construction,   support,   occlusion   and   
partial   observability   –    the   last   being   a   fundamental   characteristic   of   the   environments   that   we   
encounter   in   the   real   world   and   that   considerably   complicate   action   and   perception.     
  

This   simulated   environment   serves   as   a   testbed   for   exploring   the   possibility   of   building   agents   
that   can   naturally   interact   with   and   usefully   assist   humans.   In   particular,   it   forces   us   to   directly   
tackle   the   problem   of   how   to   use   language   as   the   basis   for   communication   in   collaborations,   a  

https://web.stanford.edu/class/cs379c/class_messages_listing/curriculum/Interactive_Intelligence/Imitating_Interactive_Intelligence_Overview_Gregory_Wayne.mp4


problem   whose   solution   we   take   for   granted   and   as   a   consequence   risk   the   danger   that   we   take   
shortcuts   in   training   agents   to   acquire   linguistic   skills.   Learning   a   language   for   the   purpose   of   
collaboration   requires   that   the   agent   ground   its   understanding   of   the   meaning   of   words   to   align   
with   how   its   collaborators   ground   those   same   words    –   this   is   essentially   what   Eve   Clark   means   
by   common   ground.   
  

The   process   of   grounding   begins   long   before   an   infant   utters   its   first   words   and   is   facilitated   by   a   
form   of    shared   attention    in   which   the   infant   learns   to   follow   the   gaze   of   its   mother   to   ensure   that   
they   are   looking   at   the   same   thing   and   eventually   learns   to   employ   other   modalities   such   as   
pointing   to   establish   the   relationship   between   an   object   and   its   referent.    Grounding   is   much   
more   complicated   than   simply   learning   the   names   of   objects;   the   child   has   to   learn   the   naïve   
physics   governing   both   the   static   and   dynamic   relationships   between   objects   and   figure   out   the   
preferred   words   used   to   convey   those   relationships.   This   physical   understanding   of   the   world   –   
often   called    commonsense   reasoning ,   also   serves   as   the   basis   for   creating   and   using   analogies.   
  

  
  

The   neural   architecture   used   in   implementing   the   interactive   agent   is   made   much   simpler   by   
taking   advantage   of   the   power   and   generality   of   Transformer   and   ResNets.   This   relative   
simplicity   is   in   stark   contrast   with   the   complexity   and   sophistication   of   the   curriculum   learning   
strategy   required   to   train   the   model.   Here   are   a   few   key   features   of   the   curriculum   protocol:   



Regardless   of   the   evaluation   metric   employed   by   a   human   evaluator,   fundamental   properties   
inherent   in   the   reinforcement   learning   problem   suggest   that   performance   will   remain   
substandard   until   the   agent   begins   to   learn   how   to   behave   well   in   exactly   the   same   distribution   
of   environment   states   that   an   intelligent   expert   is   likely   to   visit.   This   fact   is   known   as   the   
performance   difference   lemma    and   the   authors'   answer   to   resolving   this   dilemma   is   to   employ   
imitation   learning    using   a   technique   known   as    behavioral   cloning    which   frames   the   problem   of   
copying   behavior   as   a    supervised   sequence   prediction   problem    and   requires   the   collection   of   a   
dataset   of   observation   and   action   sequences   produced   by   expert    demonstrators .     

We   would   like   the   agent’s   policy   distribution   to   match   that   of   the   demonstrator’s   policy,   but   it’s   
not   feasible   to   train   the   policy   to   exert   active   control   in   the   environment   in   order   to   attain   states   
that   are   probable   in   the   demonstrator's   distribution.   To   deal   with   this   problem   they   employ   
inverse   reinforcement   learning    (IRL)   algorithms   in   an   attempt   to   infer   the   reward   function   
underlying   the   intentions   of   the   demonstrator   –   intuitively,   inferring   the    goals    of   the   demonstrator   
–   and   then   optimize   the   policy   itself   using   reinforcement   learning   to   pursue   these   goals.   

The   setting   for   the   agent   is    partially   observable    and   so   in   the   process   of   evaluating   the   agent   
during   training   we   can't   assume   the   agent   has   knowledge   of   the   current   state.   To   compensate   
for   this   they   supply   the    discriminator    responsible   for   determining   whether   the   agent   succeeds   or   
fails   in   attempting   to   carry   out   a   task   with   a   sequence   of   the   last    K    observations,   effectively   
assuming   that   the   underlying   environment   is    K-Markov .   These    K -length   sequences   are   
essentially   movies   complete   with   the   linguistic   and   visual   information   that   the   agent   is   privy   to   
and   are   consequently   high-dimensional   incurring   considerable   computational   overhead.   



  

A   neural   programmer-interpreter   (NPI)   is   a   recurrent   /   compositional   neural   network   that   learns   
to   represent   and   execute   programs.   The   NPI   is   given   an   environment   in   which   a   certain   task   is   
to   be   executed   and   a   library   of   primitive   operations   that   can   be   carried   out   to   produce   changes   
in   the   environment.   For   example,   the   environment   might   consist   of   a   grid    scratchpad    in   which   
each   cell   can   contain   a   single   digit,   plus   one   or   more   pointers   ( * )   that   can   be   used   to   identify   
arguments   or   the   cell   in   which   to   write.   The   task   above   is   to   add   two   multi-digit   numbers,   and   
the   primitives   consist   of   moving   pointers   and   writing   to   cells.   Borrowing   from   the   paper:   

  
NPI  has  three  learnable  components:  a  task-agnostic  recurrent  core,  a  persistent  key-value  program               
memory,  and  domain-specific  encoders  that  enable  a  single  NPI  to  operate  in  multiple  perceptually                
diverse  environments  with  distinct  affordances.  By  learning  to  compose  lower-level  programs  to              
express  higher-level  programs,  NPI  reduces  sample  complexity  and  increases  generalization  ability             
compared  to  sequence-to-  sequence  LSTMs.  The  program  memory  allows  efficient  learning  of              
additional   tasks   by   building   on   existing   programs.     

The  core  module  is  an  LSTM-based  sequence  model  that  takes  as  input  a  learnable  program                 
embedding,  program  arguments  passed  on  by  the  calling  program,  and  a  feature  representation  of  the                 
environment.  The  output  of  the  core  module  is  a  key  indicating  what  program  to  call  next,  arguments  for                    
the  following  program  and  a  flag  indicating  whether  the  program  should   terminate.  In   addition  to  the                  
recurrent   core,   the   NPI   architecture   includes   a   learnable   key-value   memory   of   program   embeddings .   

https://web.stanford.edu/class/cs379c/class_messages_listing/curriculum/Interactive_Intelligence/Nando_de_Freitas_Neural_Programmer_Interpreters.mp4


The   NPI   paper   was   an   important   advance   in   neural   programming   for   a   number   of   reasons:   it   
was   trained   with   fully   supervised   program   traces   rather   than   input-output   pairs;   it   produced   
whole   programs   as   embeddings   and   stored   them   for   reuse   in   a   key-value   memory;   it   was   able   
to   generate   high-level   programs   as   compositions   of   previously   learned   lower-level   programs,   
and   it   was   able   to   produce   programs   in   diverse   environments   with   very   different   affordances.   
These   are   all   characteristics   that   we   would   like   to   reproduce   in   the   programmer’s   apprentice.   
  

  
  

The   above   graphic   depicts   the   "body"   of   the   programmer's   apprentice.   Both   the   programmer   
and   apprentice   can   view   the   screen   of   a   monitor   connected   to   a   workstation   that   is   running   an   
integrated   development   environment   (IDE)   and   a   lisp   interpreter   in   a   shell.   Both   programmer   
and   assistant   can   point   to   locations   on   the   screen   and   highlight   blocks   of   code   in   a   program   
listing   –   this   is   what   Eve   Clark   refers   to   as   "shared   attention".   They   can   communicate   with   one   
another   by   pointing   to   the   screen,   speaking,   messaging   and   adding   comments   to   code   blocks.   
Both   can   enter   commands   to   the   interpreter   or   IDE.   The   developer   interface   makes   it   possible   
for   the   apprentice   to   directly   read   output   from   the   debugger   and   other   IDE   tools   as   well   as   
ingest   programs   either   as   source   code   or   in   the   form   of   abstract   syntax   trees.   
  

It   may   seem   odd   or   inappropriate   to   think   of   an   agent   as   having   as   its   body   a   computer   running   
an   integrated   development   system,   interacting   with   a   python   interpreter,   and   able   to   use   the   full   



toolchain   of   compilers,   linkers,   static   code   analysis   tools   like   LINT,   and   runtime   debuggers   that   
can   single-step   through   a   running   program   and   or   trace   any   function.   Since   the   interactive   agent   
program   is   also   running   on   the   same   program,   the   assistant   could   in   principle   run   diagnostics   on   
itself   and   even   tweak   its   weights   or   modify   its   objective   function.   
  

We   tend   to   think   of   our   cognitive   apparatus   as   if   it   is   fully   contained   within   our   skull   and   the   rest   
of   the   body   as   a   robotic   prosthetic   controlled   by   the   brain.   The   fact   is   that   the    central   nervous   
system    (CNS)   consisting   of   the   brain   and   the   spinal   cord,   is   highly   dependent   on   the    peripheral   
nervous   system    (PNS)   with   its   pervasive   neural   circuitry   distributed   throughout   the   rest   of   the   
body   including   neuromodulatory   and   hormonal   systems   integrated   with   our   skin   and   internal   
organs   that   are   as   important   in   mediating   cognition   as   is   the   CNS.   Clearly,   the   apprentice’s   
experience   is   different   than   ours,   but   there   is   no   reason   in   principle   that   experience   has   to   be   
impoverished   any   more   than   a   human   who   has   lost   a   limb   or   has   impaired   vision   or   hearing.   
  

  
  

The   apprentice   agent   –   depicted   here   as   its   neural   architecture   –   is   grounded   in   the   hardware   
and   software   of   the   developer   environment   and   its   associated   suite   of   software   engineering   
tools   as   shown   in   the   top   row   of   the   above   graphic.   The   programmer   is   grounded   in   both   the   
world   that   she   shares   with   other   humans   and   the   world   of   software   engineering   tools   that   she   
shares   with   the   apprentice   as   shown   in   the   bottom   row.   The   apprentice   doesn’t   have   direct   



access   to   the   larger   world   of   the   programmer   but   can   share   some   aspects   of   the   programmer’s   
experience   as   filtered   through   the   audio   and   visual   channels   of   its   hardware   A/V   interface.     
  

Think   about   the   implications   of   this   arrangement   for   the   programmer   and   the   apprentice   being   
able   to   successfully   achieve   a   suitably   rich    common    ground.   There   is   a   danger   that   without   a   
thorough   grounding   in   the   world   of   the   programmer   the   apprentice   will   not   be   able   to   exploit   the   
benefits   of   language   that   programmers   take   advantage   of,   and,   in   particular,   tap   into   the   power   
of   analogical   reasoning   and   algorithmic   storytelling   that   provide   programmers   with   a   rich   source   
of   insight   required   to   solve   novel   problems   without   relying   entirely   on   combinatorial   search.   
  

  
  

The   above   graphic   illustrates   several   architectural   features   of   an   early   instantiation   of   the   neural   
programming   subsystem   of   the   programmer’s   apprentice:   

The   network   is   hierarchical   with   two   levels   labeled    L 1    and    L 2    that   support   compositionality   by   
enabling   the   apprentice   to   write    L 2    programs   that   are   composed   of    L 1    subroutines.   Both   levels   
are   implemented   as   transformers   and   rely   on   the   masking,   positional   encoding,   and   multi-level   
attention   mechanisms   that   have   made   transformer   models   so   versatile.   In   particular,   the   
assistant   architecture   manages   a    structured   working   memory    that   can   be   utilized   to   implement   



data   structures   and   keep   track   of   variable   bindings   and   procedure   calls   in   running   programs   in   
the   same   way   that   the   NPI   models   use   scratchpad   memory.   

The   apprentice   architecture   also   uses   a   key-value   memory   for   storing   contexts   in   the   form   of   
policies   and   program   embeddings   borrowing   the   Reed   and   de   Frietas'   [2015]   NPI   architecture   
and   the   Wayne    et   al    [2018]   MERLIN   model.   As   in   the   case   of   Abramson    et   al    [2020]   and   Wayne   
et   al    the   environment   is   partially   observable.   Initially,   we   tried    variational   autoencoder    (VAE)   
predictive   models   and   then    vector-quantized   variational   autoencoders    ( VQ-VAE )   in   an   effort   to   
exploit   their   ability   to   model   discrete   latent   representations.   Later   we   figured   out   how   to   deal   
with   partial   observability   using   the   attentional   and   positional-encoding   features   of   transformers.   

Versions   of   the   assistant   architecture   focusing   on   learning   hierarchical   models   that   support   
simulating   (interpreting)   and   writing   (synthesizing)   novel   programs   written   in   a   high-level   
programming   language.   Yash   Savani   is   one   of   our   consultants   for   CS379C   this   year   and   would   
be   happy   to   work   with   student   teams   interested   in   pursuing   projects   along   these   lines.   

  
  

In   the   first   of   these   introductory   lectures,   we   showed   a   diagram   borrowed   from   Merel   et   al   2019   
Hierarchical   Motor   Control   in   Mammals   and   Machines.    The   above   graphic   was   generated   from   
that   diagram   to   illustrate   how   the   hierarchical   levels   in   the   apprentice   neural   architecture   align   
with   our   current   understanding   of   the   primate   brain.   We   added   a   third   level    L 3    to   represent   the   
executive   level   responsible   for   setting   the   overall   strategy   guiding   the   synthesis   of   programs.   

https://blog.usejournal.com/understanding-vector-quantized-variational-autoencoders-vq-vae-323d710a888a


  
  

The   problem   of   controlling   the   motion   of   a   simulated   robot   is   substantially   easier   than   learning   to   
synthesize   programs.   This   is   in   large   part   because   the   environment   is   forgiving   and   the   required  
motions   are   continuous.   These   two   characteristics   make   it   possible   to   sample   the   manifold   of   
possible   joint   configurations   densely   enough   that   one   can   always   find   a   suitable   solution   by   
interpolating   between   known   configurations,   and,   if   the   resulting   movement   deviates   by   a   small   
error   from   the   planned   trajectory,   it   is   relatively   easy   to   compensate   using   a   feedback   controller.   
  

The   successful   use   of   motion   capture   data   as   training   data   for   supervised   imitation   learning   
serves   to   bootstrap   learning   the   above-mentioned   coding   space,    z t ,   comparable   to    L 1    in   the   
apprentice   architecture.   The   reusable   coding   space   makes   it   possible   to   learn   several   high-level   
controllers   analogous   to    L 2    and   swap   them   in   and   out   as   required   to   carry   out   different   tasks.   To   
train   the    L 1    layer   in   the   apprentice   architecture   we   rely   on    sequences   consisting   of   consecutive   
snapshots   of   the   contents   of   working-memory   registers.     
  

This   method   is   analogous   to   using   the   sequences   of   microcode   instructions   carried   out   by   the   
arithmetic   and   logic   unit   (ALU)   of   the   computer   running   the   IDE   process   interpreting   a   program   
on   sample   input   –   which   is   similar   to   the   imitative   learning   strategy   used   by    Reed   and   de   Freitas   
in   the   original   the   neural-programmer-interpreter   paper.   
  

https://web.stanford.edu/class/cs379c/class_messages_listing/curriculum/Annotated_Readings/ReedandDeFreitasCoRR-15_Annotated.pdf


The   2019    Merel    et   al    paper    appearing   in    Nature   Communications    is   full   of   useful   insights   drawn   
from   both   biology   and   the   field   of   optimal   feedback   control.   In   particular,   the   summary   of   the   key   
principles   of   hierarchical   control   in   Table   1   and   the   accompanying   discussion   in   the   main   text   is   
worth   the   time   to   read   carefully.   I   recommend   that,   at   the   very   least,   you   read   the   highlighted   
text   in   the   marked-up   copy   of   the   paper   linked   to   the   underlined   text   above.   
  

  
  

The   above   diagram   features   three   separate   representations   of   running   code.   The   Lisp   code   on   
the   left   depicts   an   animation   of   a   program   running   in   the   interpreter   displaying   the   current   
expression   being   executed.   The   red   arrow   indicates   the   program   counter   and   the   two   green   
arrows   indicate   the   interpretable   context.   The   variable   assignments   on   the   right   illustrate   an   
execution   trace   for   the   program   running   in   the   Lisp   interpreter   provided   by   the   IDE   debugger   
operating   in   single-step   mode.   Both   of   these   signals   originate   in   the   apprentice's   "environment".   
The   center   graphic   represents   a   sequence   of   snapshots   of   the   contents   of   working-memory   
registers   and   corresponds   to   the   apprentice's   attempt   to    interpret    the   running   program.   
  

  
  

Neural   Programming,   Analogy,   and   Search   
  

  
  

It   is   one   thing   to   be   able   to    interpret   a   program    in   a   programming   language   that   you   are   already   
familiar   with   and   understand   the   behavior   of   its   primitives,   and   quite   another   to    write   a   program   

https://web.stanford.edu/class/cs379c/class_messages_listing/curriculum/Annotated_Readings/MereletalNC-19_Annotated.pdf
https://web.stanford.edu/class/cs379c/class_messages_listing/curriculum/Annotated_Readings/MereletalNC-19_Annotated.pdf
https://web.stanford.edu/class/cs379c/class_messages_listing/curriculum/Annotated_Readings/MereletalNC-19_Annotated.pdf


in   that   language   given   a   natural   language   description   of   what   the   program   does   or   a   
representative   set   of   input-output   pairs.   Researchers   developing   neural   code   synthesis   systems   
often   turn   to   sophisticated   search   methods   with   Monte   Carlo   Tree   Search   (MCTS)   being   one   
popular   option   [Pierrot   et   al,   2019].   
  

However,   MCTS   solutions   are   only   as   good   as   their   next-move   evaluator/selector.   The   
combinatorial   space   of   programs   is   huge,   and   programming   by   randomly   stringing   together   
primitive   expressions   is   unlikely   to   lead   to   success   for   any   but   the   simplest   problems.   Certainly,   
some   amount   of   search   is   unavoidable.   At   issue   is   the   question   of   what   space   of   programs   to   
search   in   and   how   to   explore   it.   Good   programmers   easily   move   back   and   forth   between   levels   
of   abstraction   to   control   search   and   reshape   the   context.   Often   they   make   big   leaps   and   then   
clean   up   the   mess,   essentially   making   code   substitutions   followed   by   program   repair.   
  

Industrial   strength   tools   for   code   completion   leverage   the   power   of   vector   space   embeddings   of   
large   corpora   –   millions   of   lines   of   code   –   to    contextualize    search.   These   tools   are   particularly   
useful   for   projects   like   input-output   drivers   and   libraries   that   follow   a   particular   coding   style   and   
exhibit   recurring   patterns.   They   are   not   all   that   useful   for   implementing   novel   algorithms.   
  

There   are   lots   of   problems   that   appear   on   the   surface   to   be   challenging,   but   on   reflection   can   be   
made   simple   by   exploiting   easily   extracted   latent   structure   in   the   input.   For   example,   while   
neural   networks   have   been   trained   to   write   programs   that   produce   drawings   of   images   –   a   task   
that   may   seem   quite   difficult,   but   the   problem   is   actually   relatively   simple   and   the   programs   are   
straightforward   –   think   about   why   this   is   the   case   [Ramesh   et   al,   2021;   Ganin   et   al,   2018].   
  

In   principle,   natural   language   is   expressive   enough   to   describe   any   artifact   that   human   beings   
have   ever   engineered.   In   particular,   it   is   expressive   enough   to   describe   any   algorithm   or   
procedure   intended   for   conventional   computing   hardware   in   enough   detail   that   the   algorithm   can   
be   translated   into   any   suitably   expressive   programming   language.   That   said,   the   specifications   
for   programming   problems   of   the   sort   encountered   in   industry   and   high-quality   open-source   
projects   typically   assume   a   good   deal   of   background   knowledge   on   the   part   of   the   programmer.   
  

Alternatively,   most   if   not   all   algorithms   can   be   expressed   in   terms   of   commonly   available   
physical   objects   and   familiar   manipulations   that   alter   the   characteristics   of   those   objects.   Such   
descriptions   are   essentially    analogies    in   the   sense   that   they   map   the   specialized   terminology   
employed   in   textbooks   on   programming,   e.g.,   variables,   assignments,   and   declarations,   to   the   
informal   language   of   everyday   speech,   e.g.,   filling,   emptying,   or   adding   to   containers.   
  

Assuming   that   our   understanding   of   such   commonplace   objects   is   grounded   in   the   physical   
world,   it   seems   plausible   that   we   could   use   our   physical   intuitions   to   evaluate,   verify   and   adapt   
these   analogies   to   serve   alternative   purposes   thereby   devising   new   algorithms   or   improving   on   
existing   ones.   To   be   clear,   it’s   not   as   though   we   are   thinking   about   playing   with   toy   blocks   as   a   
toddler   when   writing   code   to   assign   values   to   variables,   but   rather   that   our   early   experience   of   
playing   with   toy   blocks   helped   to   form   our   earliest   representations   of   the   static   and   dynamic   
properties   of   objects   and   their   relationships   in   the   real   world,   and   those   early   representations   



provided   the   basis   –   or   inductive   bias   –   upon   which   all   of   our   subsequent   refinements   and   
extensions   for   reasoning   about   a   range   of   physical   and   abstract   dynamical   systems   are   built.   
  

The   claim   is   that   most   if   not   all   of   our   thinking   about   algorithms   is   built   upon   physical   intuitions   
whether   we   use   technical   jargon   or   the   language   of   everyday   objects   and   their   physical  
manipulation.   In   the   following,   we   refer   to   these   grounded   algorithms   as    algorithmic   stories    and   
widen   their   use   to   include   recipes   for   baking   bread,   instructions   for   installing   new   household   
appliances,   and   directions   for   assembling   bicycles   and   exercise   equipment.   
  

  
  

Humans   are   inveterate   storytellers.   We   think   in   stories,   use   stories   to   remember   events,   and   
turn   every   noteworthy   experience   into   a   narrative   often   embellishing   the   facts   or   omitting   details   
to   suit   our   purposes.   We   often   recycle   stories   by   substituting   names   –   both   real   and   fictitious   –   
of   people   and   locations   to   teach   a   lesson   or   serve   as   a   plan   of   action.   The   substitutions   have   to   
make   sense.   If   they   don’t   we   have   put   mental   effort   into   making   them    fit   the   narrative   structure   
[Smith   et   al,   2017].    Narratives   take   on   a   life   of   their   own   in   the   form   of   fairy   tales   and   parables   to   
teach   the   young   and   indoctrinate   members   of   secret   societies   and   religious   sects.   
  



  
  

  
  

Extelligence   and   Common   Sense   Reasoning   
  

  
  

Extelligence   is   defined   as   the   cultural   capital   available   to   humans   through   language   in   all   its   
forms   including   written,   spoken,   and   signed   [Stewart   and   Cohen   1997;   Deacon   1998].   It   is   the   
knowledge   that   exists   external   to   our   brains,   but   that   we   can   access   by   virtue   of   our   ability   to   
understand   natural   language.   Much   of   the   knowledge   required   to   exploit   extelligence   is   hidden   
in   our   experience   of   the   world   that   we   share   with   other   humans   –   we   say   it   is    grounded    in   the   
physical   world.   
  

This   hidden   knowledge   is   implicit   in   the   stories   we   tell   our   children   because   we   can   depend   on   
our   children   having   much   the   same   experiences   that   we   have   had.   It   forms   the   basis   of   what   we   
refer   to   as    common   sense   reasoning ,   and   it   plays   a   crucial   role   in   making   analogies   because   it   
is   this   knowledge   that   enables   us   to   identify   and   anticipate   problems   with   a   proposed   analogical   
mapping   between   stories   and   consider   the   possibility   of   relaxing   or   eliminating   some   of   the   
constraints   thereby   generating   new   analogies   [Gentner,   1983].   



  

  
  

The   recognition   of   some   sort   of   inner   monologue   as   a   core   component   in   cognition   is   often  
credited   to   Lev   Vygotsky   –    Thinking   and   Speech    [1934].   There   are   many   hypotheses   
concerning   the   precise   function   of   this   phenomenon.   Hofstadter   [2007]   describes   it   as   a   
"sequence   of   mental   shifts   between   levels   in   a   hierarchy   that   eventually   ends   up   back   where   it   
started.   Each   shift   feels   like   an   upwards   movement,   and   yet   the   successive   'upward'   shifts   give   
rise   to   a   closed   cycle".   The   above   graphic   provides   an   alternative   characterization   couched   in   
terms   of   neural   networks   representing   embedding   spaces   and   encoder-decoder   architectures   
including   transformers   [Vaswani    et   al ,   2017]   for   transforming   one   representation   into   another.   
  



  
  

The   above   graphic   depicts   a   neural   network   architecture   [Wei   et   al,   2019]   that   borrows   an   idea   
from   NLP   called    dual-task   learning    [Wallach   et   al,   2019]   –   where   "dual"   is   used   in   the   sense   that   
it   is   applied   in   mathematical   optimization   theory   –   that   treats   code   generation   as   the   dual   of   
code   documentation.   In   a   similar   sense,   the   reciprocal   sensory-motor   connections   in   Fuster's   
hierarchy   consist   of   a   forward   (primal)   model   and   its   corresponding   (dual)   inverse.     
  

What   if   we   were   to   implement   a   variant   of   their   code-generation   encoder-decoder   unit   as   a   
forward   model   complimenting   my   inverse–inner   speech–model   in   the   previous   slide   and   then   
couple   the   two   with   a   regularizing   loss   function   as   in   [Wei   et   al,   2019]?   As   a   simple   thought   
experiment,   assume   that   both   the   forward   and   inverse   models   involve   a   latent-variable   
(informational)   bottleneck   layer   [Tishby   et   al,   2015].   What   might   serve   as   the   analog   of   their   
dual-constraints   module   integrating   the   language   model   for   code   and   the   language   model   for   
comments   and   what   exactly   would   be   their   role   in   the   loss   function?   
  

  
  

Cognitive   Workflow   and   Interaction   Networks   
  

  



  
What   is   the   "state"   of   a    multi-layer   perceptron    (MLP)?   For   a   specific   input,   an   MLP   produces   a   
specific   output   and   that   is   pretty   much   it.   What   about   a   convolutional   network   (CNN)?   CNN’s   
utilize   a   kernel   specifying   a   bank   of   filters   of   a   given   shape   and   overlap   but   otherwise   are   not   
significantly   different   from   MLPs.   How   about   a   recurrent   neural   network   (RNN)?   
  

Mathematically   an   RNN   is   an   instantiation   of   a   differential   equation   that   can   be   employed   to   
produce   a   discrete-time   series   or   continuous   trajectory   through   the   phase   space   for   the   
dynamical   system   described   by   the   equation.   Unless   explicitly   introduced,   there   is   no   notion   of   
time   aside   from   our   interpretation   of   the   points   along   that   trajectory.   
  

At   different   points,   some   variables   change   quickly   while   others   slowly.   In   the   case   of   artificial   
neural   networks,   these   changes   are   due   to   special   circuits   that   control   the   rate   of   change   in   
other   subcircuits   of   the   network.   For   example,   these   special   circuits   can   be   used   to   control   the   
timing   of   activity,   persistently   maintain   state   and   isolate   specific   subcircuits   from   change.   
  

If   we   think   of   the   electrical   potentials   in   biological   neural   networks   as   represented   by   differential   
equations   as   in   the   case   of   the   Hodgkin   and   Huxley   model   [1952],   we   would   still   have   to   
introduce   ancillary   functions   to   explain   the   sort   of   large   scale   coordinated   changes   in   neural   
activity   we   observe   in   biological   networks   as   a   result   of   diffuse   signaling   by   neurotransmitters   
and   the   patterns   of   activity   orchestrated   by   specific   frequencies   of   spiking   neurons.   
  

It   is   convenient   for   us   to   think   of   the   latter   as   controlling   the   topology   of   the   network   architecture   
by   periodically   taking   some   component   networks   offline   to   protect   them   from   alteration,   but   this   
approach   runs   counter   to   our   interest   in   building   fully   differentiable   systems   that   can   be   trained   
end-to-end   at   scale   using   efficient   techniques   like   stochastic   gradient   descent.   
  

The   problem   of   catastrophic   interference/forgetting   in   transfer   learning   is   one   example   of   how   
error   propagation   can   result   in   unwanted   changes   to   the   weights   of   subnetworks   that   we   would   
prefer   to   be   treated   as   essentially   offline.   Biological   networks   in   which   only   a   small   fraction   of   
neurons   are   active   at   any   given   time   have,   with   few   exceptions,   no   such   problems.   
  

One   way   or   another,   we   will   have   to   incorporate   strategies   for   avoiding   catastrophic   forgetting   in   
the   case   of   the   workflow   of   an   interactive   agent   like   the   programmer’s   apprentice   and   especially   
in   the   case   of   the   assistant   constantly   having   to   integrate   new   information   into   evolving   neural   
network   architecture.   New   words   are   acquired   rapidly   by   a   child   in   the   process   of   acquiring   
language   so   that   knowledge   concerning   their   use   and   evolving   semantics   can   be   acquired   with   
little   or   no   conscious   effort   in   the   midst   of   normal   conversation.   
  

  
  

Representing   and   Reasoning   about   Analogies   
  

  
  



My   advisor   at   Yale,   Drew   McDermott,   was   famous   among   AI   researchers   in   the   ’80s   and   ’90s   
for   his   paper   with   the   pithy   title   "Tarskian   Semantics   or   No   Representation   Without   Denotation".   
His   main   point   was   to   discourage   AI   researchers   from   giving   predicates   names   like   PLAN   and   
ACT   in   their   predicate   calculus   theories   of   common-sense   reasoning   as   it   was   misleading.   
  

Distributed   representations   in   biological   and   artificial   neural   networks   encode   meaning   
contextually.   Entities   that   co-occur,   whether   words   in   language   or   entities   in   the   physical   world   
are   likely   to   be   related   in   meaningful   ways,   and   to   fully   understand   those   relationships   one   has   
to   explain   their   composite   behavior.   
  

The   state   of   a   dynamical   system   and   its   dynamics   can   be   modeled   as   a   graph   and   represented   
as   a   vector   in   a   high   dimensional   vector   in   an   embedding   space.   Two   such   embedding   vectors   
could   be   used   to   highlight   the   differences   between   two   dynamical   systems.   Transformer   
networks   can   be   trained   to   simulate   the   behavior   of   dynamical   systems   so   as   to   compare   the   
properties   of   two   separate   systems.   
  

We   suggest   here   that   these   models   could   be   used   to   assist   in   learning   new   models   and   a   
collection   of   such   models   could   serve   as   the   basis   for   making   analogies   that   might   facilitate   
applying   existing   knowledge   of   one   dynamical   system   to   understanding   or   modifying   another.   
  

Indeed   we   suggest   that   analogies   –   in   a   restricted   sense   –   are   essentially   mappings   between   
dynamical   system   models   and   (successfully)   making   an   analogy   is   tantamount   to   identifying   
such   a   mapping.   This   isn’t   a   new   idea.   There   is   a   long   history   of   work   along   similar   lines.   What   
is   missing,   however,   is   how   the   brain   carries   out   this   process   of   analysis   and   how   might   we   
model   that   in   an   artificial   neural   network   –   see   Hill    et   al ,   2019   [ PDF ]   for   a   recent   alternative.   
  

If   pressed   to   suggest   a   network   architecture   for   analogical   reasoning,   I   would   start   with   what   
Battaglia   and   colleagues   refer   to   as    interaction   networks    [Battaglia   et   al,   2016].   These   models   
are   designed   to   represent   and   enable   the   simulation   of   the   objects,   relationships   between   
objects,   and   the   physics   that   govern   their   dynamics.   These   representations   could   be   stored   in   a   
library   of   such   models   implemented   as   a   high-dimensional   embedding   space   –   see   Hill    et   al ,   
2020   [ PDF ]   for   a   discussion   of   why   this   might    not    be   the   best   approach.   
  

Computer   programs   at   different   levels   of   abstraction   might   be   modeled   as   interaction   networks,   
and   the   embedding   space   for   programs   could   be   employed   to   find   similar   models.   It   would   also   
be   useful   to   be   able   to   map   descriptions/specifications   of   programs   to   their   corresponding   
embeddings.   Then,   assuming   that   descriptions   are   essentially   analogical   stories,   …   
  

  
  

Let’s   Get   Real!   What   Possible   Related   Class   Projects   Might   We   Pursue?   
  

  
  

https://web.stanford.edu/class/cs379c/class_messages_listing/curriculum/Annotated_Readings/HilletalICLR-19_Unannotated.pdf
https://web.stanford.edu/class/cs379c/class_messages_listing/curriculum/Annotated_Readings/HilletalICLR-20_Unannotated.pdf


Stories,   and   algorithmic   stories,   in   particular,   have   several   characteristics   in   common   that   make   
them   challenging   to   work   with.   Both   are   discursive   in   the   sense   that   they   jump   around   in   ways   
that   can   be   difficult   to   follow.   In   a   computer   program,   the   result   of   evaluating   an   expression   may   
be   simple   if   you   are   familiar   with   the   relevant   procedure,   but   more   complicated   if   the   procedure   
is   specialized   to   the   program   that   the   expression   invokes   –   which   is   often   found   elsewhere   in   
the   program   listing,   or   if   the   expression   describes   a   conditional   branch.   
  

In   telling   the   story,   it   is   not   uncommon   to   interject   a   comment   about   some   character   in   the   story   
or   even   relate   a   side   story   that   provides   a   context   for   understanding   some   aspect   of   the   primary   
story   being   conveyed.   In   a   computer   program,   if   we   ignore   the   comments,   for   the   most   part,   we   
can   follow   the   steps   carried   out   by   the   program   for   a   given   input,   generating   a   trace   of   the   
program   running   on   a   given   input.   However,   the   set   of   all   such   traces   is   likely   to   be   exponential   
in   the   number   of   branch   points,   and   hence   generating   an   exhaustive   set   of   traces   is   intractable.   
  

For   the   most   part,   we   have   no   trouble   following   someone's   telling   the   story,   though   we   may   find   
it   difficult   to   repeat   the   story   to   someone   else   without   butchering   the   details   or   forgetting   to   
include   the   side   stories   without   which   the   behavior   of   the   characters   in   the   primary   story   may   be   
incomprehensible.   A   well-told   story   is   much   like   a   well-written   computer   program   with   the   main   
program   documented,   individual   procedures   given   names   that   suggest   their   function   and   listed   
separately,   and   any   libraries   used   documented   clearly   the   beginning   of   the   current.   
  

Young   children   begin   generating   stories   very   early   in   their   development,   starting   with   a   running   
commentary   describing   what   they   are   doing   and   what   they   see   others   doing   that   is   an   important   
part   of   their   interactions   with   their   parents   and   other   early   interlocutors   who   seem   programmed   
to   expect   such   commentary   and   correct   the   child   thereby   providing   feedback   for   self-initiated  
repairs   [Clark,   2020].   If   we   are   to   expect   the   apprentice   to   learn   to   apply   algorithmic   stories,   we   
will   have   to   train   the   apprentice   to   first   construct   rudimentary   algorithmic   stories   for   more   
mundane   purposes   like   riding   a   bike   and   then   apply   them   to   producing   computer   programs.   
  

The   literature   on   graph   networks   offers   a   reasonable   place   to   start   and   the    bAbI   project   of   
Facebook   AI   Research   which   is   organized   towards   the   goal   of   automatic   text   understanding   and   
reasoning   provides   some   ideas   about   possible   datasets.   Check   out   Daniel   Johnson’s   2017   
ICLR   paper   for   some   early   work   on   using   graph   networks   to   solve   bAbI   tasks.   Taking   a   complex   
problem   like   the   one   addressed   in   the   IAG   paper   and   turning   it   into   a   tractable   project   that   
provides   insight   into   possible   solutions   to   the   original   problem   is   an   art   that   every   research   
scientist   has   to   master   in   order   to   be   successful.   Like   any   art   worth   pursuing   it   takes   practice.   
  

I’ve   found   in   both   my   academic   and   industrial   experience,   the   best   approach   is   to   brainstorm   
with   colleagues   from   multiple   disciplines,   with   differing   attitudes   regarding   the   theory   versus   
practice   divide,   who   are   comfortable   exposing   their   half-baked   ideas,   and   can   suspend   belief   
long   enough   to   entertain   and   even   help   to   fix   the   bugs   in   their   colleague’s   ideas.   It   helps   to   
assign   someone   the   task   of   remaining   impartial   enough   to   referee   disputes,   encourage   more   
reticent   colleagues   to   speak   up,   and   suggest   taking   a   break   or   reconvening   the   next   day.   
  



  
  

Miscellaneous   Loose   Ends:     Google   offices   have    micro   kitchens    distributed   all   over   their   
campuses.   They   are   equipped   with   barista-quality   espresso   machines,   fancy   tea-making   
paraphernalia,   the   makings   for   just   about   any   caffeine   beverage,   seasonal   fruit,   and   regional   
specialties   like   English   high   tea,   fresh-baked   croissants,   and   scones.   I’ve   overheard   casual   
conversations,   carried   out   while   the   participants   meticulously   prepared   their   tea   and   espresso   
drinks,   during   which   new   algorithms,   neural   network   architectures,   infrastructure   designs,   etc.,   
were   conceived   of   or   improved   upon.   Some   visitors   are   appalled   by   the   show   of   expensive   
kitchen   equipment   and   gourmet   food,   but   micro   kitchens   are   incredibly   efficient   engines   for   
generating   technology   and   creating   a   rich   culture   of   sharing   ideas   and   working   collaboratively.   
  

  
  

Analogical   Reasoning   and   Grounding   Revisited   
  

  

The   following   is   provided,   as   are   many   of   the   comments   in   this   document,   as   a   thought   exercise  
intended   to   provoke   discussion.   The   exercise    is   an   attempt   to   provide   some   rigor   in   describing   
the   computational   processes   involved   in   creating   and   sharing   analogies.   The   diagram   shown   in   
Figure    1    lays   out   the   entities   involved   in   these   processes   and   the   interactions   between   them.   
The   boxes   labeled    physical   laws    and    environments    will   be   assumed   to   be   obvious   at   least   at   
least   for   the   purposes   of   our   analysis.   The   two   pairs   of   identically   coupled   blocks   enclosed   in   
dashed   red   lines   correspond   to   two   distinct   agents   attempting   to   communicate   with   one   another.   

  

  

https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_fig_Temp_5


Figure   1:     The   above   graphic   illustrates   the   main   components   involved   and   the   flow   of   
information   between   them   in   a   model   of   how   grounding   language   in   our   interaction   with   the   
physical   world   naturally   gives   rise   to   storytelling   and   analogical   reasoning,   provides   an   impetus   
for   societies   to   create   technology   to   cultivate,   disseminate   and   preserve   useful   stories   and   to   
encourage   exploiting   their   application   as   a   collective   means   for   accelerating   innovation   in   the   
social   and   physical   sciences,   and   engineering   disciplines.   See   the   main   text   for   a   more   detailed   
explanation.   

  

In   each   case,   the   separation   between   the   block   labeled    body    and   the   block   labeled    brain    is   
intended   to   convey   the   idea   that   –   the   substantial   changes   wrought   during   development   
notwithstanding,   the   agent's   physical   contrivance   responsible   for   interacting   with   its   environment  
changes   at   a   much   slower   rate   than   the   neural   substrates   responsible   for   processing   the   agents   
observations   of   its   environment   and   its   communication   with   other   agents.   

In   each   case,   the   separation   between   the   block   labeled    body    and   the   block   labeled    brain    is   
intended   to   convey   the   idea   that   –   the   substantial   changes   wrought   during   development   
notwithstanding,   the   agent's   physical   contrivance   responsible   for   interacting   with   its   environment  
changes   at   a   much   slower   rate   than   the   neural   substrates   responsible   for   processing   the   agents   
observations   of   its   environment   and   its   communication   with   other   agents.   

The   block   labeled    extelligence 1    is   intended   to   represent   the   information   available   to   human   
beings   in   the   form   of   external   resources   through   various   technologies   curated,   managed   and   
distributed   by   individuals,   libraries   and   universities   funded   by   governments   and   privately   owned   
institutions.   It   is   the   cultural   capital   that   is   available   to   us   in   the   form   of   external   media,   including   
tribal   legends,   folklore,   nursery   rhymes,   books,   film,   videos,   etc   [ 82 ],   and   it   is   assumed   for   the   
present   discussion   that   individuals   can   effortlessly   tap   into   these   resources   and   contribute   to   
them   by   adding   additional   content   or   editing   existing   content.   

The   reciprocal   connections   labeled    A    are   intended   to   represent   the   sensory   and   motor   activities   
that   precipitate   changes   in   the   physical   substrate   providing   the-base   level   interface   for   
interacting   with   the   environment   and   other   agents.   We   will   assume   that   development   of   this   
substrate   has   advanced   to   a   stage   of   maturity   at   which   it   will   remain   static   for   the   remainder   of   
the   agent's   life.   We   do   not   assume   however   that   this   substrate   is   necessarily   identical   for   all   
agents,   indeed   we   expect   that   the   influences   of   nature   and   nurture   to   ensure   there   are   
substantial   differences   across   individuals.   

The   reciprocal   connections   labeled    B    correspond   to   the   actions   performed   and   the   observations   
made   by   the   agent   in   exploring   its   environment   and   engaging   with   and   learning   from   other   
agents.   These   actions   and   observations   are   precipitated   and   guided   by   plans   and   goals   that   the   
agent   has   learned   has   acquired   in   its   exploration   of   its   environment   and,   in   particular,   its   
exposure   to   the   customs,   norms   and   behaviors   prevalent   within   its   social   milieu.   We   assume   
that   agents   routinely   formulate   what   we   will   refer   to   generically   in   the   sequel   as   "models"   for   the   

https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_footnote_Temp_6
https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_bib_82


purpose   of   making   predictions   concerning   the   consequences   of   its   actions,   and   that   furthermore   
agents   routinely   share   those   models.   

The   reciprocal   connections   labeled    C    correspond   to   communication   channels   that   serve   to   
facilitate   the   sharing   of   models.   We   assume   for   simplicity   that   all   the   agents   use   the   same   finite  
lexicon   of   words   to   communicate,   but   the   meaning   of   those   words   can   differ   depending   on   the   
context   of   their   usage,   where   that   context   extends   to   include   their   general   cohort   as   well   as   their   
immediate   interlocutors.   Since   individuals   are   unlikely   to   have   exactly   the   same   grounding,   this   
implies   another   factor   that   can   contribute   to   variability   in   the   interpretation   of   words   and   cause   
the   negative   consequences   of   misunderstanding   as   well   as   the   positive   consequences   of   
inventive   reinterpretation.   

Finally,   the   reciprocal   connections   labeled    D    are   intended   to   represent   the   channels   whereby   an   
agent   can   contribute   a   model   to   the   extelligence   repository   thereby   making   it   available   to   other   
agents   outside   the   circle   of   the   contributing   agent's   cohort,   or   gain   access   to   an   existing   model   
allowing   them,   in   principle,   to   use   any   model   previously   added   to   the   repository   and   successfully   
preserved.   We   will   say   that   a   model   is    correct    if   it   makes   accurate   predictions   when   applied   to   
systems   of   the   sort   that   it   was   originally   designed   to   handle   and   the   words   used   to   define   the   
model   are   assigned   the   meaning   intended   by   the   contributor.   

We   assume   for   simplicity   that   models   are   correct,   as   contributed,   if   the   words   used   to   describe   
them   are   assigned   their   original   intended   meaning.   This   does   not   protect   against   an   agent   
misapplying   a   model   because   they   assign   different   meanings   to   the   words   used   to   formulate   the   
model.   It   also   begs   the   question   of   what   constitutes   the   meaning   of   a   word.   To   resolve   these   
issues,   we   need   to   be   more   careful   in   defining   models   and   assigning   meaning   to   the   words   
used   to   describe   them.   

We   assume   for   simplicity   that   all   models   are   represented   as   dynamical   systems   corresponding   
to   a   set   of   objects,   a   set   of   relationships   involving   those   objects   and   a   system   of   equations   or   
alternative   dynamical   system   models   governing   their   kinematic   and   dynamic   properties.   What   
would   it   mean   to   ground   such   a   model?   Following   the   lead   of   cognitive   psychologists   like   Liz   
Spelke   and   her   students   and   collaborators,   we   might   look   for   signs   of   grounding   in   the   behavior   
of   infants   and   young   children.   

In   the   case   of   a   model   corresponding   to   the   physics   governing   the   trajectory   of   a   thrown   ball,   
evidence   of   grounding   might   appear   in   the   observed   behavior   of   a   child   pantomiming   the   
trajectory   by   tracing   it   out   in   the   air.   In   the   case   of   demonstrating   the   consequences   of   a   person   
walking   at   a   steady   pace   and   temporarily   disappearing   behind   an   occluding   screen,   evidence   of   
grounding   might   be   indicated   by   the   child   registering   surprise   when   the   person   doesn't   reappear   
on   the   other   side   of   the   occlusion   after   a   reasonable   delay.   

When   we   are   talking   about   modeling   physical   movements,   demonstrations   of   reproducing   
familiar   movement   patterns   combined   with   extrapolating   from   those   movements   to   predict   novel   
patterns   would   seem   to   provide   evidence   of   physical   grounding.   There   is   a   growing   body   of   
research   attempting   to   identify   the   neural   correlates   of   grounding   and   naïve   physical   reasoning,   



e.g.,   see   the   work   of   Bunge    et   al    [ 18 ]   examining   hypothesized   role   of   the   anterior   left   inferior   
prefrontal   cortex,   but   there   are   also   predictions   we   might   make   based   on   the   known   architecture   
and   areal   function   of   the   primate   brain   [ 90 ,    45 ,    38 ,    18 ].   See   Figure    2    for   a   summary   of   
experimental   results   from   [ 90 ].   

If   we   assume   the   same   sort   of   hierarchical   architecture   we   find   in   the   sensory-motor   cortex   
consisting   of   multiple   layers   of   increasingly   abstract,   multi-modal   features   built   on   a   foundation   
of   primary   unimodal   features,   we   might   expect   the   architecture   for   representing   a   hierarchy   of   
models   to   be   organized   similarly   [ 33 ].   For   example,   in   observing   the   brain   of   a   physicist   thinking   
about   a   highly   abstract   model   of   quantum   tunneling   in   semiconductors,   we   might   observe   
activity   in   areas   that   become   active   upon   observing   someone   walking   along   the   sidewalk   and   
temporarily   disappearing   from   view   for   a   few   seconds   upon   walking   behind   an   occluding   
building-construction   barrier   and   subsequently   reappearing   on   the   other   side.   

  

  

Figure   2:     The   graphic   ( A )   on   the   left   shows   regions   that   demonstrate   an   increase   in   activation   
with   accuracy   on   analogy   trials   across   all   participants   after   correcting   for   the   effects   of   age.   Only   
the   contrast   of   semantic   greater   than   fixation   (shown   in   yellow)   showed   a   significant   correlation   
in   left   aLIPC   (anterior   left   inferior   prefrontal   cortex)   –   see   Bunge    et   al    [ 18 ].   The   graphic   ( B )   on   
the   right   shows   regions   that   indicate   an   increase   in   activation   with   age   across   all   participants.   
Results   for   the   semantic   tasks   greater   than   fixation   contrast   are   shown   in   yellow,   analogy   tasks   
greater   than   fixation   in   red,   and   regions   for   which   both   are   increasing   are   shown   in   orange.   
There   were   no   regions   that   showed   a   within-person   differential   increase   in   activation   during   
analogy   trials   compared   to   semantic   trials.   The   graphics   are   from   Figures   4   and   5   in   [ 90 ].   

  

Similarly   the   meaning   of   "the   excavator   shovel   scooped   up   a   huge   pile   of   gravel   and   deposited   it   
in   the   back   of   the   dump   truck"   might   employ   –   be   grounded   in   –   models   that   we   learned   while   
still   in   diapers   playing   with   toys   in   the   sandbox   or   even   earlier   when   our   parents   would   try   to   
feed   us   our   pureed   peas   with   a   spoon   while   we   squirmed   in   our   highchair 2 .   

https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_bib_18
https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_bib_90
https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_bib_45
https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_bib_38
https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_bib_18
https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_fig_Temp_7
https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_bib_90
https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_bib_33
https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_bib_18
https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_bib_90
https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_footnote_Temp_8


These   early   experiences   would   ostensibly   provide   the   seed   for   a   model   and   naturally   determine   
its   locus   for   our   subsequent   integration   of   related   but   more   complicated   interactions.   These   
subsequent   interactions   would   attach   themselves   as   new   representations   that   are   defined   by   
the   observable   characteristics   that   both   identify   and   distinguish   them   from   the   seed   
representation.   

Over   time   models   suggested   by   related   experience   would   tend   to   encroach   into   areas   devoted   
to   representing   other   more   abstract   models,   but,   whenever   possible,   phenomena   described   
using   familiar   terms   like   "scoop"   and   "throw"   employed   to   represent   abstract   properties   of   
behaviors   that   share   some   abstract   characteristics   with   the   physical   acts   of   scooping   and   
throwing   would   strengthen   the   connections   to   the   original   seeds   planted   in   those   early   
experiences.   

The   use   of   the   word   "locus"   might   appear   to   allude   to   some   unidentified   unitary   neural   
substrate,   but   that   was   certainly   not   intended   as   it   seems   much   more   likely   that   the   circuits   
implicated   in   analogical   reasoning   are   widely   distributed   throughout   the   brain   and   the   cortex   in   
particular   –   see   the   references   cited   in   the   earlier   discussion   in   this   entry   and   in   Figure    2    and   
the    lecture    by   Silvia   Bunge.   

These   abstract   variants   of   primal   activity   are   useful   insofar   as   they   simplify   the   description   of   
more   abstract   models   by   not   requiring   the   invention   of   additional,   less   widely   accepted   
terminology,   i.e.,   jargon,   and   by   doing   so   they   make   it   easier   to   succinctly   and   clearly   
communicate   abstract   concepts   with   others   insofar   as   they   can   convey   the   gist   of   what's   
involved   in   the   abstract   process   without   introducing   impediments   in   the   form   of   related   usage   
norms   that   might   contradict   properties   of   the   abstract   process.   

In   a   mature   brain,   experts   may   work   primarily   with   the   abstract   models   using   specially-crafted   
cognitive   tools   designed   to   deal   with   the   specific   characteristics   and   properties   of   the   abstract   
models.   However,   in   a   more   exploratory   mode   –   for   example,   struggling   for   intuition   concerning   
some   complex   abstract   mathematical   object,   we   may   resort   back   to   the   primitive,   grounded   
levels   of   representation   in   searching   for   relevant   analogies   that   might   map   onto   the   problem   
currently   distracting   us.   

  
  

Grounding   in   Synthetic   Environments   
  

  

If   we   think   of   the   modern   world   that   we   live   in   as   extended   to   include   the   informational   space   of   
the   extelligence,   we   might   ask   if   there   are   evolutionary   pressures   on   the   ideas   that   reside   in   that   
space.   One   possible   candidate   would   be   the   influence   of   modern   scientific   and   engineering   
practice   and   we   might   conclude   that   the   way   in   which   the   scientific   and   engineering   
communities   judge   the   products   of   their   respective   disciplines   serves   to   impose   selective   
pressures   to   increase   the   probability   that   scientific   theories   and   engineering   artifacts   stand   up   to   
intense   scrutiny.   

https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_fig_Temp_7
https://www.youtube.com/watch?v=eq2FhU7Wcqo


Combine   this   relentless   scrutiny   with   the   fact   that   there   are   billions   of   human   beings   many   of   
whom   have   the   intellect   and   education   to   propose   a   credible   theory   or   invent   a   useful   artifact,   
and   you   have   the   makings   of   a   powerful   engine   for   generating   novel   theories   and   artifacts.   
Diversity   arises   from   the   fact   that   differences   in   our   grounding   of   language   cause   us   to   interpret   
what   we've   been   calling    algorithmic   stories    in   subtly   different   ways   that   nonetheless   adhere   to   a   
consistent   set   of   rules   that   potentially   could   lead   to   new   and   novel   ideas.   

In   addition   to   our   natural   talent   in   searching   for   novel   ideas   grounded   in   our   experience   of   the   
world   we   live   in,   scientists   and   engineers   are   now   experimenting   with   technologies   that   enable   
us   to   extend   the   perceptual   and   interactive   capabilities   we   were   born   with,   allowing   us   to   
broaden   our   experience   –   and   hence   grounding   –   to   include   physical   processes   that   involve   
forces   acting   on   arrangements   of   matter   that   we   can't   directly   observe   and   that   take   place   
across   a   wider   range   of   scales   than   than   we   can   directly   observe.   

Such   efforts   include   the   gamification   of   protein   folding   ( Foldit )   and   neural   circuit   reconstruction   
( Flywire ).   The   simulators   and   user   interfaces   for   these   online   games   enable   citizen-scientist   
volunteers   to   interact   with   and   explore   physical   systems   that   would   otherwise   be   inaccessible   
and   inscrutable.   

Sophisticated   immersive   interfaces   for   powerful   simulators   allow   scientists   to   explore   the   
universe   at   both    quantum   mechanical    and    cosmological    scales.   Perhaps   more   relevant   in   terms   
of   grounding   leading   us   to   come   up   with   new   ideas   is   the   ability   of   these   simulators   to   explore   
worlds   in   which   the   fundamental   constants   and   governing   equations   are   different   than   the   
scientific   consensus   would   lead   us   to   believe.   

The   hypothesis   we   are   entertaining   here   concerns   whether   the   human   use   of   analogy   in   the   
process   of   exploring   /   searching   the   space   of   possible   theories   for   explaining   natural   
phenomena,   designs   for   engineered   artifacts,   policies   for   inducing   social   change,   etc.,   is   
efficient   when   compared   to   traditional   search   methods   such   as   Monte   Carlo   search.   Of   course   it   
needn't   be   exclusively   one   or   the   other.   Monte   Carlo   search   requires   a   next   move   generator   and   
clearly   some   form   of   analogical   reasoning   could   potentially   serve   in   that   role.   

In   many   cases   including   the   use   of   MCTS   ( Monte   Carlo   Tree   Search )   in    AlphaZero ,   the   next   
move   generator   is   learned   and   one   could   imagine   having   different   pretrained   move   generators   
for   different   search   problems.   Humans   effectively   have   different   move   generators   even   though   
they   employ   the   same   neural   structures   to   encode   them   and   apparently   are   able   to   avoid   
catastrophic   interference   when   training   them.   See   Carstensen   and   Frank   [ 21 ]   for   a   discussion   of   
neural   network   architectures   that   can   learn   graded   –   continuous   versus   symbolic   –   relational   
functions   and   the   role   of   graded   relational   functions   representations   in   explaining   abstract   
thinking   in   primates.   

  

Miscellaneous   Loose   Ends:    The   programmer's   apprentice   requires   the   programmer   and   the   
apprentice   to   establish   a   shared   ground   for   both   natural   language   and   the   programming   

https://en.wikipedia.org/wiki/Foldit
https://flywire.ai/credits.html
https://en.wikipedia.org/wiki/Quantum_simulator
https://en.wikipedia.org/wiki/Computational_astrophysics
https://deepmind.com/research/publications/general-reinforcement-learning-algorithm-masters-chess-shogi-and-go-through-self-play
https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_bib_21


language   they   use   for   writing   software,   and   the   requirement   holds   despite   the   fact   the   
apprentice   can   only   vicariously   experience   the   context   in   which   the   programmer   learned   
language.   This   arrangement   is   worth   more   consideration   in   this   discussion   list,   but,   from   the   
practical   standpoint   of   selecting   and   carrying   out   a   final   project   involving   neural   programming,   
we   might   dispense   with   natural   language   altogether,   reduce   the   role   of   the   programmer   to   
simply   a   source   of   models   in   the   form   of   programs   that   can   be   employed   in   analogical   reasoning   
and   incorporate   this   limited   role   directly   in   the   apprentice's   curriculum   training   protocol.   

In   our   discussion   on   Sunday   we   talked   about   the   problem   of   keeping   track   of   where   in   memory   
we   store   items   that   we   have   to   retain   for   indefinite   periods   of   time.   Specifically,   we   talked   about   
the   problem   of   keeping   track   of   variable   bindings   and    namespaces ,   contexts   and   closures,   
recurrent   calls   to   the   same   procedure   or   calling   a   different   procedure   that   uses   the   same   
variable   names   as   the   calling   procedure.   All   of   these   problems   are   solved   in   modern   
programming   languages   by   using   a    call   stack .   In   earlier   work,   we   considered   the   possibility   of   
using   a   differentiable   external   memory   [ 44 ]   and   differentiable   programs   procedures   to   
implement   a   call   stack.   The    MEMO    system   [ 8 ]   developed   by   researchers   at   DeepMind   appears   
to   provide   an   alternative   solution   that   is   more   generally   useful 3 .   

What   does   it   mean   for   something   to   be    grounded ?   In   some   contexts,   it   means   that   you   are   
sensible   and   reasonable   –   your   feet   solidly   on   the   ground.   In   other   contexts,   it   might   mean   that   
you   are   knowledgeable   about   the   basics   of   something.   It   is   often   used   in   everyday   speech   to   
indicate   that   something   said   or   done   can   be   relied   upon.   In   the   sense   that   scientists   and   
engineers   generally   use   the   word   when   talking   about   language   –   and,   in   particular   from   the   
perspective   of   machine   learning   and   embodied   cognition,   it   means   that   your   understanding   of   a   
word   is   based   upon   your   direct   experience   of   the   referent   of   the   spoken,   written   or   signed   word.   

Note   that   experiential   grounding   is   not   just   about   language.   Grounding   is   key   to   understanding   
all   forms   of   meaning   and   biological   communication.   No   matter   what   situations   you   are   being   
exposed   to,   your   brain   is   anchoring   you   to   the   experience   of   those   situations   and   those   
experiences   will   shape   how   you   perceive   and   interpret   the   world   around   you.   For   example,   the   
word   "running"   might   be   represented   in   a   neural   network   as   a   pattern   of   activity   associated   with   
a   particular   subnetwork   when   the   word   is   spoken,   read   or   a   physical   instance   of   running   is   
observed   or   recalled.   Donald   Hebb   referred   to   these   patterns   and   their   corresponding   neural   
circuits   as    cell   assemblies .   

Take   a   moment   to   think   about   what   it   might   mean   for   the   programmer's   apprentice   to   ground   its   
experience   of   instances   of   the   expression   (if   (equal?   X   Y)   (set!    X    (+    X    1)   else   (set!    Y    to   (-    Y    1))))   
where    X    and    Y    are   variables   assumed   to   vary?   What   about   experiences   of    X    where    X    always   
appears   in   this   context   bound   to   an   integer?   

Hebb   suggested   that   cell   assemblies   are   formed   when   such   patterns   occur   repeatedly,   as  
evidenced   by   the   units   that   comprise   such   an   assembly   becoming   increasingly   strongly   
inter-associated.   Unlike   the   sort   of   learning   employed   in   most   contemporary   research   on   neural   
networks,   cell   assemblies   are   updated   using   Hebbian   learning   accomplished   through    auto   
association .   It   is   worth   noting   that   Hebbian   learning   is   unlike   the   most   common   methods   of   

https://en.wikipedia.org/wiki/Namespace
https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_bib_44
https://deepmind.com/research/publications/MEMO-A-Deep-Network-for-Flexible-Combination-of-Episodic-Memories
https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_bib_8
https://web.stanford.edu/class/cs379c/class_messages_listing/index.html#node_footnote_Temp_10
https://en.wikipedia.org/wiki/Symbol_grounding_problem
https://en.wikipedia.org/wiki/Hebbian_theory
https://en.wikipedia.org/wiki/Autoassociative_memory
https://en.wikipedia.org/wiki/Autoassociative_memory


learning   used   in   training   artificial   neural   networks.   This   is   unfortunate   since   there   are   many   
problems   for   which   Hebbian   learning   is   appropriate   and   conventional   end-to-end   back   
propagation   by   gradient   descent   is   inappropriate   and   unnecessarily   introduces   problems   such   
as    catastrophic   interference .  

If   you   find   the   topic   of   grounding   and   Hebbian   learning   interesting,   I'd   be   glad   to   discuss   current   
theories   about   the   role   of   cell   assemblies   in   larger   ensembles   of   reciprocally   connected   neurons   
such   as   the    global   neuronal   workspace   model    of   Stanislas   Deheane   and   Bernard   Baars   that   
attempts   to   explain   how   diverse   cell   assemblies   throughout   the   cortex   are   recruited   to   solve   
novel   problems.   You   might   also   be   interested   in   a   new    Hopfield   network   model    with   continuous   
states   that   can   store   exponentially   (with   the   dimension)   many   patterns,   converges   with   one   
update,   and   has   exponentially   small   retrieval   errors.   

  
  

References   
  

  

[1]     
Josh   Abramson,   Arun   Ahuja,   Arthur   Brussee,   Federico   Carnevale,   Mary   Cassin,   
Stephen   Clark,   Andrew   Dudzik,   Petko   Georgiev,   Aurelia   Guy,   Tim   Harley,   Felix   Hill,   
Alden   Hung,   Zachary   Kenton,   Jessica   Landon,   Timothy   Lillicrap,   Kory   Mathewson,   
Alistair   Muldal,   Adam   Santoro,   Nikolay   Savinov,   Vikrant   Varma,   Greg   Wayne,   Nathaniel   
Wong,   Chen   Yan,   and   Rui   Zhu.   Imitating   interactive   intelligence.    CoRR ,   
arXiv:2012.05672,   2020.   

[2]     Alfred   V   Aho,   Brian   W   Kernighan,   and   Peter   J   Weinberger.    The   AWK   programming   
language .   Addison-Wesley   Longman   Publishing   Co.,   Inc.,   1987.   

[3]     Miltiadis   Allamanis,   Marc   Brockschmidt,   and   Mahmoud   Khademi.   Learning   to   represent   
programs   with   graphs.   In    International   Conference   on   Learning   Representations ,   2018.   

[4]     Uri   Alon,   Meital   Zilberstein,   Omer   Levy,   and   Eran   Yahav.   Code2vec:   Learning   
distributed   representations   of   code.   In    Proceedings   of   the   ACM   on   Programming   
Languages ,   volume   3,   New   York,   NY,   USA,   2019.   Association   for   Computing   
Machinery.   

[5]     Bernard   Baars,   Stan   Franklin,   and   Thomas   Ramsy.   Global   workspace   dynamics:   
Cortical   "binding   and   propagation"   enables   conscious   contents.    Frontiers   in   
Psychology ,   4:200,   2013.   

[6]     Alan   Baddeley.   Working   memory:   Theories,   models,   and   controversies.    Annual   Review   
of   Psychology ,   63(1):1--29,   2012.   

[7]     Alan   Baddeley   and   Graham   James   Hitch.   Working   memory.   In   G.A.   Bower,   editor,   
Recent   Advances   in   Learning   and   Motivation ,   volume   8,   pages   47--90.   Academic   
Press,   1974.   

https://en.wikipedia.org/wiki/Catastrophic_interference
https://en.wikipedia.org/wiki/Global_workspace_theory
https://arxiv.org/abs/2008.02217


[8]     Andrea   Banino,   Adrià   Puigdomènech   Badia,   Raphael   Köster,   Martin   J.   Chadwick,   
Vinícius   Flores   Zambaldi,   Demis   Hassabis,   Caswell   Barry,   Matthew   M   Botvinick,   
Dharshan   Kumaran,   and   Charles   Blundell.   Memo:   A   deep   network   for   flexible   
combination   of   episodic   memories.    CoRR ,   arXiv:2001.10913,   2020.   

[9]     Peter   Battaglia,   Razvan   Pascanu,   Matthew   Lai,   Danilo   Jimenez   Rezende,   and   Koray   
Kavukcuoglu.   Interaction   networks   for   learning   about   objects,   relations   and   physics.   In   
Proceedings   of   the   30th   International   Conference   on   Neural   Information   Processing   
Systems ,   pages   4509--4517.   Curran   Associates   Inc.,   2016.   

[10]    Peter   W.   Battaglia,   Jessica   B.   Hamrick,   Victor   Bapst,   Alvaro   Sanchez-Gonzalez,   
Vinicius   Zambaldi,   Mateusz   Malinowski,   Andrea   Tacchetti,   David   Raposo,   Adam   
Santoro,   Ryan   Faulkner,   Caglar   Gulcehre,   Francis   Song,   Andrew   Ballard,   Justin   Gilmer,  
George   Dahl,   Ashish   Vaswani,   Kelsey   Allen,   Charles   Nash,   Victoria   Langston,   Chris   
Dyer,   Nicolas   Heess,   Daan   Wierstra,   Pushmeet   Kohli,   Matt   Botvinick,   Oriol   Vinyals,   
Yujia   Li,   and   Razvan   Pascanu.   Relational   inductive   biases,   deep   learning,   and   graph   
networks.    CoRR ,   arXiv:1806.01261,   2018.   

[11]    Peter   W.   Battaglia,   Razvan   Pascanu,   Matthew   Lai,   Danilo   Jimenez   Rezende,   and   
Koray   Kavukcuoglu.   Interaction   networks   for   learning   about   objects,   relations   and   
physics.    CoRR ,   arXiv:1612.00222,   2016.   

[12]    Samy   Bengio,   Oriol   Vinyals,   Navdeep   Jaitly,   and   Noam   Shazeer.   Scheduled   sampling   
for   sequence   prediction   with   recurrent   neural   networks.    CoRR ,   arXiv:1506.03099,   2015.  

[13]    Yoshua   Bengio,   Jérôme   Louradour,   Ronan   Collobert,   and   Jason   Weston.   Curriculum   
learning.   In    Proceedings   of   the   26th   Annual   International   Conference   on   Machine   
Learning ,   pages   41--48,   New   York,   NY,   USA,   2009.   ACM.   

[14]    John   Hughlings   Jackson   [Biography].   An   Introduction   to   the   Life   and   Work   of   John   
Hughlings   Jackson:   Introduction.    Medical   History.   Supplement ,   pages   3--34,   2007.   

[15]    Matthew   M.   Botvinick.   Multilevel   structure   in   behaviour   and   in   the   brain:   a   model   of   
fuster's   hierarchy.    Philosophical   transactions   of   the   Royal   Society   of   London.   Series   B,   
Biological   sciences ,   362:1615--1626,   2007.   

[16]    Valentino   Braitenberg.   Cell   assemblies   in   the   cerebral   cortex.   In   Roland   Heim   and   
Günther   Palm,   editors,    Theoretical   Approaches   to   Complex   Systems ,   pages   171--188,   
Berlin,   Heidelberg,   1978.   Springer   Berlin   Heidelberg.   

[17]    Charlotte   O.   Brand,   Alex   Mesoudi,   and   Paul   E.   Smaldino.   Analogy   as   a   catalyst   for   
cumulative   cultural   evolution.    PsyArXiv ,   2020.   

[18]    Silvia   Bunge,   Carter   Wendelken,   David   Badre,   and   Anthony   Wagner.   Analogical   
reasoning   and   prefrontal   cortex:   Evidence   for   separable   retrieval   and   integration   
mechanisms.    Cerebral   Cortex ,   15:239--49,   2005.   



[19]    György   Buzsáki.   Neural   syntax:   Cell   assemblies,   synapsembles,   and   readers.    Neuron ,   
68(3):362--385,   2010.   

[20]    Ryan   T.   Canolty,   Karunesh   Ganguly,   Steven   W.   Kennerley,   Charles   F.   Cadieu,   Kilian   
Koepsell,   Jonathan   D.   Wallis,   and   Jose   M.   Carmena.   Oscillatory   phase   coupling   
coordinates   anatomically   dispersed   functional   cell   assemblies.    Proceedings   of   the   
National   Academy   of   Sciences ,   107:17356--17361,   2010.   

[21]    Alexandra   Carstensen   and   Michael   C   Frank.   Do   graded   representations   support   
abstract   thought?    Current   Opinion   in   Behavioral   Sciences ,   37:90--97,   2020.   

[22]    Dorothy   Cheney   and   Robert   Seyfarth.   Précis   of   how   monkeys   see   the   world.    Behavioral   
and   Brain   Sciences ,   15:135--147,   2011.   

[23]    E.V.   Clark.    First   Language   Acquisition .   Cambridge   University   Press,   2009.   

[24]    Eve   Clark.   Grounding   and   attention   in   language   acquisition.    Papers   from   the   37th   
meeting   of   the   Chicago   Linguistic   Society ,   1:95--116,   2002.   

[25]    Eve   V.   Clark.    Common   Ground ,   pages   328--353.   John   Wiley   &   Sons,   Ltd,   2015.   

[26]    Herbert   H.   Clark.    Using   Language .   Cambridge   University   Press,   Cambridge,   1996.   

[27]    Maxwell   Crouse,   Constantine   Nakos,   Ibrahim   Abdelaziz,   and   Kenneth   Forbus.   Neural   
analogical   matching.    CoRR ,   arXiv:2004.03573,   2020.   

[28]    Forbus   Kenneth   D.,   Ferguson   Ronald   W.,   Lovett   Andrew,   and   Gentner   Dedre.   
Extending   SME   to   handle   large-scale   cognitive   modeling.    Cognitive   Science ,   
41(5):1152--1201,   2016.   

[29]    Thomas   Dean.   Interaction   and   negotiation   in   learning   and   understanding   dialog.   
https://web.stanford.edu/class/cs379c/resources/dialogical/zanax_DOC.dir/index.html,   
2014.   

[30]    Thomas   Dean,   Biafra   Ahanonu,   Mainak   Chowdhury,   Anjali   Datta,   Andre   Esteva,   Daniel   
Eth,   Nobie   Redmon,   Oleg   Rumyantsev,   and   Ysis   Tarter.   On   the   technology   prospects   
and   investment   opportunities   for   scalable   neuroscience.    CoRR ,   arXiv:1307.7302,   2013.   

[31]    Thomas   Dean,   Maurice   Chiang,   Marcus   Gomez,   Nate   Gruver,   Yousef   Hindy,   Michelle   
Lam,   Peter   Lu,   Sophia   Sanchez,   Rohun   Saxena,   Michael   Smith,   Lucy   Wang,   and   
Catherine   Wong.   Amanuensis:   The   Programmer's   Apprentice.    CoRR ,   
arXiv:1807.00082,   2018.   

[32]    Thomas   Dean,   Chaofei   Fan,   Francis   E.   Lewis,   and   Megumi   Sano.   Biological   blueprints   
for   next   generation   AI   systems.    CoRR ,   arXiv:1912.00421,   2019.   



[33]    B.   Deen,   H.   Richardson,   D.   D.   Dilks,   A.   Takahashi,   B.   Keil,   L.   L.   Wald,   N.   Kanwisher,   
and   R.   Saxe.   Organization   of   high-level   visual   cortex   in   human   infants.    Nature   
Communications ,   8:13995,   2017.   

[34]    Stanislas   Dehaene.    Consciousness   and   the   Brain:   Deciphering   How   the   Brain   Codes   
Our   Thoughts .   Viking   Press,   2014.   

[35]    Kevin   Ellis,   Catherine   Wong,   Maxwell   Nye,   Mathias   Sable-Meyer,   Luc   Cary,   Lucas   
Morales,   Luke   Hewitt,   Armando   Solar-Lezama,   and   Joshua   B.   Tenenbaum.   
Dreamcoder:   Growing   generalizable,   interpretable   knowledge   with   wake-sleep   
bayesian   program   learning.    CoRR ,   arXiv:2006.08381,   2020.   

[36]    Brian   Falkenhainer,   Kenneth   D.   Forbus,   and   Dedre   Gentner.   The   Structure-Mapping   
Engine:   Algorithm   and   Examples.    Artificial   Intelligence ,   41(1):1--63,   1989.   

[37]    Richard   Fikes   and   Nils   J.   Nilsson.   STRIPS:   A   new   approach   to   the   application   of   
theorem   proving   to   problem   solving.    Artificial   Intelligence   Journal ,   2:189--208,   1971.   

[38]    Jason   Fischer,   John   G.   Mikhael,   Joshua   B.   Tenenbaum,   and   Nancy   Kanwisher.   
Functional   neuroanatomy   of   intuitive   physical   inference.    Proceedings   of   the   National   
Academy   of   Sciences ,   113(34):E5072--E5081,   2016.   

[39]    Fabrizio   Frasca,   Emanuele   Rossi,   Davide   Eynard,   Ben   Chamberlain,   Michael   
Bronstein,   and   Federico   Monti.   SIGN:   Scalable   Inception   Graph   Neural   Networks.   
CoRR ,   arXiv:2004.11198,   2020.   

[40]    Justin   Fu,   Anoop   Korattikara,   Sergey   Levine,   and   Sergio   Guadarrama.   From   language   
to   goals:   Inverse   reinforcement   learning   for   vision-based   instruction   following.   In   
International   Conference   on   Learning   Representations ,   2019.   

[41]    Joaquín   M.   Fuster.    Chapter   8:   An   Overview   of   Prefrontal   Functions ,   pages   375--425.   
Elsevier,   London,   2015.   

[42]    Dedre   Gentner.   Structure-mapping:   A   theoretical   framework   for   analogy.    Cognitive   
Science ,   7(2):155--170,   1983.   

[43]    Mary   L.   Gick   and   Keith   J.   Holyoak.   Schema   induction   and   analogical   transfer.    Cognitive   
Psychology ,   15(1):1--38,   1983.   

[44]    Alex   Graves,   Greg   Wayne,   Malcolm   Reynolds,   Tim   Harley,   Ivo   Danihelka,   Agnieszka   
Grabska-Barwińska,   Sergio   Gómez   Colmenarejo,   Edward   Grefenstette,   Tiago   
Ramalho,   John   Agapiou,   Adrià   Puigdoménech   Badia,   Karl   Moritz   Hermann,   Yori   Zwols,   
Georg   Ostrovski,   Adam   Cain,   Helen   King,   Christopher   Summerfield,   Phil   Blunsom,   
Koray   Kavukcuoglu,   and   Demis   Hassabis.   Hybrid   computing   using   a   neural   network   
with   dynamic   external   memory.    Nature ,   538:471--476,   2016.   



[45]    A.   E.   Green,   D.   J.   Kraemer,   J.   A.   Fugelsang,   J.   R.   Gray,   and   K.   N.   Dunbar.   Neural   
correlates   of   creativity   in   analogical   reasoning.    Journal   of   Experimental   Psychology,   
Learning,   Memory   and   Cognition ,   38(2):264--272,   2012.   

[46]    Mareike   Grotheer,   Zonglei   Zhen,   Garikoitz   Lerma-Usabiaga,   and   Kalanit   Grill-Spector.   
Separate   lanes   for   adding   and   reading   in   the   white   matter   highways   of   the   human   brain.   
Nature   Communications ,   10:3675,   2019.   

[47]    Jessica   B   Hamrick.   Analogues   of   mental   simulation   and   imagination   in   deep   learning.   
Current   Opinion   in   Behavioral   Sciences ,   29:8--16,   2019.   

[48]    Marc   D.   Hauser   and   Elizabeth   Spelke.   Evolutionary   and   developmental   foundations   of   
human   knowledge:   A   case   study   of   mathematics.   In   M.   Gazzaniga   and   N.   Logothetis,   
editors,    The   Cognitive   Neurosciences,   III ,   pages   853--864.   MIT   Press,   Cambridge,   MA,   
2004.   

[49]    Donald   O.   Hebb.    The   organization   of   behavior:   A   neuropsychological   theory .   Wiley,   
New   York,   1949.   

[50]    Douglas   Hofstadter.    I   Am   a   Strange   Loop .   Basic   Books,   2007.   

[51]    Keith   J.   Holyoak.   Analogy   and   relational   reasoning.   In   Keith   J.   Holyoak   and   Robert   G.   
Morrison,   editors,    Oxford   Handbook   of   Thinking   and   Reasoning ,   pages   234--259.   
Oxford   University   Press,   2012.   

[52]    Presley   A.   Ifukor.   Modelling   the   mapping   mechanism   in   metaphors.    Cognitive   Science ,   
6:21--44,   2005.   

[53]    Daniel   D.   Johnson.   Learning   graphical   state   transitions.   In    International   Conference   on   
Learning   Representations ,   2017.   

[54]    Sham   Machandranath   Kakade.   On   the   sample   complexity   of   reinforcement   learning.   
PhD   Thesis   -   Gatsby   Computational   Neuroscience   Unit,   University   College   London,   
2003.   

[55]    J.   G.   Klinzing,   B.   Rasch,   J.   Born,   and   S.   Diekelmann.   Sleep's   role   in   the   reconsolidation   
of   declarative   memories.    Neurobiological   Learning   and   Memory ,   136:166--173,   2016.   

[56]    P.   A.   Lewis,   G.   Knoblich,   and   G.   Poe.   How   Memory   Replay   in   Sleep   Boosts   Creative   
Problem-Solving.    Trends   Cognitive   Science ,   22(6):491--503,   2018.   

[57]    Yujia   Li,   Daniel   Tarlow,   Marc   Brockschmidt,   and   Richard   S.   Zemel.   Gated   graph   
sequence   neural   networks.    CoRR ,   arXiv:1511.05493,   2015.   

[58]    Yujia   Li,   Oriol   Vinyals,   Chris   Dyer,   Razvan   Pascanu,   and   Peter   Battaglia.   Learning   deep   
generative   models   of   graphs.   In    International   Conference   on   Learning   Representations ,   
2018.   



[59]    Phan   Luu,   Alexandra   Geyer,   Cali   Fidopiastis,   Gwendolyn   Campbell,   Tracey   Wheeler,   
Joseph   Cohn,   and   Don   M.   Tucker.   Reentrant   processing   in   intuitive   perception.    PLOS   
ONE ,   5(3):1--10,   2010.   

[60]    George   A.   Mashour,   Pieter   Roelfsema,   Jean-Pierre   Changeux,   and   Stanislas   Dehaene.   
Conscious   processing   and   the   global   neuronal   workspace   hypothesis.    Neuron ,   
105(5):776--798,   2020.   

[61]    Josh   Merel,   Matt   Botvinick,   and   Greg   Wayne.   Hierarchical   motor   control   in   mammals   
and   machines.    Nature   Communications ,   10(1):5489,   2019.   

[62]    Dharmendra   S.   Modha   and   Raghavendra   Singh.   Network   architecture   of   the   
long-distance   pathways   in   the   macaque   brain.    Proceedings   of   the   National   Academy   of   
Sciences ,   107(30):13485--13490,   2010.   

[63]    Sushobhan   Nayak   and   Amitabha   Mukerjee.   Grounded   language   acquisition:   A   minimal   
commitment   approach.   In    Proceedings   of   COLING   2012 ,   pages   2059--2076,   Mumbai,   
India,   2012.   

[64]    John   von   Neumann.   First   draft   of   a   report   on   the   EDVAC.   Technical   report,   Institute   for   
Advanced   Study,   1945.   

[65]    Klaus   Oberauer.   Chapter   2   design   for   a   working   memory.   In    The   Psychology   of   
Learning   and   Motivation ,   volume   51   of    Psychology   of   Learning   and   Motivation ,   pages   
45--100.   Academic   Press,   2009.   

[66]    Klaus   Oberauer.   Working   Memory   and   Attention   -   A   Conceptual   Analysis   and   Review.   
Journal   of   Cognition ,   2(1):36,   2019.   

[67]    Günther   Palm,   Andreas   Knoblauch,   Florian   Hauser,   and   Almut   Schüz.   Cell   assemblies   
in   the   cerebral   cortex.    Biological   Cybernetics ,   108:559--572,   2014.   

[68]    L.A.   Petitto   and   P.F.   Marentette.   Babbling   in   the   manual   mode:   evidence   for   the   
ontogeny   of   language.    Science ,   251(5000):1493--1496,   1991.   

[69]    Laura   Ann   Petitto,   Siobhan   Holowka,   Lauren   E.   Sergio,   and   David   Ostry.   Language   
rhythms   in   baby   hand   movements.    Nature ,   413:35--36,   2001.   

[70]    Thomas   Pierrot,   Guillaume   Ligner,   Scott   E.   Reed,   Olivier   Sigaud,   Nicolas   Perrin,   
Alexandre   Laterre,   David   Kas,   Karim   Beguir,   and   Nando   de   Freitas.   Learning   
compositional   neural   programs   with   recursive   tree   search   and   planning.    CoRR ,   
arXiv:1905.12941,   2019.   

[71]    David   Poeppel,   Karen   Emmorey,   Gregory   Hickok,   and   Liina   Pylkkänen.   Towards   a   new   
neurobiology   of   language.    The   Journal   of   Neuroscience:   The   official   journal   of   the   
Society   for   Neuroscience ,   32:14125--14131,   2012.   



[72]    F.   Pulvermüller,   M.   Garagnani,   and   T.   Wennekers.   Thinking   in   circuits:   toward   
neurobiological   explanation   in   cognitive   neuroscience.    Biological   Cybernetics ,   
108(5):573--593,   2014.   

[73]    Friedemann   Pulvermüller.   How   neurons   make   meaning:   brain   mechanisms   for   
embodied   and   abstract-symbolic   semantics.    Trends   in   Cognitive   Sciences ,   
17(9):458--470,   2013.   

[74]    Friedemann   Pulvermüller.   Neural   reuse   of   action   perception   circuits   for   language,   
concepts   and   communication.    Progress   in   Neurobiology ,   160:1--44,   2018.   

[75]    B.   Rasch   and   J.   Born.   About   sleep's   role   in   memory.    Physiological   Review ,   
93(2):681--766,   2013.   

[76]    Scott   E.   Reed   and   Nando   de   Freitas.   Neural   programmer-interpreters.    CoRR ,   
arXiv:1511.06279,   2015.   

[77]    R.W.   Rieber,   A.S.   Carton,   L.S.   Vygotsky,   N.   Minick,   J.   Wollock,   J.E.   Knox,   and   J.S.   
Bruner.    The   Collected   Works   of   L.S.   Vygotsky:   Volume   1:   Problems   of   General   
Psychology,   Including   the   Volume   Thinking   and   Speech .   Cognition   and   Language:   A   
Series   in   Psycholinguistics.   Plenum   Press,   1987.   

[78]    Dario   D.   Salvucci   and   John   R.   Anderson.   Integrating   analogical   mapping   and   general   
problem   solving:   the   path-mapping   theory.    Cognitive   Science ,   25(1):67--110,   2001.   

[79]    Hendrig   Sellik.   Natural   language   processing   techniques   for   code   generation.   Delft   
University   of   Technology   Technical   Report,   2019.   

[80]    E.   S   Spelke   and   K.   D.   Kinzler.   Core   knowledge.    Developmental   Science ,   10:89--96,   
2007.   

[81]    Elizabeth   Spelke.   What   makes   us   special?   Brain   Inspired   Podcast   Episode   #48   
September   25,   2019,   2019.   

[82]    Ian   Stewart   and   Jack   Cohen.    Figments   of   Reality:   The   Evolution   of   the   Curious   Mind .   
Cambridge   University   Press,   1997.   

[83]    Barbara   Tversky.    Mind   in   Motion:   How   Action   Shapes   Thought .   Basic   Books,   2019.   

[84]    Aäron   van   den   Oord,   Oriol   Vinyals,   and   Koray   Kavukcuoglu.   Neural   discrete   
representation   learning.    CoRR ,   arXiv:1711.00937,   2017.   

[85]    Ke   Wang.   Learning   scalable   and   precise   representation   of   program   semantics.    CoRR ,   
arXiv:1905.05251,   2019.   

[86]    Ke   Wang,   Rishabh   Singh,   and   Zhendong   Su.   Dynamic   neural   program   embedding   for   
program   repair.    International   Conference   on   Learning   Representations ,   2018.   



  
  

[87]    Ke   Wang   and   Zhendong   Su.   Learning   blended,   precise   semantic   program   embeddings.   
CoRR ,   arXiv:1907.02136,   2019.   

[88]    Bolin   Wei,   Ge   Li,   Xin   Xia,   Zhiyi   Fu,   and   Zhi   Jin.   Code   generation   as   a   dual   task   of   code   
summarization.   In   H.   Wallach,   H.   Larochelle,   A.   Beygelzimer,   F.   d'   Alché-Buc,   E.   Fox,   
and   R.   Garnett,   editors,    Advances   in   Neural   Information   Processing   Systems   32 ,   pages   
6563--6573.   Curran   Associates,   Inc.,   2019.   

[89]    P.   J.   Whelan.   Control   of   locomotion   in   the   decerebrate   cat.    Progress   in   Neurobiology ,   
49(5):481--515,   1996.   

[90]    Kirstie   J.   Whitaker,   Michael   S.   Vendetti,   Carter   Wendelken,   and   Silvia   A.   Bunge.   
Neuroscientific   insights   into   the   development   of   analogical   reasoning.    Developmental   
science ,   21:e12531,   2018.   

[91]    Zonghan   Wu,   Shirui   Pan,   Fengwen   Chen,   Guodong   Long,   Chengqi   Zhang,   and   Philip   
S.   Yu.   A   comprehensive   survey   on   graph   neural   networks.    CoRR ,   arXiv:1901.00596,   
2019.   

[92]    Yujun   Yan,   Kevin   Swersky,   Danai   Koutra,   Parthasarathy   Ranganathan,   and   Milad   
Hashemi.   Neural   execution   engines:   Learning   to   execute   subroutines.   In   H.   Larochelle,   
M.   Ranzato,   R.   Hadsell,   M.F.   Balcan,   and   H.   Lin,   editors,    Advances   in   Neural   
Information   Processing   Systems   33 ,   2020.   


