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Hierarchical motor control in mammals and
machines
Josh Merel1*, Matthew Botvinick 1 & Greg Wayne1

Advances in artificial intelligence are stimulating interest in neuroscience. However, most

attention is given to discrete tasks with simple action spaces, such as board games and

classic video games. Less discussed in neuroscience are parallel advances in “synthetic motor

control”. While motor neuroscience has recently focused on optimization of single, simple

movements, AI has progressed to the generation of rich, diverse motor behaviors across

multiple tasks, at humanoid scale. It is becoming clear that specific, well-motivated hier-

archical design elements repeatedly arise when engineering these flexible control systems.

We review these core principles of hierarchical control, relate them to hierarchy in the

nervous system, and highlight research themes that we anticipate will be critical in solving

challenges at this disciplinary intersection.

How neural circuits govern motor behavior has long been a central question for neu-
roscience research. In particular, it is a classical theme that the brain controls motor
behavior through hierarchical anatomical structures. An early explicit proposal is owing

to John Hughlings Jackson, who, by the 1870s, described the nervous system as a “sensorimotor
machine”, consisting of a hierarchy of three evolutionary levels1. Since then, hierarchy both of
anatomy and generation of behavior have been revisited in the study of instinct2, motivation3,4,
and motor pattern generation5,6. Across these contexts, the focus has often been neuroetholo-
gical, detailing the kinds of behaviors produced by species-specific nervous systems in their
ecological niches. These ideas developed through study of the nervous system have inspired
other disciplines, including robotics, with clear influence, for example, on the subsumption
architecture7,8.

In recent decades, the theme of hierarchy has partially receded in motor neuroscience
research, and the field has emphasized a largely complementary perspective, emphasizing task-
specific optimality of movement9, with the contemporary version known as optimal feedback
control (OFC)10,11. OFC is typically applied by postulating a cost function or formal definition of
a task and asking what behavior is optimal with respect to that cost function. This perspective
has been productive for motor neuroscience and facilitated the analysis of specific, well-defined
motor behaviors. However, despite its great utility and its alignment with the experimental
preference to study isolated behaviors in single tasks, the focus on specific movements runs
contrary to the deeper interest in understanding the generation of diverse, ethological behaviors
produced by nervous systems12.

OFC is a framework closely related to reinforcement learning (RL), which contemporary
motor control for AI and robotics has widely adopted. We proceed by briefly reviewing com-
putational approaches to motor control, focusing on the OFC framework, as well as reflecting
upon recent developments in research involving control of complex, simulated physical bodies,
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including attempts to scale up OFC directly. However, as research
into artificial control has developed, it has become clear that in
addition to task objectives, system architecture design is also
critical. OFC does not provide direct guidance on the design or
interpretation of systems that must perform many behaviors or
which reuse and compose overlapping skills to solve multiple
tasks. We therefore formulate a set of core design principles of
hierarchical systems in the context of motor control, which are
synthesized from the AI research literature. In essence, recent
work in AI has circled back to themes that were more central in
earlier eras of neuroscience. This prompts us to take a fresh look
at the neuroscience literature through a focused survey, which
highlights how the core design principles help us make sense of
hierarchical structure and function in the vertebrate nervous
system. Both AI researchers engaging in the design of motor
control systems and motor neuroscientists attempting to under-
stand how specific nervous systems produce movement share
many interests; we believe these fields will continue to benefit
from interdisciplinary collaboration, so we close by highlighting
some of these areas of overlap.

Computational approaches to motor control
The challenge of motor control, both for animals and artificial
systems, is to coordinate a body to produce patterns of adaptive
movement behavior that satisfy objectives of the agent. When
studying motor control with quantitative models, we consider a
body in an environment, governed by a controller. The controller
(or policy) receives observations from sensors, which measure
features of the state of the system, and produces control signals that
command the effectors. The controller runs in closed-loop with the
body and environment, actuating the effectors based on online
feedback from sensory observations to produce temporally exten-
ded behavior (Fig. 1a). For comparison, we depict a flat controller
(Fig. 1b) as well as a minimal example of a hierarchical controller
(Fig. 1c), in which high-level and low-level controllers receive dif-
ferent inputs and the motor commands are generated by the low-
level controller with some input from the high-level controller.

Beyond the basic control system elements, specific control
schemes may involve forward or inverse models13 (Here we focus
on dynamics models. A distinct class of model supports coordinate
transformations via forward and inverse kinematic models), and in

biology, animals may use “internal” versions of these models14,15.
Forward (dynamics) models predict the future state of the animal’s
body and the environment given the current state and an action,
either real or imagined. Internal forward models are used to predict
the future consequences of actions. Comparing these predictions
with sensory inputs enables filtering-based estimation of body and
environment state. Forward models can also be used for action
selection, as they allow an animal to “try out” actions using the
model before acting with the real body. Inverse (dynamics) models
form a special class of controller. They infer the action that takes the
animal from the current state to a future outcome state. If this
future outcome state is the “goal” of the animal, the inverse model
generates the action that aims to achieve it.

OFC frames motor control as an optimization problem and was
proposed as a normative theory of biological motor control10; this
consolidated principles relatively well understood in movement
neuroscience16. At present, OFC is the dominant framework used
by motor neuroscientists to explain volitional control17,18. Earlier
frameworks had recognized the value of optimizing movement
trajectories9, but OFC emphasizes the importance of leveraging
sensory feedback to produce task-optimal corrective responses to
unexpected perturbations. As such, the key prediction that differ-
entiated OFC from related proposals was that movements produced
by animals correct for perturbations only to the extent needed to
optimize the task. The OFC framework was generalized to
encompass essentially all approaches that use closed-loop, feedback-
based control, where the behavior generated is supposed to opti-
mize a cost function (or goal)11. The broadened OFC framework
consists of three principles: (1) Motor control is generated to
optimize an objective function. (2) Deviations from an intended
trajectory that arise should be corrected by leveraging sensory
feedback in a task-optimal fashion. Together, these first two prin-
ciples imply that online correction of movements should prioritize
task-relevant dimensions (a “minimum intervention principle”). (3)
Internal models help compensate for sensory delays and assist with
state estimation.

From a contemporary perspective, the principles of OFC,
including the utility of feedback and sensory delays, are widely
accepted. The commitment in OFC that is perhaps most open to
fundamental dispute is whether the controller really optimizes an
objective (and what objective?). However, at its broadest, the OFC
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Fig. 1 a Interaction cycle between an embodied control system and a physical environment to generate behavior. b A flat controller with no architectural
segregation of different inputs. c A basic, brain-inspired two-stage hierarchy: a lower-level motor controller directly generates motor commands to the
effectors based on input from proprioceptive sensors and modulatory input from a higher-level controller, which is responsive to additional signals,
including vision and task context signals.

PERSPECTIVE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13239-6

2 NATURE COMMUNICATIONS | ��������(2019)�10:5489� | https://doi.org/10.1038/s41467-019-13239-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications
Tom Dean

Tom Dean

Tom Dean

Tom Dean

Tom Dean

Tom Dean

Tom Dean

Tom Dean

Tom Dean

Tom Dean

Tom Dean



framework is fairly inclusive about what constitutes an objective.
Efficient movement need not be a direct objective, but will
indirectly emerge out of coordinating movement to rapidly solve
tasks. So, if an animal is optimizing movement for solving a
sequence of tasks, the efficiency of the movement is indirectly
incentivized in order to facilitate the concrete task goals. Despite
this theoretical generality, until recently is has not been widely
feasible to consider task objectives more complex than those
related to production of specific movements on short horizons.

Motor control of synthetic systems
The optimization framework associated with OFC has been
widely popularized in the context of “deep reinforcement learn-
ing” (Deep RL) (Deep RL refers to reinforcement learning that
employs deep learning, or the use of deep neural networks.). The
primary challenge of implementing optimal control approaches is
generating the optimal control law (i.e., controller). For specific
control problems described by known equations involving simple
dynamics and cost functions, or problems formulated in low-
dimensional state and action spaces, optimal controllers can be
computed exactly. Specifically, one of the most fundamental and
computationally straightforward ways to derive an optimal con-
troller is through dynamic programming19,20. But for the control
of more realistic, high-dimensional bodies, the design of the
approximation scheme, learning algorithm, or numerical
approach to produce the controller is important.

Specific, contemporary approaches often reformulate or restrict
the generic problem in order to make it computationally tract-
able. A widespread algorithmic technique is to look for locally
optimal control laws instead of globally optimal control laws.
Examples of locally optimal algorithms include model predictive
control21 or specialized planning methods22,23, which enable
control of humanoid systems. However, planning approaches
such as these are model-based, meaning they require access to the
simulator within the planning computation; this is only available
to an agent or animal if it possesses a high-quality forward model,
possibly learned from previous experience. If there is no pre-
existing or learned model of the environment, the alternative is to
directly learn the policy (or, alternatively, a representation of the
values of actions) via model-free RL24.

Over the last few years, there has been an explosion of interest in
producing Deep RL agents that are trained in simulated environ-
ments. Progress made towards playing Atari games from images25
and navigating virtual environments26 have inspired considerable
follow-up research. In parallel, there has also been significant effort
applied towards control of articulated bodies in simulated physical
environments27, with broad interest facilitated by the release of
research environments28,29, which build accessible interfaces for
underlying physics simulators such as MuJoCo30. These physics-
based control (or continuous control) problems involve training a
controller to produce an action-vector of continuous values, which
actuate a physically simulated body, in order to optimize objectives
in a task. Although primarily studied by Deep RL researchers for
algorithm development, these challenges essentially amount to
motor control. The approaches used in simulated environments
also overlap with learning-based approaches for robotics
research31–34. Of course, although significant development has
occurred in recent years, many core ideas in Deep RL research were
anticipated by earlier research35, including neural network control
for graphically rich environments in the NeuroAnimator36, as well
as design of impressive controllers for physically simulated huma-
noids37–39 and animals40.

Robust control of physically simulated humanoids, especially
without access to the simulator for planning, is a challenge that
has made progress in recent years. End-to-end learning

approaches with relatively simple policy architectures (e.g.,
feedforward policies) are capable of producing simple locomotion
behaviors41 and traversing obstacle courses27. In particular, Heess
et al.27 pushed OFC to a certain extreme: motor behavior was
generated via a simple feedback controller trained entirely end-to-
end with deep RL to solve a single task, consisting of a dis-
tribution of more specific obstacle courses. The resulting policy
was robust and responded well to random, procedural terrain
variations as well as interactive perturbations by a human. In this
work, the sensory observations consisted of feature-based height-
maps of the terrain, similar to approaches in animation42. Sub-
sequent work has since demonstrated the ability to solve similar
problems from egocentric proprioceptive information and sen-
sory information from touch sensors and egocentric cameras for a
more ethologically plausible sensory embodiment43. Although
sensors and effectors of simulated agents are not accurate models
of those found in animals, it is nevertheless clear that simulated
embodied agents face similar perceptual and motor challenges as
real-world animals (or robots).

However, although end-to-end Deep RL approaches to motor
control have expanded the scope of OFC, there are a number of
difficulties. For settings with narrow objectives, such as running
forwards, environment variations during training can induce
robust behaviors. But for this to work, careful task design using a
balanced curriculum is often needed27. And whereas intrinsic
ethological drives of biological organisms are quite varied
(including feeding, fighting or fleeing, and fornicating), typical
Deep RL agents exist in a universe that consists of only a single,
comparatively narrow objective. Broader challenges include
dealing with changing objectives, learning behaviors that are
reusable, and rapidly adapting to solve novel tasks. So, although
there is clear value in scaling up OFC, it is far from the whole
story of how animals generate motor behavior, and these broader
challenges bring us back to aspects of motor control that were
central in earlier work in both AI and neuroscience. To more
efficiently solve complex control problems, many recent innova-
tions relating to hierarchical system architecture are being
developed. In the subsequent section, we will present core prin-
ciples of hierarchical motor control. These principles reflect our
distillation of older ideas, points that have been made in recently
published work, as well as more ‘craft-level’ insights shared
among researchers currently working in the field. For a concrete
illustration of a simple, contemporary architecture reflecting
versions of many of these principles, see Box 1.

Core principles of hierarchical motor control
Researchers engaged in the study of hierarchical control believe
that hierarchy can add value for issues ranging from effective
exploration and planning to transfer and composition of skills.
Synthesizing the literature, we have attempted to clarify and
summarize core principles of hierarchical control that we believe
facilitate design and interpretation of hierarchical systems. In
particular, the principles we identified are well motivated when
considering systems capable of generating a wide range of motor
behaviors across multiple settings. The principles are elaborated
below and a brief description and motivation for each principle is
summarized in Table 1.

Information factorization. Information factorization refers to
the property of hierarchical systems that involves providing
partial or pre-processed information to certain parts of a system
(c.f. information hiding45,46). In our simple example (Fig. 1), this
principle is illustrated by different sensory signals being routed to
the high- and low-level controllers, respectively. Although a flat
policy could, in principle, integrate all available information and
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produce controls directly, a system with fewer inputs per module
is likely to learn more efficiently. Furthermore, by segregating
information immediately relevant to the low-level controller from
information that only needs to modulate the low-level controller
in a low-bandwidth fashion (e.g., via an inter-layer bottleneck),
the low-level controller is likely to generalize better. By con-
struction, the information routed to it is invariant to many pos-
sible contexts, and it only directly processes the subset of sensory
information that the behavior it is responsible for generating
depends upon. Concretely in the example in Fig. 1, the higher-
level controller might provide modulatory signals as simple as
steering signals, whereas the low-level controller may have to
produce high-dimensional locomotion motor patterns.

This idea is connected to a view of reinforcement learning in
which subsystems that have access to different information are
able to share appropriately abstract behavior across contexts47,48.
For example, while visually guided locomotion in the context of
a particular task may involve focusing on specific elements in
the visual scene that do not transfer entirely to a new task, the
locomotor movement patterns may generalize. In this example,
low-level behavior is more invariant owing to information
factorization. However, it can also be the case that high-level
behavior is invariant. Sufficiently abstract goals or intentions
permit many distinct low-level movements to achieve them, so a
high-level controller with limited access to body state may
communicate an abstract goal that does not fully specify the

Box 1 | Reusable motor skills for hierarchical control of bodies

End-to-end RL with a “flat” controller initially explores the space of possible behaviors through uncoordinated, unstructured movements of each joint
independently. For a complicated, humanoid body, intelligent behavior in this space is a needle in a haystack, making the search for task solutions a
difficult problem. To promote a diversity of behavior as well as the exploration and discovery of new ones, the neural probabilistic motor primitives
(NPMP) architecture has been introduced44, which expresses a set of robust, human-like motor behaviors as a basis for further task learning. The
system is first trained using motion capture data of humans performing movements. The motion capture data are time series of configurations of the
body and joints. The details of the construction of the system are not critical, but, to give some insight, for each motion capture snippet, a neural
network is trained by RL to produce actions, at, such that the resulting movement trajectory approximately tracks the kinematic position of the body in
the original reference motion. Then, these movement controllers are combined or “distilled” into one large model that can track any of the movements
given a description of the near future path of the body, x*t. A coding space, zt, in the system comes to represent each of these movements and allows
interpolation among them. Downstream of the code is a motor policy, which, when cued with zt and proprioceptive information st, is able to generate
patterns of human-like movement autonomously. Thus, exploration of the space of human-like movements becomes possible by varying the input zt to
the motor policy. To this low-level motor system, a high-level controller can be attached to solve complicated tasks in virtual environments. The high-
level controller has full visual input and is provided task information, ot. It learns by RL to produce actions of the same size as the coding space, which
modulate the movements carried out by the low-level policy. The NPMP's modular, hierarchical design has made it possible to solve complicated
problems otherwise of great difficulty for flat RL. See supplementary materials (videos and associated captions) for examples of motor reuse.

Table 1 Summary of key principles of hierarchical control.

Core principle Brief summary Motivation/utility

Information
factorization

Different information is routed to different subsystems. Factored learning can require less experience per subsystem.
Subsystems are invariant to hidden information and therefore are
reusable across contexts.

Partial autonomy Lower-level systems function somewhat autonomously,
with modulation from higher-level systems.

System is more robust and lower-level does not require costly
micromanagement.

Amortized control Movements that have been successfully executed multiple
times are compressed into a system that can rapidly
reproduce them.

Re-execution of frequently repeated movements should be more
computationally efficient than novel variations.

Modular objectives Specific subsystems may be trained to optimize specific
objectives, distinct from the global task objective.

Training of subsystems can leverage error signals that are denser or
more well known than the global task objective.

Multi-joint
coordination

Movement is produced in a manner that reflects common
patterns across the body.

Exploration and action-selection can exploit commonly co-occurring
multi-joint patterns.

Temporal
abstraction

Common temporal motifs are abstracted. Behavior specification or planning can occur at a coarser timescale.
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required details of the movement, leaving it to the lower-levels to
sort out the details. That some goals or tasks can be solved by a
multiplicity of execution details (“motor equivalence”) has long
been recognized as important in movement science49,50 and has
also been identified as relevant for robot control51.

Partial autonomy. Partial autonomy refers to the property of
certain types of hierarchical systems that the lower-levels of the
hierarchy can semi-autonomously produce behavior even without
input from higher-levels. This principle is related to the intuition
underlying the subsumption architecture7: build low-level con-
trollers that function autonomously; then add modulatory control
layers such that the overall system can produce more behaviors. The
insight reflected in this approach is that robustness can be achieved
if lower-layer controllers are sufficiently autonomous (albeit for a
more limited range of behavior), such that removal of the higher
layers leaves the lower-layer generated behavior intact. This style of
architecture is evocative of the brain8, insofar as for many animals,
considerable functionality remains in animals with substantial
portions of the central nervous system removed, as we discuss later.

This partial autonomy is related to information factorization
insofar as a lower-level system should have adequate information
to be partially autonomous. For example, a low-level locomotion
controller may simply produce straight-ahead (or randomly-
directed) walking behavior in the absence of inputs from the
higher-level controller, but this locomotion can still be stabilized
by proprioceptive feedback. Partial autonomy also pertains to a
class of robustness having to do with appropriate responsiveness
to perturbations. Consider a setting in which an agent (or animal)
is engaged in a behavior (e.g., walking) and, owing to something
unanticipated in the environment, the agent slips or is perturbed.
Although “default” behavior may be somewhat automatic, a role
for higher-layers might be to detect that something unexpected
has occurred via monitoring what is unfolding, and respond with
the appropriate modulation of the overall behavior. So, whereas
simple walking may be performed adequately by lower-levels of
control, increasingly intelligent responsiveness may require rich
sensory information as well as the ability to assess the
environment for safe affordances (e.g., something to hold onto
in response to slipping).

Amortized control. In order to accelerate computation of beha-
viors that require complex motor coordination, hierarchical systems
can benefit from amortized control. Amortized control refers to a
wide range of approaches that involve training a lower-level system
to produce appropriate behaviors for a behavioral context or
modulatory signal, without having to engage in a costly process. For
example, although it is quite costly to plan or optimize movements
entirely from scratch, once movements have been produced, it
should be possible to train a “reactive” subsystem that can repro-
duce these movements repeatedly without redundant planning.
This principle is related to partial autonomy, as it may involve the
production of a semi-autonomous subsystem, but the emphasis of
this principle is on the benefit with respect to computation attained
through caching previously obtained solutions.

Motivated by this insight, it has been demonstrated that policies
produced via trajectory optimization could be distilled into a neural
network that could then be reused interactively52,53. Similar ideas
have also been explored44,52–54, reflecting a shared intuition that
well-behaved trajectories obtained from various sources can be used
to train a neural network that may generalize from the examples.
From a system perspective, this is a kind of self-supervised learning
where trajectories generated by one (presumably slow or costly)
mechanism are used to train another part of the system to produce
equivalent behavior in an amortized fashion.

Modular objectives. Many examples of neural networks applied
to control problems use “end-to-end” optimization25; that is,
there is a single task objective, and the entirety of the architecture
maximizes this singular objective. However, the broad alternative
is that control systems have some functional separation of roles
by subsystem, and different modules benefit from being trained
by distinct modular objectives. A specific, practical, and popular
approach trains a controller to solve a task while also training a
set of internal representations to predict future sensory
data26,55,56. This approach to learning internal state representa-
tions can improve experience efficiency by leveraging dense self-
supervised objectives to train perceptual and memory modules,
whereas task reward can still provide learning signals for the
controller. This approach is “heterarchical” insofar as different
objective functions, consisting of a predictive objective as well as a
policy improvement objective, are imposed in parallel on different
parts of the overall network architecture.

Another classic approach involves the overall system
specifying subordinate objectives for modular subsystems,
while maintaining the priority of a high-level objective.
Paradigmatically for control problems, a high-level controller
can communicate a goal to a low-level controller, which serves
both as instruction to modulate low-level behavior and also as a
reference for learning. Such an approach amounts to a divide-
and-conquer strategy57, and has been implemented via
reinforcement learning45. For example, in locomotion control,
a high-level controller may decide to move in a certain
direction, provide a signal to the low-level controller as
instruction, and this signal also serves as a dense teaching
signal that the low-level controller learns from as it assesses
how well it stays on the instructed course. In such schemes, the
low-level controller is trained to satisfy its received instruction,
whereas the high-level controller intelligently programs these
objectives to solve a more global task. Most work on this idea
has used fixed forms of the cost function for the low-level
controller58,59, but other work has explored how to learn more
abstract goal spaces60.

Multi-joint coordination. Although it may make sense to be able
to modulate or directly control single muscles or joints in specific
contexts, most control is perhaps better thought of as selective
activation of established motor synergies. There are many varia-
tions on the motor synergy concept61; here we mean functional
couplings of different joints or muscles such that motor control
operates at the level of multi-joint coordination patterns rather
than through independent control of all joints. Producing actions
at this slightly higher level of abstraction can facilitate exploration
and learning of new skills as well as simplify planning. This is
perhaps most readily apparent in a setting like reaching and
grasping, where random movement of all degrees of freedom
independently will be ineffective, but random movements in the
subspace of hand configurations encountered during grasping will
lead to more effective interactions.

Perhaps, the conceptually most straightforward way to implement
multi-joint coordination is to perform control or planning in a pre-
specified, low-dimensional space. For well understood classes of
movement, such as locomotion, versions of low-dimensional control
have been around for a while, such as specifying the walking in
terms of a simplified body model and computing leg movements to
achieve the target movement of the center-of-mass62. This strategy
has been advocated more generally63, and a relatively recent
representative performs low-dimensional planning for locomotion
in a hand-designed space that interacts with a low-level controller64.
An alternative to hand-engineering the low-dimensional control
space involves unsupervised learning (or self-supervised learning) of
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sensorimotor primitives in order to produce a learned low-level
controller11,65.

Temporal abstraction. Temporal abstraction simplifies the speci-
fication of behavior that endures over extended time intervals via
higher-level controllers operating at a coarser temporal resolution.
For example, in the context of locomotion, a higher-level controller
may instruct a low-level controller at a less-frequent timescale on
where to navigate (or when to turn), but the actual movement is
executed over an extended duration by a lower-level controller that
operates at the full temporal precision required for motor behavior.
Through this scheme, a trade-off is established, whereby the high-
level controller may cede control precision, but gain in time-horizon
through the reduced temporal resolution—this enables the high-
level controller to more easily discover or plan behavior that
endures on a longer natural timescale.

In the hierarchical reinforcement learning literature, a number
of schemes have been proposed that focus on leveraging temporal
abstraction66. In particular, the options framework, which
involves high-level transfer of control to self-terminating
subroutines, has been highly influential67. Deep RL also can
incorporate temporal abstraction68. The conventional focus on
temporal abstraction as opposed to multi-joint coordination in
hierarchical RL makes sense when one appreciates that many
canonical RL problems have comparatively low-dimensional,
discrete action spaces. In settings where control is simple, the
only way to abstract control complexity is in the time domain.
For problems with high-dimensional continuous action spaces
such as control of bodies or robotic manipulators, multi-joint
coordination can be more critical than temporal abstraction63.
But of course, longer-term motor planning and behavior selection
do require temporal abstraction.

Temporal abstraction can also be implemented via commit-
ment to a task, goal, or context. That is, agents may, for a period
of time, select a behavioral mode or “goal” and all behavior
executed could be directed in support of this goal (this overlaps
with the use of goals for modular objectives, but is distinct in
motivation). In such an implementation, the selected goal is a
form of high-level action and allows for coarser control, both
temporally and in terms of level of precision of the goal state.
Whereas “state abstraction” with respect to goals is distinct from
temporal abstraction, the two are correlated in many settings—for
example, in navigation settings spatially distal goals are usually
temporally distal as well45.

Neurobiological hierarchical motor control
As noted earlier, the renewed relevance of hierarchy in AI returns
attention to a theme that was central not only in earlier AI research,
but also in earlier neuroscience research. With this in mind, we turn
now to our survey of hierarchy as relevant in neuroscience research
on motor control, considering how the principles described in the
previous section relate to known properties of brain function. The
nervous system of higher vertebrates controls movement through a
distributed set of structures that are both anatomically and func-
tionally hierarchical (see Box 2 for overview). Of course, in very
broad terms, that the nervous system is hierarchically structured is
something that is widely accepted and touted at the level of intro-
ductory textbooks. But more specifically, as there are distinct ways
for a system to be hierarchical, we believe the principles of hier-
archical control emerging through the study of artificial systems
help us make sense of even the detailed elements of the biological
motor control system.

Our brief survey will primarily focus on the functional role of
key parts of the nervous system in the context of motor control.
Historically, this has been investigated through now classic

studies involving the removal of portions of the brain, as well as
neural recording and stimulation. This classic literature is bol-
stered by relatively more recent work that considers loss of
function in the context of inactivation and removal specifically of
motor areas. The review will proceed from lower-level motor
structures up to “higher” brain regions, and we will emphasize the
relevant principles introduced in the previous section where
appropriate.

“Lower-level” movement centers. It is an incredible feature of
the nervous system that substantial parts of the brain can be
removed while preserving significant functionality. This broadly
reflects the relevance of the hierarchical control principles of
partial autonomy as well as information factorization—brain
subsystems receive relevant partial information and can control
some movement even without higher-level inputs. The spine,
even in spinalized preparations, is responsive to somatic sensory
feedback and can act semi-autonomously from the brain to
coordinate multiple joints over time. Spinal circuits are capable of
both generating their own spatiotemporal coordination patterns,
such as “fictive” locomotion70 via central pattern generators
(CPGs) as well as modulating activity locally via sensory
reafference71,72. There is also a rich literature on spinally con-
trolled time-varying movement primitives involving coordination
of multiple joints to control to an end-point or to trace a “virtual
trajectory”73–75. While difficult to assess directly, it is believed
that these primitive spinally generated movements and patterns
are relevant for humans76, with the basic movements that support
walking behavior having an innate component that arises early in
development76,77.

At the level of the brainstem, much of our knowledge comes
from experiments involving decerebration as well as stimulation.
We know a great deal about the functional anatomy of decorticate
and decerebrate cats78. Depending on precisely where decerebra-
tion is performed, animals retain the ability to walk sponta-
neously, or only under stimulation of nuclei such as the
mesencephalic locomotor region (MLR). In intact animals, nuclei
such as MLR receive inputs from relatively higher regions
including the hypothalamus and basal ganglia that modulate
locomotor behaviors. Locomotor nuclei do more than generate
oscillatory patterns—some version of which is already handled by
the spine. Instead, these nuclei orchestrate slightly more abstract
multi-joint coordination of movement patterns and regulate
locomotion. They also incorporate cerebellum-derived signals,
somatic feedback, and inputs from other sensory systemts to help
coordinate movement.

Subcortical “mid-level” movement regulation. Where decer-
ebration removes the entire cerebrum, decortication refers to the
removal of cortex without damage to thalamus or basal ganglia,
so essentially all subcortical structures are intact, modulo atrophy
owing to removal of significant sources of inputs. Cats and dogs
with their entire cortex removed often generate superficially
normal behavior after a recovery period78. In an early review into
the behavior of decorticate cats, David McK. Rioch vividly
observed: “During the first few days following the operation,
when the animal walks into a corner, it continues to push for-
ward, butting its head against the wall. Struggling, sprinting, and
climbing reactions may occur, but escape from the corner is
accidental. Later on the animal will turn aside from an obstruc-
tion after having bumped into it, or after having merely touched it
with its whiskers or ears”79.

This description of the behavior of decorticate cats reveals a
number of critical features from the perspective of hierarchical
control: (1) cortex is not required for a significant amount of the
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behavior generated by the cat. This reflects partial autonomy as
well as amortized control, insofar, as stereotyped movements are
“habitual”. In particular, we also know that decorticate animals
with intact basal ganglia can initiate goal-directed locomotor
behavior80. The basal ganglia then appropriately modulates the
brainstem locomotor nuclei, which in turn modulate spinal
CPGs. (2) Subcortical structures can select among different
modes of coordinated behavior, possibly reflecting short-term
temporal abstraction and multi-joint coordination. Specifically, it
has been proposed that motor program selection is performed by
the basal ganglia, normally informed by inputs from cortex and
thalamus6. This is also consistent with recent work correlating
neural activity in striatum with moment-to-moment sequencing
of movement “syllables”81. (3) While sensory-guided insight is
impaired upon removal of cortex, residual sensory information

that has been processed through non-cortical pathways remains
available, reflecting appropriate information factorization. (4)
Certain forms of learning still occur, obviously mediated via non-
cortical circuitry79,82. It is believed that learning of motor
coordination is mediated by cerebellum and learning related to
action selection is mediated by basal ganglia83,84. This is
consistent with the broader literature on the basal ganglia being
involved in the learning and deployment of context-triggered
habitual actions, with this circuitry thought to implement
something like reinforcement learning85,86.

Further, complex patterns of behavior associated with motiva-
tional states are also substantially intact in decorticate animals.
For example, decorticate male rodents are even capable of
generating the complex motor repertoire required to engage in
copulatory activity and sire pups87. A fully integrative perspective

Box 2 | Review of the neuroanatomical hierarchy

The diagram depicts an abstraction of the hierarchical anatomy of the mammalian nervous system. The scheme is, insofar as possible, a consensus view
of previous hierarchical interpretations3,4,6,69, with the intent of serving as an uncontroversial foundation. A natural entry point is the motivation
regulation nuclei. The central nervous system receives information about the body via signals from the gut, level of hydration, hormones, blood sugar
levels, and other measures. Much of this information arrives via structures such as the hypothalamus, which then communicates information related to
motivational state to other parts of the brain. These signals related to basic drives (hunger, arousal, etc.) directly or indirectly will guide behavior.
Subcortical structures, such as the basal ganglia, are responsible for regulating behavioral context and modulate the activity of more foundational motor
generators in the brainstem and spine, which also receive limited sensory information via subcortical sensory structures. In parallel, motivational
(“drive”) information and sensory information are processed in cortical areas which in turn modulate behavioral context and ultimately allow for the use
of more processed information to inform motor coordination via motor cortical areas.
A common motif across specific hierarchical models that have been proposed is the presence of multiple routes of information transmission and motor
coordination. In terms of sensory input, dual sensory input pathways transmit information along a subcortical pathway as well as a cortical pathway4.
Similarly, there are direct subcortical pathways from motivational centers (or what has been referred to as the limbic system) to brainstem nuclei that
activate motor patterns, as well as indirect routes, either via the basal ganglia or through frontal cortices3. This multi-pathway motif structurally reflects
some of hierarchical control principles, with multiple layers to the system being partially autonomous, each having access to partial and differently
processed information.
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should aim to include drive assessment and selection of
motivational-behavioral contexts as part of the hierarchical
control system. In particular, the hypothalamus is involved in
regulating motivational state, and stimulation of hypothalamic
sites produces the motivation to engage in certain behaviors88,89.
Contemporary research continues to corroborate the perspective
that evoked behaviors mediated by discrete hypothalamic regions
reflect specific goals or motivated states90, with certain hypotha-
lamic nuclei more specifically implicated in aggressive
responses91 as well as sexual behaviors92. Our inclusion of drive
regulation as part of hierarchical control connects with historical
characterizations of hypothalamus as related to movement
regulation93 or hierarchical interpretations that place hypothala-
mus atop the motor control hierarchy4. These motivated states
signal to other areas to initiate behaviors suited to the satisfaction
of the motivated state. And consistent with partial autonomy and
the structured information factorization in the nervous system,
there seems to be a direct motivation-driven subcortical system
that handles coarse behavioral selection, as well as a secondary
pathway that is frontally mediated and refines motor objectives or
goals on a longer horizon3.

Cortical “high-level” control of movement. Despite the fact that
many decorticate mammals show superficially normal behavior,
clear deficits become apparent upon closer inspection, and these
deficits are more dramatic in primates. This was initially a source
of confusion for David Ferrier and Friedrich Goltz in the late 19th
century. Although Goltz and others could produce non-primate
decorticates that showed the kinds of behavior described in the
preceding sections, Ferrier found significant impairments
amounting to partial paralysis when only motor cortex was
removed in a monkey94. Convergent evidence comes from
humans in clinical cases involving focal motor cortical damage
owing to injury; strokes have a substantial affect, resulting in
transient partial paralysis, followed by considerable recovery,
though without recovery of fine motor skills94. Although there is
still uncertainty about the role of motor cortex95, at least as early
as Bernstein, it has been appreciated that increasingly sophisti-
cated organisms need elaborated, higher-level motor structures to
solve general motor challenges; these elaborations enable the
generation of a broader repertoire of diverse motor responses and
support the performance of extemporaneous, unrehearsed
movements5. This flexible higher-level functionality or motor
“wit” is what Bernstein termed “dexterity” and defined as:
“finding a motor solution for any situation and in any condi-
tion”96. To facilitate this high-level function, Bernstein observed
that higher-level structures are well integrated with telereceptors
(i.e., “long-range” sensors that detect olfactory, visual, and audi-
tory signals); on the basis of evolutionary and anatomical evi-
dence, Bernstein argued that this factorized sensory stream
informs high-level structures that coordinate or override stereo-
typed and automatic movements generated by lower-level
structures5,96.

The settings in which higher-level structures are most relevant
depend upon the specific behaviors for which the animal is
adapted. For example, dogs and cats do not execute dexterous
finger movements, whereas non-human primates, humans, and
even rodents do97. And increasingly for animals that reach and
exhibit dexterous finger control, direct cortical control of upper-
limb extremities allows closer integration of visual and tactile
information for hand-eye (and finger) coordination. To support
sensory-guided fine motor control, which is required for
dexterous manipulation, non-human primates and humans have
more substantial direct projections from cortex to spine80,98. The
anatomical variation continues even among primates, with fine

motor control by humans even surpassing other primates99. More
broadly, the general role for high-level structures in mediating
sensory-rich control may be relevant in other niches; for example,
legged traversal of precarious terrains, as performed by a
mountain goat navigating small footholds, is also obviously
dependent upon visual guidance for foot placement.

Recent studies involving targeted inactivation or removal of
motor cortex provide evidence that supports this view that cortex
refines movement, primarily in contexts involving precise
sensory-guided control or dynamic motor improvisation. In
rodents, the production of grasping behaviors has been localized
to the rostral forelimb area (RFA), and long-duration intracortical
microstimulation can generate reaching and grasping beha-
viors100 (paralleling similar results in monkeys101). Experimen-
ters have demonstrated that transient, reversible, and specific
deficits in pellet-grasping ability are produced in behaving rats
when RFA is silenced via cooling102. In other experiments,
rodents traversed a simple “obstacle course” with infrequent
dynamic perturbations94. Although rodents with bilateral motor
cortical lesions showed no significant deficits in navigating stable
terrains, in the presence of dynamic perturbations, lesioned
animals were unable to rapidly adapt their movements. The
sensory-guided element of motor cortical control was perhaps
most directly tested in experiments making use of a virtual
environment that allows for the experimental dissociation of
motor control and sensory feedback—researchers found that in
response to experimental perturbations of the visual environ-
ment, the local cortical microcircuit in motor cortex was involved
in producing corrective motor responses to situations where
the actual sensory consequences did not match predictions103.
Taken together, motor cortex appears required for fine-scale,
dexterous motor control, especially involving sensory guidance,
but motor cortex may not be required for stereotyped
(autonomous and amortized) movements, consistent with pre-
vious interpretations94,103.

In yet other experiments involving rodents, complex, but non-
dexterous, stereotyped motor trajectories that an animal learned
in order to solve a task were preserved when motor cortex was
bilaterally removed104. However, learning was shown to be
dependent on the presence of motor cortex, which is interpreted
as evidence for initial production of the movement being
mediated by cortex, followed by tutoring of subcortical regions104,
seemingly implementing a form of amortized control. However,
the science of where amortized motor representations are stored
(c.f. “automaticity”) remains unsettled as other findings suggest
cortex may store certain learned patterns after being driven by
exploration generated subcortically105.

The alternative to control being amortized, regardless of the
neural locus, is that every movement is planned from scratch each
time any movement is executed. It has been argued that planning
or optimization occur via preparatory activity preceding move-
ment, both for reaching behavior106–108 and in the context of
decision-making tasks109–111. Although it remains an open
question how the nervous system balances pre-movement
planning with amortized control in ethological settings, we
expect planning to be most beneficial for control of idiosyncratic
movements or in settings in which control must be precisely
micro-managed by sensory feedback. Insofar, as experiments
which study preparatory activity employ paradigms in which
animals engage in highly stereotyped behavior, it is difficult to
know how to relate preparatory processes in these settings to
ethologically relevant motor planning.

Two of the principles of hierarchical control that have not
featured as prominently in this short review, despite being
important for cortical function, are learning by modular
objectives and temporal abstraction. It is beyond the present
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scope to review how the nervous system learns to extract
structured information from sensory signals or encodes memories
—these processes undoubtedly are governed by diverse learning
signals (i.e., modular objectives). We also will not cover the
various frontal structures that are even “higher” than the motor
cortices. These structures are involved in planning and reasoning
processes, which may result in the specification of goals; temporal
abstraction certainly features prominently112,113.

Shared challenges for biological and synthetic motor control
As the preceding section articulates, many of the interest areas
pursued in recent AI work on hierarchical motor control find
corresponding relevance in neuroscience. This makes evident a
current opportunity for synergistic exchange between the two
fields. We also emphasize that hierarchical control in AI is far
from solved—despite significant progress in artificial intelligence
research over the past years, there remain meaningful challenges
in dealing with rich sensation, a broader range of tasks, rapid
adaptation or improvisation, as well as object interaction and tool
use. However, we are optimistic that we can make progress on
these outstanding challenges. Towards this end, we highlight
research themes that already have active interest, but which we
believe deserve further attention.

Towards full-scale body control. Theories of biological motor
control must actually confront the problem of controlling a full-
scale body in an environment for a range of tasks—we should aim
to build models that both reflect the nervous system and function
as controllers. For single-behaviors, motor control in simulation
has already afforded a constructive setting in which to define
biologically informed models, and various interesting research
has been undertaken towards control of bodies, often with an
emphasis on biomechanics and muscle-level control114. Previous
efforts have generally considered control of certain movement
behaviors, such swimming in lamprey115, control of locomotion
in cats116 or humans117, as well as swimming and walking in
salamander118. Efforts by Delp and colleagues have pushed to
model biomechanical control of musculotendon-driven mod-
els119, including tendon-driven simulations of upper120 and lower
limbs121; these models can be used to analyze specific movements
and prepare surgical interventions. Despite the aforementioned
efforts, which begin to demonstrate the utility of physics-based
simulation for studying neural control, building controllers that
capture meaningful diversity of behavior is a tremendous
opportunity that remains, at present, underexplored.

To produce controllers that capture the rich behavioral
diversity of biological organisms, two broad approaches are
possible—train the system to solve diverse tasks or produce data-
driven generative models of observed behavior. With task
modeling, we acknowledge that real animals can solve a wide
range of tasks efficiently, and we produce diverse behavior
through defining tasks and learning algorithms. Intriguing forays
have been made within neuroscience at handling multiple
cognitive tasks122,123, albeit with the role of motor control quite
restricted. The complementary approach is to produce data-
driven generative models of animal behavior; specifically, this
involves control of a physically simulated body in an environment
with an aim of matching empirically observed reference behavior.
As highlighted previously in this review, there has been some
research into hierarchical control schemes for which animal or
human motion capture is leveraged to produce a low-level
movement controller40,42–44,124–126. A related idea that is more
familiar within neuroscience involves building descriptive models
of the behavior of an animal127–129, but fewer efforts have so far

aimed to combine descriptive models of animal behavior with
physically realistic control of movement.

The structure of inter-region communication. At present, we do
not fully understand what coding schemes brain regions use to
communicate, and we are similarly uncertain how to specify
information flow in synthetic hierarchical motor control systems.
The default scheme for communication between layers or mod-
ules of learning systems is for the output of one layer to serve as
an input to another layer. However, there are still various open
questions—for example, should communication follow prescribed
semantics? Learning systems will not necessarily result in inter-
pretable inter-layer communication, unless structure emerges
through the learning process or is encouraged explicitly. A second
question is how, mechanistically, the outputs of one system
should modulate another—whether activations from one layer
should serve as simple inputs or if they should nonlinearly
modulate their target, such as via multiplicative gating (e.g., see
the “Transformer”130 or FiLM layer131). Yet another question
concerns the level of resolution of the signals sent between
regions—what is the balance between communicating abstract
goals that only partially specify behavior versus communicating
rich instructions that precisely tell the lower-level system what to
do? Too intense micromanagement makes the function of a low-
level system redundant, yet in certain cases it may be useful for a
high-level system to entirely override low-level behavior.

To ground these issues in neuroscience, we can consider a
specific debate in the field—Friston132 identifies a key difference
between classes of proposed hierarchies as having to do with the
semantics of signals sent from higher-level controllers to lower-
level controllers, noting that “In active inference, descending
signals are in themselves predictions of sensory consequences.”
As an alternative, Todorov et al.63 advocated for the interface
between the higher-level and lower-level controllers to be
engineered and reflect insight into an appropriate set of variables
well suited to the range of behavior. Although it is not yet clear
which of these proposals, if either, corresponds to biology, the
general point is clear—hierarchical systems must employ a
language or code at the interface between layers or regions. Here,
we do not propose to resolve this issue, but instead suggest that
this area presents an opportunity for neuroscience and AI efforts
to collaborate in proposing communication schemes and
evaluating which are effective.

Ethological motor learning and imitation. Animals and humans
efficiently learn motor behaviors throughout life via active
exploration, imitation of conspecifics, and subsequent refinement
of skills. Although birdsong is a narrow behavior relative to
primate motor control, it serves to illustrate some of the multiple
requirements—evolutionarily initialized motor variability (“bab-
bling”) in juvenile songbirds is shaped into skilled behavior by a
process of vocal imitation learning followed by self-directed
rehearsal133–135. More broadly and across species, intrinsically
motivated active exploration is required to learn both about the
environment as well as how self-generated behavior can affect
the environment136. In humans, imitation-based learning begins
with observing the movements of others, but can involve infer-
ence of the goals of the demonstrator as well as intelligent
exploration to imitate their movements or goal-directed activ-
ity137. Further, it is thought that non-verbal pedagogical behavior
is an evolutionary adaptation138, and related imitative behavior
may have antecedents in the gestural communication already
present in some other species139.

At present, the conventional forms of artificial “imitation
learning” do not yet match the biological inspiration.
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Contemporary approaches require that demonstrations are
essentially performed on the body of the student (e.g., via
teleoperation), granting first-person access to demonstrated
behavior. Learning from this information is referred to as
behavioral cloning140, and usually is implemented as a regression
from demonstrated states to actions141,142. But recent advances
take steps toward more natural imitation. For example,
adversarial imitation143 can scale to humanoids even without
access to actions124, possibly from only allocentric, video
demonstrations144. Another particularly exciting and naturalistic
development is “one-shot imitation learning”, where, after
training, the system is presented with a novel demonstration
and immediately attempts to reproduce that demonstrated
behavior145; this style of approach has also been employed for
humanoids44,146. As an intermediate representation that supports
one-shot observation and imitation of demonstrations, systems
may possess an embedding space that simultaneously encodes the
demonstrated behavior and reflects what the agent will do.
Conceptually, this is similar to the representation identified for
mirror neurons147.

Concluding remarks
In this review, we have attempted to reflect upon the principles of
motor control in biological nervous systems as well as ideas for
designing motor control architectures for synthetic systems. Both
neuroscience and artificial intelligence research have clearly
benefited from taking the perspective that behavior should be
optimized to solve tasks. But overemphasis on isolated, straight-
forward motor control tasks obscures meaningful challenges.
Recent work in AI involving efforts to scale motor control to
richer and more diverse behaviors, has catalyzed a shift in focus
towards hierarchical systems capable of handling a diversity of
tasks. This trend points to themes that were central in earlier eras
of both artificial intelligence and neurobiological motor control
research. Moving forward, we propose that effort should be
focused on building models that can generate the flexibility and
breadth of motor behavior produced by animals. Once embraced,
this perspective will accelerate efforts to reverse engineer the
motor system.
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