
Published as a conference paper at ICLR 2018

LEARNING TO REPRESENT PROGRAMS WITH GRAPHS

Miltiadis Allamanis

Microsoft Research
Cambridge, UK
miallama@microsoft.com

Marc Brockschmidt

Microsoft Research
Cambridge, UK
mabrocks@microsoft.com

Mahmoud Khademi
⇤

Simon Fraser University
Burnaby, BC, Canada
mkhademi@sfu.ca

ABSTRACT

Learning tasks on source code (i.e., formal languages) have been considered re-
cently, but most work has tried to transfer natural language methods and does
not capitalize on the unique opportunities offered by code’s known sematics. For
example, long-range dependencies induced by using the same variable or function
in distant locations are often not considered. We propose to use graphs to represent
both the syntactic and semantic structure of code and use graph-based deep learning
methods to learn to reason over program structures.
In this work, we present how to construct graphs from source code and how to
scale Gated Graph Neural Networks training to such large graphs. We evaluate
our method on two tasks: VARNAMING, in which a network attempts to predict
the name of a variable given its usage, and VARMISUSE, in which the network
learns to reason about selecting the correct variable that should be used at a given
program location. Our comparison to methods that use less structured program
representations shows the advantages of modeling known structure, and suggests
that our models learn to infer meaningful names and to solve the VARMISUSE
task in many cases. Additionally, our testing showed that VARMISUSE identifies a
number of bugs in mature open-source projects.

1 INTRODUCTION

The advent of large repositories of source code as well as scalable machine learning methods naturally
leads to the idea of “big code”, i.e., largely unsupervised methods that support software engineers by
generalizing from existing source code (Allamanis et al., 2017). Currently, existing deep learning
models of source code capture its shallow, textual structure, e.g. as a sequence of tokens (Hindle
et al., 2012; Raychev et al., 2014; Allamanis et al., 2016), as parse trees (Maddison & Tarlow, 2014;
Bielik et al., 2016), or as a flat dependency networks of variables (Raychev et al., 2015). Such models
miss out on the opportunity to capitalize on the rich and well-defined semantics of source code. In
this work, we take a step to alleviate this by including two additional signal sources in source code:
data flow and type hierarchies. We do this by encoding programs as graphs, in which edges represent
syntactic relationships (e.g. “token before/after”) as well as semantic relationships (“variable last
used/written here”, “formal parameter for argument is called stream”, etc.). Our key insight is
that exposing these semantics explicitly as structured input to a machine learning model lessens the
requirements on amounts of training data, model capacity and training regime and allows us to solve
tasks that are beyond the current state of the art.

We explore two tasks to illustrate the advantages of exposing more semantic structure of programs.
First, we consider the VARNAMING task (Allamanis et al., 2014; Raychev et al., 2015), in which
given some source code, the “correct” variable name is inferred as a sequence of subtokens. This
requires some understanding of how a variable is used, i.e., requires reasoning about lines of code far

⇤Work done as an intern in Microsoft Research, Cambridge, UK.

1

Tom Dean

Tom Dean

Tom Dean

Published as a conference paper at ICLR 2018

var clazz=classTypes["Root"].Single() as JsonCodeGenerator.ClassType;
Assert.NotNull(clazz);

var first=classTypes["RecClass"].Single() as JsonCodeGenerator.ClassType;
Assert.NotNull(clazz);

Assert.Equal("string", first.Properties["Name"].Name);
Assert.False(clazz.Properties["Name"].IsArray);

Figure 1: A snippet of a detected bug in RavenDB an open-source C# project. The code has been
slightly simplified. Our model detects correctly that the variable used in the highlighted (yellow) slot
is incorrect. Instead, first should have been placed at the slot. We reported this problem which
was fixed in PR 4138.

apart in the source file. Secondly, we introduce the variable misuse prediction task (VARMISUSE), in
which the network aims to infer which variable should be used in a program location. To illustrate the
task, Figure 1 shows a slightly simplified snippet of a bug our model detected in a popular open-source
project. Specifically, instead of the variable clazz, variable first should have been used in the
yellow highlighted slot. Existing static analysis methods cannot detect such issues, even though a
software engineer would easily identify this as an error from experience.

To achieve high accuracy on these tasks, we need to learn representations of program semantics.
For both tasks, we need to learn the semantic role of a variable (e.g., “is it a counter?”, “is it a
filename?”). Additionally, for VARMISUSE, learning variable usage semantics (e.g., “a filename
is needed here”) is required. This “fill the blank element” task is related to methods for learning
distributed representations of natural language words, such as Word2Vec (Mikolov et al., 2013) and
GLoVe (Pennington et al., 2014). However, we can learn from a much richer structure such as data
flow information. This work is a step towards learning program representations, and we expect them
to be valuable in a wide range of other tasks, such as code completion (“this is the variable you are
looking for”) and more advanced bug finding (“you should lock before using this object”).

To summarize, our contributions are: (i) We define the VARMISUSE task as a challenge for machine
learning modeling of source code, that requires to learn (some) semantics of programs (cf. section 3).
(ii) We present deep learning models for solving the VARNAMING and VARMISUSE tasks by modeling
the code’s graph structure and learning program representations over those graphs (cf. section 4).
(iii) We evaluate our models on a large dataset of 2.9 million lines of real-world source code, showing
that our best model achieves 32.9% accuracy on the VARNAMING task and 85.5% accuracy on the
VARMISUSE task, beating simpler baselines (cf. section 5). (iv) We document practical relevance of
VARMISUSE by summarizing some bugs that we found in mature open-source software projects (cf.

subsection 5.3). Our implementation of graph neural networks (on a simpler task) can be found at
https://github.com/Microsoft/gated-graph-neural-network-samples and
the dataset can be found at https://aka.ms/iclr18-prog-graphs-dataset.

2 RELATED WORK

Our work builds upon the recent field of using machine learning for source code artifacts (Allamanis
et al., 2017). For example, Hindle et al. (2012); Bhoopchand et al. (2016) model the code as a
sequence of tokens, while Maddison & Tarlow (2014); Raychev et al. (2016) model the syntax tree
structure of code. All works on language models of code find that predicting variable and method
identifiers is one of biggest challenges in the task.

Closest to our work is the work of Allamanis et al. (2015) who learn distributed representations of
variables using all their usages to predict their names. However, they do not use data flow information
and we are not aware of any model that does so. Raychev et al. (2015) and Bichsel et al. (2016) use
conditional random fields to model a variety of relationships between variables, AST elements and
types to predict variable names and types (resp. to deobfuscate Android apps), but without considering
the flow of data explicitly. In these works, all variable usages are deterministically known beforehand
(as the code is complete and remains unmodified), as in Allamanis et al. (2014; 2015).

2

https://github.com/ravendb/ravendb/pull/4138
https://github.com/Microsoft/gated-graph-neural-network-samples
https://aka.ms/iclr18-prog-graphs-dataset
Tom Dean

Tom Dean

Published as a conference paper at ICLR 2018

Our work is remotely related to work on program synthesis using sketches (Solar-Lezama, 2008)
and automated code transplantation (Barr et al., 2015). However, these approaches require a set of
specifications (e.g. input-output examples, test suites) to complete the gaps, rather than statistics
learned from big code. These approaches can be thought as complementary to ours, since we learn
to statistically complete the gaps without any need for specifications, by learning common variable
usage patterns from code.

Neural networks on graphs (Gori et al., 2005; Li et al., 2015; Defferrard et al., 2016; Kipf & Welling,
2016; Gilmer et al., 2017) adapt a variety of deep learning methods to graph-structured input. They
have been used in a series of applications, such as link prediction and classification (Grover &
Leskovec, 2016) and semantic role labeling in NLP (Marcheggiani & Titov, 2017). Somewhat
related to source code is the work of Wang et al. (2017) who learn graph-based representations of
mathematical formulas for premise selection in theorem proving.

3 THE VARMISUSE TASK

Detecting variable misuses in code is a task that requires understanding and reasoning about program
semantics. To successfully tackle the task one needs to infer the role and function of the program
elements and understand how they relate. For example, given a program such as Fig. 1, the task is
to automatically detect that the marked use of clazz is a mistake and that first should be used
instead. While this task resembles standard code completion, it differs significantly in its scope and
purpose, by considering only variable identifiers and a mostly complete program.

Task Description We view a source code file as a sequence of tokens t0 . . . tN = T , in which
some tokens t�0 , t�1 . . . are variables. Furthermore, let Vt ⇢ V refer to the set of all type-correct
variables in scope at the location of t, i.e., those variables that can be used at t without raising a
compiler error. We call a token tok� where we want to predict the correct variable usage a slot. We
define a separate task for each slot t�: Given t0 . . . t��1 and t�+1, . . . , tN , correctly select t� from
Vt� . For training and evaluation purposes, a correct solution is one that simply matches the ground
truth, but note that in practice, several possible assignments could be considered correct (i.e., when
several variables refer to the same value in memory).

4 MODEL: PROGRAMS AS GRAPHS

In this section, we discuss how to transform program source code into program graphs and learn
representations over them. These program graphs not only encode the program text but also the
semantic information that can be obtained using standard compiler tools.

Gated Graph Neural Networks Our work builds on Gated Graph Neural Networks (Li et al.,
2015) (GGNN) and we summarize them here. A graph G = (V,E ,X) is composed of a set of nodes
V , node features X , and a list of directed edge sets E = (E1, . . . , EK) where K is the number of
edge types. We annotate each v 2 V with a real-valued vector x(v) 2 RD representing the features
of the node (e.g., the embedding of a string label of that node).

We associate every node v with a state vector h(v), initialized from the node label x(v). The sizes of
the state vector and feature vector are typically the same, but we can use larger state vectors through
padding of node features. To propagate information throughout the graph, “messages” of type k
are sent from each v to its neighbors, where each message is computed from its current state vector
as m(v)

k = fk(h(v)). Here, fk can be an arbitrary function; we choose a linear layer in our case.
By computing messages for all graph edges at the same time, all states can be updated at the same
time. In particular, a new state for a node v is computed by aggregating all incoming messages as
m̃(v) = g({m(u)

k | there is an edge of type k from u to v}). g is an aggregation function, which we
implement as elementwise summation. Given the aggregated message m̃(v) and the current state
vector h(v) of node v, the state of the next time step h0(v) is computed as h0(v) = GRU(m̃(v),h(v)),
where GRU is the recurrent cell function of gated recurrent unit (GRU) (Cho et al., 2014). The

3

Published as a conference paper at ICLR 2018

ExpressionStatement

InvocationExpression

MemberAccessExpression ArgumentList

Assert . NotNull (. . .

(a) Simplified syntax graph for line 2 of Fig. 1, where
blue rounded boxes are syntax nodes, black rectan-
gular boxes syntax tokens, blue edges Child edges
and double black edges NextToken edges.

x
1

y
2

x
3

x
4

x
5

y
6

(b) Data flow edges for (x 1,y 2) = Foo();
while (x 3 > 0) x 4 = x 5 + y 6 (indices
added for clarity), with red dotted LastUse edges,
green dashed LastWrite edges and dashdotted
purple ComputedFrom edges.

Figure 2: Examples of graph edges used in program representation.

dynamics defined by the above equations are repeated for a fixed number of time steps. Then, we use
the state vectors from the last time step as the node representations.1

Program Graphs We represent program source code as graphs and use different edge types to
model syntactic and semantic relationships between different tokens. The backbone of a program
graph is the program’s abstract syntax tree (AST), consisting of syntax nodes (corresponding to non-
terminals in the programming language’s grammar) and syntax tokens (corresponding to terminals).
We label syntax nodes with the name of the nonterminal from the program’s grammar, whereas
syntax tokens are labeled with the string that they represent. We use Child edges to connect nodes
according to the AST. As this does not induce an order on children of a syntax node, we additionally
add NextToken edges connecting each syntax token to its successor. An example of this is shown in
Fig. 2a.

To capture the flow of control and data through a program, we add additional edges connecting
different uses and updates of syntax tokens corresponding to variables. For such a token v, let DR(v)
be the set of syntax tokens at which the variable could have been used last. This set may contain
several nodes (for example, when using a variable after a conditional in which it was used in both
branches), and even syntax tokens that follow in the program code (in the case of loops). Similarly,
let DW (v) be the set of syntax tokens at which the variable was last written to. Using these, we
add LastRead (resp. LastWrite) edges connecting v to all elements of DR(v) (resp. DW (v)).
Additionally, whenever we observe an assignment v = expr , we connect v to all variable tokens
occurring in expr using ComputedFrom edges. An example of such semantic edges is shown in
Fig. 2b.

We extend the graph to chain all uses of the same variable using LastLexicalUse edges (independent
of data flow, i.e., in if (...) { ... v ...} else { ... v ...}, we link the two oc-
currences of v). We also connect return tokens to the method declaration using ReturnsTo edges
(this creates a “shortcut” to its name and type). Inspired by Rice et al. (2017), we connect arguments
in method calls to the formal parameters that they are matched to with FormalArgName edges,
i.e., if we observe a call Foo(bar) and a method declaration Foo(InputStream stream),
we connect the bar token to the stream token. Finally, we connect every token corresponding
to a variable to enclosing guard expressions that use the variable with GuardedBy and Guarded-
ByNegation edges. For example, in if (x > y) { ... x ...} else { ... y ...},
we add a GuardedBy edge from x (resp. a GuardedByNegation edge from y) to the AST node
corresponding to x > y.

Finally, for all types of edges we introduce their respective backwards edges (transposing the
adjacency matrix), doubling the number of edges and edge types. Backwards edges help with
propagating information faster across the GGNN and make the model more expressive.

1Graph Convolutional Networks (GCN) (Kipf & Welling, 2016; Schlichtkrull et al., 2017) would be a simpler
replacement for GGNNs. They correspond to the special case of GGNNs in which no gated recurrent units are
used for state updates and the number of propagation steps per GGNN layer is fixed to 1. Instead, several layers
are used. In our experiments, GCNs generalized less well than GGNNs.

4

Published as a conference paper at ICLR 2018

Leveraging Variable Type Information We assume a statically typed language and that the
source code can be compiled, and thus each variable has a (known) type ⌧(v). To use it, we define
a learnable embedding function r(⌧) for known types and additionally define an “UNKTYPE” for
all unknown/unrepresented types. We also leverage the rich type hierarchy that is available in many
object-oriented languages. For this, we map a variable’s type ⌧(v) to the set of its supertypes, i.e.

⌧⇤(v) = {⌧ : ⌧(v) implements type ⌧} [{⌧(v)}. We then compute the type representation r⇤(v)
of a variable v as the element-wise maximum of {r(⌧) : ⌧ 2 ⌧⇤(v)}. We chose the maximum
here, as it is a natural pooling operation for representing partial ordering relations (such as type
lattices). Using all types in ⌧⇤(v) allows us to generalize to unseen types that implement common
supertypes or interfaces. For example, List<K> has multiple concrete types (e.g. List<int>,
List<string>). Nevertheless, these types implement a common interface (IList) and share
common characteristics. During training, we randomly select a non-empty subset of ⌧⇤(v) which
ensures training of all known types in the lattice. This acts both like a dropout mechanism and allows
us to learn a good representation for all types in the type lattice.

Initial Node Representation To compute the initial node state, we combine information from the
textual representation of the token and its type. Concretely, we split the name of a node representing
a token into subtokens (e.g. classTypes will be split into two subtokens class and types) on
camelCase and pascal_case. We then average the embeddings of all subtokens to retrieve
an embedding for the node name. Finally, we concatenate the learned type representation r⇤(v),
computed as discussed earlier, with the node name representation, and pass it through a linear layer
to obtain the initial representations for each node in the graph.

Programs Graphs for VARNAMING Given a program and an existing variable v, we build a
program graph as discussed above and then replace the variable name in all corresponding variable
tokens by a special <SLOT> token. To predict a name, we use the initial node labels computed
as the concatenation of learnable token embeddings and type embeddings as discussed above, run
GGNN propagation for 8 time steps2 and then compute a variable usage representation by averaging
the representations for all <SLOT> tokens. This representation is then used as the initial state
of a one-layer GRU, which predicts the target name as a sequence of subtokens (e.g., the name
inputStreamBuffer is treated as the sequence [input, stream, buffer]). We train this
graph2seq architecture using a maximum likelihood objective. In section 5, we report the accuracy
for predicting the exact name and the F1 score for predicting its subtokens.

Program Graphs for VARMISUSE To model VARMISUSE with program graphs we need to
modify the graph. First, to compute a context representation c(t) for a slot t where we want to
predict the used variable, we insert a new node v<SLOT> at the position of t, corresponding to a “hole”
at this point, and connect it to the remaining graph using all applicable edges that do not depend
on the chosen variable at the slot (i.e., everything but LastUse, LastWrite, LastLexicalUse, and
GuardedBy edges). Then, to compute the usage representation u(t, v) of each candidate variable
v at the target slot, we insert a “candidate” node vt,v for all v in Vt, and connect it to the graph by
inserting the LastUse, LastWrite and LastLexicalUse edges that would be used if the variable were
to be used at this slot. Each of these candidate nodes represents the speculative placement of the
variable within the scope.

Using the initial node representations, concatenated with an extra bit that is set to one for the candidate
nodes vt,v, we run GGNN propagation for 8 time steps.2 The context and usage representation are
then the final node states of the nodes, i.e., c(t) = h(v<SLOT>) and u(t, v) = h(vt,v). Finally, the correct
variable usage at the location is computed as argmaxv W [c(t),u(t, v)] where W is a linear layer
that uses the concatenation of c(t) and u(t, v). We train using a max-margin objective.

4.1 IMPLEMENTATION

Using GGNNs for sets of large, diverse graphs requires some engineering effort, as efficient batching
is hard in the presence of diverse shapes. An important observation is that large graphs are normally
very sparse, and thus a representation of edges as an adjacency list would usually be advantageous
to reduce memory consumption. In our case, this can be easily implemented using a sparse tensor

2We found fewer steps to be insufficient for good results and more propagation steps to not help substantially.

5

Published as a conference paper at ICLR 2018

representation, allowing large batch sizes that exploit the parallelism of modern GPUs efficiently.
A second key insight is to represent a batch of graphs as one large graph with many disconnected
components. This just requires appropriate pre-processing to make node identities unique. As this
makes batch construction somewhat CPU-intensive, we found it useful to prepare minibatches on
a separate thread. Our TensorFlow (Abadi et al., 2016) implementation scales to 55 graphs per
second during training and 219 graphs per second during test-time using a single NVidia GeForce
GTX Titan X with graphs having on average 2,228 (median 936) nodes and 8,350 (median 3,274)
edges and 8 GGNN unrolling iterations, all 20 edge types (forward and backward edges for 10
original edge types) and the size of the hidden layer set to 64. The number of types of edges
in the GGNN contributes proportionally to the running time. For example, a GGNN run for our
ablation study using only the two most common edge types (NextToken, Child) achieves 105
graphs/second during training and 419 graphs/second at test time with the same hyperparameters.
Our (generic) implementation of GGNNs is available at https://github.com/Microsoft/
gated-graph-neural-network-samples, using a simpler demonstration task.

5 EVALUATION

Dataset We collected a dataset for the VARMISUSE task from open source C# projects on GitHub.
To select projects, we picked the top-starred (non-fork) projects in GitHub. We then filtered out
projects that we could not (easily) compile in full using Roslyn3, as we require a compilation to
extract precise type information for the code (including those types present in external libraries). Our
final dataset contains 29 projects from a diverse set of domains (compilers, databases, . . .) with about
2.9 million non-empty lines of code. A full table is shown in Appendix D.

For the task of detecting variable misuses, we collect data from all projects by selecting all variable
usage locations, filtering out variable declarations, where at least one other type-compatible replace-
ment variable is in scope. The task is then to infer the correct variable that originally existed in that
location. Thus, by construction there is at least one type-correct replacement variable, i.e. picking it
would not raise an error during type checking. In our test datasets, at each slot there are on average
3.8 type-correct alternative variables (median 3, � = 2.6).

From our dataset, we selected two projects as our development set. From the rest of the projects, we
selected three projects for UNSEENPROJTEST to allow testing on projects with completely unknown
structure and types. We split the remaining 23 projects into train/validation/test sets in the proportion
60-10-30, splitting along files (i.e., all examples from one source file are in the same set). We call the
test set obtained like this SEENPROJTEST.

Baselines For VARMISUSE, we consider two bidirectional RNN-based baselines. The local model
(LOC) is a simple two-layer bidirectional GRU run over the tokens before and after the target location.
For this baseline, c(t) is set to the slot representation computed by the RNN, and the usage context of
each variable u(t, v) is the embedding of the name and type of the variable, computed in the same
way as the initial node labels in the GGNN. This baseline allows us to evaluate how important the
usage context information is for this task. The flat dataflow model (AVGBIRNN) is an extension to
LOC, where the usage representation u(t, v) is computed using another two-layer bidirectional RNN
run over the tokens before/after each usage, and then averaging over the computed representations
at the variable token v. The local context, c(t), is identical to LOC. AVGBIRNN is a significantly
stronger baseline that already takes some structural information into account, as the averaging over all
variables usages helps with long-range dependencies. Both models pick the variable that maximizes
c(t)Tu(t, v).

For VARNAMING, we replace LOC by AVGLBL, which uses a log-bilinear model for 4 left and 4
right context tokens of each variable usage, and then averages over these context representations (this
corresponds to the model in Allamanis et al. (2015)). We also test AVGBIRNN on VARNAMING,
which essentially replaces the log-bilinear context model by a bidirectional RNN.

6

https://github.com/Microsoft/gated-graph-neural-network-samples
https://github.com/Microsoft/gated-graph-neural-network-samples

Published as a conference paper at ICLR 2018

Table 1: Evaluation of models. SEENPROJTEST refers to the test set containing projects that have
files in the training set, UNSEENPROJTEST refers to projects that have no files in the training data.
Results averaged over two runs.

SEENPROJTEST UNSEENPROJTEST
LOC AVGLBL AVGBIRNN GGNN LOC AVGLBL AVGBIRNN GGNN

VARMISUSE

Accuracy (%) 50.0 — 73.7 85.5 28.9 — 60.2 78.2

PR AUC 0.788 — 0.941 0.980 0.611 — 0.895 0.958

VARNAMING

Accuracy (%) — 36.1 42.9 53.6 — 22.7 23.4 44.0

F1 (%) — 44.0 50.1 65.8 — 30.6 32.0 62.0

Table 2: Ablation study for the GGNN model on SEENPROJTEST for the two tasks.
Accuracy (%)

Ablation Description VARMISUSE VARNAMING

Standard Model (reported in Table 1) 85.5 53.6

Only NextToken, Child, LastUse, LastWrite edges 80.6 31.2
Only semantic edges (all but NextToken, Child) 78.4 52.9
Only syntax edges (NextToken, Child) 55.3 34.3

Node Labels: Tokens instead of subtokens 85.6 34.5
Node Labels: Disabled 84.3 31.8

5.1 QUANTITATIVE EVALUATION

Table 1 shows the evaluation results of the models for both tasks.4 As LOC captures very little
information, it performs relatively badly. AVGLBL and AVGBIRNN, which capture information
from many variable usage sites, but do not explicitly encode the rich structure of the problem, still lag
behind the GGNN by a wide margin. The performance difference is larger for VARMISUSE, since
the structure and the semantics of code are far more important within this setting.

Generalization to new projects Generalizing across a diverse set of source code projects with
different domains is an important challenge in machine learning. We repeat the evaluation using the
UNSEENPROJTEST set stemming from projects that have no files in the training set. The right side of
Table 1 shows that our models still achieve good performance, although it is slightly lower compared
to SEENPROJTEST. This is expected since the type lattice is mostly unknown in UNSEENPROJTEST.

We believe that the dominant problem in applying a trained model to an unknown project (i.e.,
domain) is the fact that its type hierarchy is unknown and the used vocabulary (e.g. in variables,
method and class names, etc.) can differ substantially.

Ablation Study To study the effect of some of the design choices for our models, we have run
some additional experiments and show their results in Table 2. First, we varied the edges used in
the program graph. We find that restricting the model to syntactic information has a large impact
on performance on both tasks, whereas restricting it to semantic edges seems to mostly impact
performance on VARMISUSE. Similarly, the ComputedFrom, FormalArgName and ReturnsTo
edges give a small boost on VARMISUSE, but greatly improve performance on VARNAMING. As
evidenced by the experiments with the node label representation, syntax node and token names seem
to matter little for VARMISUSE, but naturally have a great impact on VARNAMING.

5.2 QUALITATIVE EVALUATION

Figure 3 illustrates the predictions that GGNN makes on a sample test snippet. The snippet recursively
searches for the global directives file by gradually descending into the root folder. Reasoning about
the correct variable usages is hard, even for humans, but the GGNN correctly predicts the variable

3http://roslyn.io
4Sect. A additionally shows ROC and precision-recall curves for the GGNN model on the VARMISUSE task.

7

http://roslyn.io

Published as a conference paper at ICLR 2018

bool TryFindGlobalDirectivesFile(string baseDirectory, string fullPath, out string path){
baseDirectory1 = baseDirectory2.TrimEnd(Path.DirectorySeparatorChar);
var directivesDirectory = Path.GetDirectoryName(fullPath3)

.TrimEnd(Path.DirectorySeparatorChar);
while(directivesDirectory4 != null && directivesDirectory5.Length >= baseDirectory6.Length){
path7 = Path.Combine(directivesDirectory8, GlobalDirectivesFileName9);
if (File.Exists(path10)) return true;
directivesDirectory11=Path.GetDirectoryName(directivesDirectory12)

.TrimEnd(Path.DirectorySeparatorChar);
}
path13 = null;
return false;

}

1: path:59%, baseDirectory:35%, fullPath:6%, GlobalDirectivesFileName:1%
2: baseDirectory:92%, fullPath:5%, GlobalDirectivesFileName:2%, path:0.4%
3: fullPath:88%, baseDirectory:9%, GlobalDirectivesFileName:2%, path:1%
4: directivesDirectory:86%, path:8%, baseDirectory:2%, GlobalDirectivesFileName:1%, fullPath:0.1%
5: directivesDirectory:46%, path:24%, baseDirectory:16%, GlobalDirectivesFileName:10%, fullPath:3%
6: baseDirectory:64%, path:26%, directivesDirectory:5%, fullPath:2%, GlobalDirectivesFileName:2%
7: path:99%, directivesDirectory:1%, GlobalDirectivesFileName:0.5%, baseDirectory:7e-5, fullPath:4e-7
8: fullPath:60%, directivesDirectory:21%, baseDirectory:18%, path:1%, GlobalDirectivesFileName:4e-4
9: GlobalDirectivesFileName:61%, baseDirectory:26%, fullPath:8%, path:4%, directivesDirectory:0.5%
10: path:70%, directivesDirectory:17%, baseDirectory:10%, GlobalDirectivesFileName:1%, fullPath:0.6%
11: directivesDirectory:93%, path:5%, GlobalDirectivesFileName:1%, baseDirectory:0.1%, fullPath:4e-5%
12: directivesDirectory:65%, path:16%, baseDirectory:12%, fullPath:5%, GlobalDirectivesFileName:3%
13: path:97%, baseDirectory:2%, directivesDirectory:0.4%, fullPath:0.3%, GlobalDirectivesFileName:4e-4

Figure 3: VARMISUSE predictions on slots within a snippet of the SEENPROJTEST set for the
ServiceStack project. Additional visualizations are available in Appendix B. The underlined tokens
are the correct tokens. The model has to select among a number of string variables at each slot,
where all of them represent some kind of path. The GGNN accurately predicts the correct variable
usage in 11 out of the 13 slots reasoning about the complex ways the variables interact among them.

public ArraySegment<byte> ReadBytes(int length){
int size = Math.Min(length, _len - _pos);
var buffer = EnsureTempBuffer(length);
var used = Read(buffer, 0, size);

Figure 4: A bug found (yellow) in RavenDB open-source project. The code unnecessarily ensures
that the buffer is of size length rather than size (which our model predicts as the correct variable
here).

usages at all locations except two (slot 1 and 8). As a software engineer is writing the code, it is
imaginable that she may make a mistake misusing one variable in the place of another. Since all
variables are string variables, no type errors will be raised. As the probabilities in Fig. 3 suggest
most potential variable misuses can be flagged by the model yielding valuable warnings to software
engineers. Additional samples with comments can be found in Appendix B.

Furthermore, Appendix C shows samples of pairs of code snippets that share similar representations
as computed by the cosine similarity of the usage representation u(t, v) of GGNN. The reader can
notice that the network learns to group variable usages that share semantic similarities together. For
example, checking for null before the use of a variable yields similar distributed representations
across code segments (Sample 1 in Appendix C).

5.3 DISCOVERED VARIABLE MISUSE BUGS

We have used our VARMISUSE model to identify likely locations of bugs in RavenDB (a document
database) and Roslyn (Microsoft’s C# compiler framework). For this, we manually reviewed a sample
of the top 500 locations in both projects where our model was most confident about a choosing a
variable differing from the ground truth, and found three bugs in each of the projects.

Figs. 1,4,5 show the issues discovered in RavenDB. The bug in Fig. 1 was possibly caused by
copy-pasting, and cannot be easily caught by traditional methods. A compiler will not warn about

8

Published as a conference paper at ICLR 2018

if (IsValidBackup(backupFilename) == false) {
output("Error:"+ backupLocation +" doesn’t look like a valid backup");
throw new InvalidOperationException(

backupLocation + " doesn’t look like a valid backup");

Figure 5: A bug found (yellow) in the RavenDB open-source project. Although backupFilename
is found to be invalid by IsValidBackup, the user is notified that backupLocation is invalid
instead.

unused variables (since first is used) and virtually nobody would write a test testing another
test. Fig. 4 shows an issue that, although not critical, can lead to increased memory consumption.
Fig. 5 shows another issue arising from a non-informative error message. We privately reported
three additional bugs to the Roslyn developers, who have fixed the issues in the meantime (cf.
https://github.com/dotnet/roslyn/pull/23437). One of the reported bugs could
cause a crash in Visual Studio when using certain Roslyn features.

Finding these issues in widely released and tested code suggests that our model can be useful during
the software development process, complementing classic program analysis tools. For example, one
usage scenario would be to guide the code reviewing process to locations a VARMISUSE model has
identified as unusual, or use it as a prior to focus testing or expensive code analysis efforts.

6 DISCUSSION & CONCLUSIONS

Although source code is well understood and studied within other disciplines such as programming
language research, it is a relatively new domain for deep learning. It presents novel opportunities
compared to textual or perceptual data, as its (local) semantics are well-defined and rich additional
information can be extracted using well-known, efficient program analyses. On the other hand,
integrating this wealth of structured information poses an interesting challenge. Our VARMISUSE
task exposes these opportunities, going beyond simpler tasks such as code completion. We consider
it as a first proxy for the core challenge of learning the meaning of source code, as it requires to
probabilistically refine standard information included in type systems.

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. Learning natural coding
conventions. In Foundations of Software Engineering (FSE), 2014.

Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. Suggesting accurate method
and class names. In Foundations of Software Engineering (FSE), 2015.

Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention network for extreme
summarization of source code. In International Conference on Machine Learning (ICML), pp.
2091–2100, 2016.

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey of machine
learning for big code and naturalness. arXiv preprint arXiv:1709.06182, 2017.

Earl T Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke. Automated software
transplantation. In International Symposium on Software Testing and Analysis (ISSTA), 2015.

Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros, Asya
Kamsky, Scott McPeak, and Dawson Engler. A few billion lines of code later: using static analysis
to find bugs in the real world. Communications of the ACM, 53(2):66–75, 2010.

Avishkar Bhoopchand, Tim Rocktäschel, Earl Barr, and Sebastian Riedel. Learning Python code
suggestion with a sparse pointer network. arXiv preprint arXiv:1611.08307, 2016.

9

http://roslyn.io
https://github.com/dotnet/roslyn/pull/23437

Published as a conference paper at ICLR 2018

Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. Statistical deobfuscation of
android applications. In Conference on Computer and Communications Security (CCS), 2016.

Pavol Bielik, Veselin Raychev, and Martin Vechev. PHOG: probabilistic model for code. In
International Conference on Machine Learning (ICML), 2016.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder–decoder approaches. Syntax, Semantics and Structure in

Statistical Translation, 2014.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Neural Information Processing Systems (NIPS), pp.
3844–3852, 2016.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
In IEEE International Joint Conference Neural Networks (IJCNN). IEEE, 2005.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In International

Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 855–864. ACM, 2016.

Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the naturalness
of software. In International Conference on Software Engineering (ICSE), 2012.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. In International Conference on Learning Representations (ICLR), 2015.

Chris J Maddison and Daniel Tarlow. Structured generative models of natural source code. In
International Conference on Machine Learning (ICML), 2014.

Diego Marcheggiani and Ivan Titov. Encoding sentences with graph convolutional networks for
semantic role labeling. In ACL, 2017.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In Neural Information Processing Systems (NIPS),
2013.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. GloVe: Global vectors for word
representation. In EMNLP, 2014.

Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with statistical language models.
In Programming Languages Design and Implementation (PLDI), pp. 419–428, 2014.

Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program properties from Big Code.
In Principles of Programming Languages (POPL), 2015.

Veselin Raychev, Pavol Bielik, and Martin Vechev. Probabilistic model for code with decision trees.
In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2016.

Andrew Rice, Edward Aftandilian, Ciera Jaspan, Emily Johnston, Michael Pradel, and Yulissa
Arroyo-Paredes. Detecting argument selection defects. Proceedings of the ACM on Programming

Languages, 1(OOPSLA):104, 2017.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional network. arXiv preprint

arXiv:1703.06103, 2017.

Armando Solar-Lezama. Program synthesis by sketching. University of California, Berkeley, 2008.

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise selection for theorem proving by deep
graph embedding. In Advances in Neural Information Processing Systems, pp. 2783–2793, 2017.

10

Published as a conference paper at ICLR 2018

(a) Precision-Recall Curve (b) Receiver Operating Characteristic (ROC) Curve

Figure 6: Precision-Recall and ROC curves for the GGNN model on VARMISUSE. Note that the y
axis starts from 50%.

Table 3: Performance of GGNN model on VARMISUSE per number of type-correct, in-scope
candidate variables. Here we compute the performance of the full GGNN model that uses subtokens.

of candidates 2 3 4 5 6 or 7 8+

Accuracy on SEENPROJTEST (%) 91.6 84.5 81.8 78.6 75.1 77.5
Accuracy on UNSEENPROJTEST (%) 85.7 77.1 75.7 69.0 71.5 62.4

A PERFORMANCE CURVES

Figure 6 shows the ROC and precision-recall curves for the GGNN model. As the reader may observe,
setting a false positive rate to 10% we get a true positive rate5 of 73% for the SEENPROJTEST and
69% for the unseen test. This suggests that this model can be practically used at a high precision
setting with acceptable performance.

B VARMISUSE PREDICTION SAMPLES

Below we list a set of samples from our SEENPROJTEST projects with comments about the model
performance. Code comments and formatting may have been altered for typesetting reasons. The
ground truth choice is underlined.

Sample 1

for (var port = #1 ; #2 < #3 ; #4 ++)
{
if (!activePorts.Contains(#5))
return #6 ;

}

#1 startingFrom: 97%, endingAt: 3%
#2 port: 100%, startingFrom: 0%, endingAt: 0%
#3 endingAt: 100%, startingFrom: 0%, port: 0%
#4 port: 100%, startingFrom: 0%, endingAt: 0%
#5 port: 100%, startingFrom: 0%, endingAt: 0%
#6 port: 100%, startingFrom: 0%, endingAt: 0%

. The model correctly predicts all variables in the loop.

5A 10% false positive rate is widely accepted in industry, with 30% as a maximum acceptable limit (Bessey
et al., 2010).

11

Published as a conference paper at ICLR 2018

Sample 2

var path = CreateFileName(#1);
bitmap.Save(#2 , ImageFormat.Png);
return #3 ;

#1 name: 86%, DIR_PATH: 14%
#2 path: 90%, name: 8%, DIR_PATH: 2%
#3 path: 76%, name: 16%, DIR_PATH: 8%

. String variables are not confused their semantic role is inferred correctly.

Sample 3

[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public void MergeFrom(pb::CodedInputStream input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
input.SkipLastField();
break;

case 10: {
#1 .AddEntriesFrom(input, _repeated_payload_codec);

break;
}

}
}

}

#1 Payload: 66%, payload_: 44%

. The model is commonly confused by aliases, i.e. variables that point to the same location in memory.
In this sample, either choice would have yielded identical behavior.

Sample 4

public override bool IsDisposed
{
get
{
lock (#1)
{

return #2 ;
}

}
}

#1 _gate: 99%, _observers: 1%
#2 _isDisposed: 90%, _isStopped: 8%, HasObservers: 2%

. The ReturnsTo edge can help predict variables that otherwise would have been impossible.

12

Published as a conference paper at ICLR 2018

Sample 5

/// <summary>
/// Notifies all subscribed observers about the exception.
/// </summary>
/// <param name="error">The exception to send to all observers.</param>
public override void OnError(Exception error)
{

if (#1 == null)
throw new ArgumentNullException(nameof(#2));

var os = default(IObserver<T>[]);
lock (#3)
{

CheckDisposed();

if (! #4)
{

os = _observers.Data;
_observers = ImmutableList<IObserver<T>>.Empty;
#5 = true;
#6 = #7 ;

}
}

if (os != null)
{

foreach (var o in os)
{

o.OnError(#8);
}

}
}

#1 error: 93%, _exception: 7%
#2 error: 98%, _exception: 2%
#3 _gate: 100%, _observers: 0%
#4 _isStopped: 86%, _isDisposed: 13%, HasObservers: 1%
#5 _isStopped: 91%, _isDisposed: 9%, HasObservers: 0%
#6 _exception: 100%, error: 0%
#7 error: 98%, _exception: 2%
#8 _exception: 99%, error: 1%

. The model predicts the correct variables from all slots apart from the last. Reasoning about the last
one, requires interprocedural understanding of the code across the class file.

13

Published as a conference paper at ICLR 2018

Sample 6

private bool BecomingCommand(object message)
{

if (ReceiveCommand(#1) return true;
if (#2 .ToString() == #3) #4 .Tell(#5);
else return false;
return true;

}

#1 message: 100%, Response: 0%, Message: 0%
#2 message: 100%, Response: 0%, Message: 0%
#3 Response: 91%, Message: 9%
#4 Probe: 98%, AskedForDelete: 2%
#5 Response: 98%, Message: 2%

. The model predicts correctly all usages except from the one in slot #3. Reasoning about this snippet
requires additional semantic information about the intent of the code.

Sample 7

var response = ResultsFilter(typeof(TResponse), #1 , #2 , request);

#1 httpMethod: 99%, absoluteUrl: 1%, UserName: 0%, UserAgent: 0%
#2 absoluteUrl: 99%, httpMethod: 1%, UserName: 0%, UserAgent: 0%

. The model knows about selecting the correct string parameters because it matches them to the
formal parameter names.

Sample 8

if (#1 >= #2)
throw new InvalidOperationException(Strings_Core.FAILED_CLOCK_MONITORING);

#1 n: 100%, MAXERROR: 0%, SYNC_MAXRETRIES: 0%
#2 MAXERROR: 62%, SYNC_MAXRETRIES: 22%, n: 16%

. It is hard for the model to reason about conditionals, especially with rare constants as in slot #2.

14

Published as a conference paper at ICLR 2018

C NEAREST NEIGHBOR OF GGNN USAGE REPRESENTATIONS

Here we show pairs of nearest neighbors based on the cosine similarity of the learned represen-
tations u(t, v). Each slot t is marked in dark blue and all usages of v are marked in yellow (i.e.

variableName). This is a set of hand-picked examples showing good and bad examples. A brief
description follows after each pair.

Sample 1

...
public void MoveShapeUp(BaseShape shape) {

if (shape != null) {
for(int i=0; i < Shapes.Count -1; i++){

if (Shapes[i] == shape){
Shapes.Move(i, ++i);
return;

}
}

}
}
...

...
lock(lockObject) {

if (unobservableExceptionHanler != null)
return false;

unobservableExceptionHanler = handler;
}
...

. Slots that are checked for null-ness have similar representations.

Sample 2

...
public IActorRef ResolveActorRef(ActorPath actorPath){
if(HasAddress(actorPath .Address))
return _local.ResolveActorRef(RootGuardian, actorPath .ElementsWithUid);

...
...

...
ActorPath actorPath ;
if (TryParseCachedPath(path, out actorPath)) {

if (HasAddress(actorPath .Address)){
if (actorPath .ToStringWithoutAddress().Equals("/"))

return RootGuarding;
...

}
...

}
...

. Slots that follow similar API protocols have similar representations. Note that the function
HasAddress is a local function, seen only in the testset.

15

Published as a conference paper at ICLR 2018

Sample 3

...
foreach(var filter in configuration.Filters){

GlobalJobFilter.Filters.Add(filter);
}
...

...
public void Count_ReturnsNumberOfElements(){

_collection.Add(_filterInstance);
Assert.Equal(1, _collection.Count);

}
...

. Adding elements to a collection-like object yields similar representations.

D DATASET

The collected dataset and its characteristics are listed in Table 4. The full dataset as a set of projects
and its parsed JSON will become available online.

Table 4: Projects in our dataset. Ordered alphabetically. kLOC measures the number of non-empty
lines of C# code. Projects marked with Devwere used as a development set. Projects marked with
†were in the test-only dataset. The rest of the projects were split into train-validation-test. The dataset
contains in total about 2.9MLOC.

Name Git SHA kLOCs Slots Vars Description

Akka.NET 719335a1 240 51.3k 51.2k Actor-based Concurrent & Distributed
Framework

AutoMapper 2ca7c2b5 46 3.7k 10.7k Object-to-Object Mapping Library
BenchmarkDotNet 1670ca34 28 5.1k 6.1k Benchmarking Library
BotBuilder 190117c3 44 6.4k 8.7k SDK for Building Bots
choco 93985688 36 3.8k 5.2k Windows Package Manager
commandline† 09677b16 11 1.1k 2.3k Command Line Parser
CommonMark.NETDev f3d54530 14 2.6k 1.4k Markdown Parser
Dapper 931c700d 18 3.3k 4.7k Object Mapper Library
EntityFramework fa0b7ec8 263 33.4k 39.3k Object-Relational Mapper
Hangfire ffc4912f 33 3.6k 6.1k Background Job Processing Library
Humanizer† cc11a77e 27 2.4k 4.4k String Manipulation and Formatting
Lean† f574bfd7 190 26.4k 28.3k Algorithmic Trading Engine
Nancy 72e1f614 70 7.5k 15.7 HTTP Service Framework
Newtonsoft.Json 6057d9b8 123 14.9k 16.1k JSON Library
Ninject 7006297f 13 0.7k 2.1k Code Injection Library
NLog 643e326a 75 8.3k 11.0k Logging Library
Opserver 51b032e7 24 3.7k 4.5k Monitoring System
OptiKey 7d35c718 34 6.1k 3.9k Assistive On-Screen Keyboard
orleans e0d6a150 300 30.7k 35.6k Distributed Virtual Actor Model
Polly 0afdbc32 32 3.8k 9.1k Resilience & Transient Fault Handling

Library
quartznet b33e6f86 49 9.6k 9.8k Scheduler
ravendbDev 55230922 647 78.0k 82.7k Document Database
RestSharp 70de357b 20 4.0k 4.5k REST and HTTP API Client Library
Rx.NET 2d146fe5 180 14.0k 21.9k Reactive Language Extensions
scriptcs f3cc8bcb 18 2.7k 4.3k C# Text Editor
ServiceStack 6d59da75 231 38.0k 46.2k Web Framework
ShareX 718dd711 125 22.3k 18.1k Sharing Application
SignalR fa88089e 53 6.5k 10.5k Push Notification Framework
Wox cdaf6272 13 2.0k 2.1k Application Launcher

16

Published as a conference paper at ICLR 2018

For this work, we released a large portion of the data, with the exception of projects with a GPL license.
The data can be found at https://aka.ms/iclr18-prog-graphs-dataset. Since we
are excluding some projects from the data, below we report the results, averaged over three runs, on
the published dataset:

Accuracy (%) PR AUC

SEENPROJTEST 84.0 0.976
UNSEENPROJTEST 74.1 0.934

17

https://aka.ms/iclr18-prog-graphs-dataset

	Introduction
	Related Work
	The VarMisuse Task
	Model: Programs as Graphs
	Implementation

	Evaluation
	Quantitative Evaluation
	Qualitative Evaluation
	Discovered Variable Misuse Bugs

	Discussion & Conclusions
	Performance Curves
	VarMisuse Prediction Samples
	Nearest Neighbor of GGNN Usage Representations
	Dataset

