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Abstract

A common vision from science fiction is that robots will one day inhabit our physical
spaces, sense the world as we do, assist our physical labours, and communicate with us
through natural language. Here we study how to design artificial agents that can interact
naturally with humans using the simplification of a virtual environment. This setting never-
theless integrates a number of the central challenges of artificial intelligence (AI) research:
complex visual perception and goal-directed physical control, grounded language compre-
hension and production, and multi-agent social interaction. To build agents that can ro-
bustly interact with humans, we would ideally train them while they interact with humans.
However, this is presently impractical. Therefore, we approximate the role of the human
with another learned agent, and use ideas from inverse reinforcement learning to reduce
the disparities between human-human and agent-agent interactive behaviour. Rigorously
evaluating our agents poses a great challenge, so we develop a variety of behavioural tests,
including evaluation by humans who watch videos of agents or interact directly with them.
These evaluations convincingly demonstrate that interactive training and auxiliary losses
improve agent behaviour beyond what is achieved by supervised learning of actions alone.
Further, we demonstrate that agent capabilities generalise beyond literal experiences in the
dataset. Finally, we train evaluation models whose ratings of agents agree well with human
judgement, thus permitting the evaluation of new agent models without additional effort.
Taken together, our results in this virtual environment provide evidence that large-scale hu-
man behavioural imitation is a promising tool to create intelligent, interactive agents, and
the challenge of reliably evaluating such agents is possible to surmount. See videos for an
overview of the manuscript, training time-lapse, and human-agent interactions.

*See Section 6 for Authors & Contributions.
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https://www.youtube.com/watch?v=b-fvsi9YIP4&feature=youtu.be
https://www.youtube.com/watch?v=NwzRR7XD898&feature=youtu.be
https://www.youtube.com/watch?v=510xBEcef_o&feature=youtu.be
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1 Introduction
Humans are an interactive species. We interact with the physical world and with one an-
other. We often attribute our evolved social and linguistic complexity to our intelligence,
but this inverts the story: the shaping forces of large-group interactions selected for these
capacities (Dunbar, 1993), and these capacities are much of the material of our intelligence.
To build artificial intelligence capable of human-like thinking, we therefore must not only
grapple with how humans think in the abstract, but also with how humans behave as physi-
cal agents in the world and as communicative agents in groups. Our study of how to create
artificial agents that interact with humans therefore unifies artificial intelligence with the
study of natural human intelligence and behaviour.

This work initiates a research program whose goal is to build embodied artificial agents
that can perceive and manipulate the world, understand and produce language, and react
capably when given general requests and instructions by humans. Such a holistic research
program is consonant with recent calls for more integrated study of the “situated” use of
language (McClelland et al., 2019; Lake and Murphy, 2020). Progress towards this goal
could greatly expand the scope and naturalness of human-computer interaction (Winograd,
1972; Card et al., 1983; Branwen, 2018) to the point that interacting with a computer or a
robot would be much like interacting with another human being – through shared attention,
gesture, demonstration, and dialogue (Tomasello, 2010; Winograd, 1972).

Our research program shares much the same spirit as recent work aimed to teach vir-
tual or physical robots to follow instructions provided in natural language (Hermann et al.,
2017; Lynch and Sermanet, 2020) but attempts to go beyond it by emphasising the inter-
active and language production capabilities of the agents we develop. Our agents interact
with humans and with each other by design. They follow instructions but also generate
them; they answer questions but also pose them.

2 Our Research Program

2.1 The Virtual Environment
We have chosen to study artificial agent interactions in a 3D virtual environment based on
the Unity game engine (Ward et al., 2020). Although we may ultimately hope to study in-
teractive physical robots that inhabit our world, virtual domains enable integrated research
on perception, control, and language, while avoiding the technical difficulties of robotic
hardware, making them an ideal testing ground for any algorithms, architectures, and eval-
uations we propose.

The environment, which we call “the Playroom,” comprises a randomised set of rooms
with children’s toys and domestic objects (Figure 1). The robotic embodiment by which
the agent interacts with the world is a “mobile manipulator” – that is, a robot that can
move around and reposition objects. This environment supports a broad range of possible
tasks, concepts, and interactions that are natural and intuitive to human users. It has con-
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Figure 1: The “Playroom”. The 3-D “Playroom” environment comprises a randomised set of
rooms with children’s toys and domestic objects, as well as containers, shelves, furniture, windows,
and doors. The diversity of the environment enables interactions involving reasoning about space
and object relations, ambiguity of references, containment, construction, support, occlusion, and
partial observability. Agents interact with the world by moving around, manipulating objects, and
speaking to each other. A. Depicts a simple interaction wherein the orange solver agent is placing
a helicopter into a container while the blue setter agent watches on. B. Shows four random instan-
tiations of the Playroom, each with a unique combination and arrangement of objects and furniture.
C. A sampling of the types of objects available in the room.

tainers, shelves, furniture, windows, and doors whose initial positions vary randomly each
episode. There are diverse toys and objects that can be moved and positioned. The rooms
are L-shaped, creating blocked lines of sight, and have randomly variable dimensions. As
a whole, the environment supports interactions that involve reasoning about space and ob-
ject relations, ambiguity of references, containment, construction, support, occlusion, and
partial observability. The language referring to this world can involve instructed goals,
questions, or descriptions at different levels of specificity. Although the environment is
simple compared to the real world, it affords rich and combinatorial interactions.

2.2 Learning to Interact
We aim to build agents that can naturally interact with and usefully assist humans. As a first
step, one might consider optimising for this outcome directly. A critical prerequisite is a
metric measuring “useful” interactions. Yet defining such a metric is a thorny issue because
what comprises “useful” (or, simply, “good”) is generally ambiguous and subjective. We
need a way to measure and make progress without interminable Socratic debate about the
meaning of “good” (Adam et al., 1902).

Suppose we do not have such an explicit rule-based metric to apply to any interaction.
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In principle, we can overcome the issue of the subjectivity of evaluation by embracing it:
we can instead rely on a human evaluator’s or collective of evaluators’ judgements of the
utility of interactions. This resolves the problem of codifying these value judgements a
priori. However, additional challenges remain. For the sake of argument, let’s first suppose
that an evaluator is only tasked with judging very unambiguous cases of success or failure.
In such a scenario, the efficiency of improving an agent by issuing evaluative feedback
depends critically on the intelligence of the agent being evaluated. Consider the two cases
below:

If the agent is already intelligent (for example, it is another human), then we can expect
the ratio of successes to failures to be moderately high. If the evaluator can unambiguously
evaluate the behaviour, then their feedback can be informative. The mutual information
between behaviour and evaluation is upper-bounded by the entropy in the evaluation1, and
this mutual information can be used to provide feedback to the agent that discriminates
between successes and failures.

If, however, the agent is not already intelligent (for example, it is an untrained agent),
then we can expect the ratio of successes to failures to be extremely low. In this case,
almost all feedback is the same and, consequently, uninformative; there is no measurable
correlation between variations in agent behaviour and variations in the evaluation. As tasks
increase in complexity and duration, this problem only becomes more severe. Agents must
accidentally produce positive behaviour to begin to receive discriminative feedback. The
number of required trials is inversely related to the probability that the agent produces a
reasonable response on a given trial. For a success probability of 10−3, the agent needs
approximately 1,000 trials before a human evaluator sees a successful trial and can provide
feedback registering a change in the optimisation objective. The data required then grow
linearly in the time between successful interactions.

Even if the agent fails almost always, it may be possible to compare different trials
and to provide feedback about “better” and “worse” behaviours produced by an agent
(Christiano et al., 2017). While such a strategy can provide a gradient of improvement
from untrained behaviour, it is still likely to suffer from the plateau phenomenon of in-
discernible improvement in the early exploration stages of reinforcement learning (Kakade
et al., 2003). This will also dramatically increase the number of interactions for which eval-
uators need to provide feedback before the agent reaches a tolerable level of performance.

Regardless of the actual preferences (or evaluation metric) of a human evaluator, fun-
damental properties of the reinforcement learning problem suggest that performance will
remain substandard until the agent begins to learn how to behave well in exactly the same
distribution of environment states that an intelligent expert (e.g., another human) is likely
to visit. This fact is known as the performance difference lemma (Kakade et al., 2003).
Formally, if π∗(s) is the state distribution visited by the expert, π∗(a | s) is the action dis-
tribution of the expert, V π is the average value achieved by the agent π, and Qπ(s, a) is the
value achieved in a state if action a is chosen, then the performance gap between the expert

1For any two random variables B (e.g. a behavioural episode of actions taken by humans) and Y (e.g. a
binary evaluation), I[B;Y ] = H[Y ]−H[Y | B] ≤ H[Y ].

4

Tom Dean


Tom Dean


Thomas Dean


Thomas Dean
Performance Difference Lemma

Tom Dean
TRAIN



π∗ and the agent π is

V π∗ − V π =
∑
s

π∗(s)
∑
a

(π∗(a | s)− π(a | s))Qπ(s, a).

That is, as long as the expert is more likely to choose a good action (with larger Qπ(s, a))
in the states it likes to visit, there will be a large performance difference. Unfortunately,
the non-expert agent has quite a long way to go before it can select those good actions,
too. Because an agent training from scratch will visit a state distribution π(s) that is sub-
stantially different from the expert’s π∗(s) (since the state distribution is itself a function of
the policy), it is therefore unlikely to have learned how to pick good actions in the expert’s
favoured states, neither having visited them nor received feedback in them. The problem is
vexed: to learn to perform well, the agent must often visit common expert states, but doing
so is tantamount to performing well. Intuitively, this is the cause of the plateau phenomenon
in RL. It poses a substantial challenge to “human-in-the-loop” methods of training agents
by reward feedback, where the human time required to evaluate and provide feedback can
be tedious, expensive, and can bottleneck the speed with which the AI can learn. The
silver lining is that, while this theorem makes a serious problem apparent, it also points
toward a resolution: if we can find a way to generally make π(a | s) = π∗(a | s), then the
performance gap disappears.

In sum, while we could theoretically appeal to human judgement in lieu of an explicit
metric to train agents to interact, it would be prohibitively inefficient and result in a substan-
tial expenditure of human effort for little gain. For training by human evaluation to merit
further consideration, we should first create agents whose responses to a human evalua-
tor’s instructions are satisfactory a larger fraction of the time. Ideally, the agent’s responses
are already very close to the responses of an intelligent, cooperative person who is try-
ing to interact successfully. At this point, human evaluation has an an important role to
play in adapting and improving the agent behaviour by goal-directed optimisation. Thus,
before we collect and learn from human evaluations, we argue for building an intelligent
behavioural prior: namely, a model that produces human-like responses in a variety of
interactive contexts.

Building a behavioural prior and demonstrating that humans judge it positively dur-
ing interaction is the principal achievement of this work. We turn to imitation learning
to achieve this, which directly leverages the information content of intelligent human be-
haviour to train a policy.

2.3 Collecting Data for Imitation Learning
Imitation learning has been successfully deployed to build agents for self-driving cars
(Pomerleau, 1989), robotics and biomimetic motor control (Schaal, 1999), game play (Sil-
ver et al., 2016; Vinyals et al., 2019), and language modeling (Shannon, 1951). Imitation
learning works best when humans are able to provide very good demonstrations of be-
haviour, and in large supply. For some domains, such as pure text natural language pro-
cessing, large corpora exist that can be passively harvested from the internet (Brown et al.,
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2020). For other domains, more targeted data collection is currently required. Training
agents by imitation learning in our domain requires us to devise a protocol for collecting
human interaction data, and then to gather it at scale. The dataset we have assembled con-
tains approximately two years of human-human interactions in real-time video and text.
Measured crudely in hours (rather than in the number of words or the nature of utterances),
it matches the duration of childhood required to attain oral fluency in language.

To build an intelligent behavioural prior for an agent acting in the Playroom, we could
theoretically deploy imitation learning on free-form human interactions. Indeed, a small
fraction of our data was collected this way. However, to produce a data distribution repre-
senting certain words, skills, concepts, and interaction types in desirable proportions, we
developed a more controlled data collection methodology based on events called language
games.2

We categorised the space of interactions into four basic types: question and answer
(Q&A), instruction-following, play, and dialogue (Figure 2). For this work, we have fo-
cused exclusively on the first two. Within each type, we framed several varieties of prede-
fined prompts. Prompts included, “Ask the other player to bring you one or more objects,”
and, “Ask the other player whether a particular thing exists in the room.” We used 24
base prompts and up to 10 “modifiers” (e.g., “Try to refer to objects by color”) that were
appended to the base prompts to provide variation and encourage more specificity. One
example of a prompt with a modifier was: “Ask the other player to bring you one or more
object. Try to refer to objects by color.”

Human participants were divided into two groups: setters and solvers. Setters received
a prompt and were responsible for issuing an instruction based on it. Solvers were respon-
sible for following instructions. Each episode in which a human setter was prompted to
provide an instruction to a human solver is what we call a language game (Figure 19). In
each language game, a unique room was sampled from a generative model that produces
random rooms, and a prompt was sampled from a list and shown to the setter. The human
setter was then free to move around the room to investigate the space. When ready, the
setter would then improvise an instruction based on the prompt they received and would
communicate this instruction to the solver through a typed chat interface (Figure 18). The
setter and solver were given up to two minutes for each language game.

The role of the setter was therefore primarily to explore and understand the situational
context of the room (its layout and objects) and to initiate diverse language games con-
strained by the basic scaffolding given by the prompt (Figure 2). By defining a simple set
of basic prompts, we could utilise humans’ creative ability to conjure interesting, valid in-
structions on-the-fly, with all the nuance and ambiguity that would be impossible to define
programmatically. While the language game prompts constrained what the setters ought to
instruct, setters and solvers were both free to use whatever language and vocabulary they
liked. This further amplified the linguistic diversity of the dataset by introducing natural
variations in phrasing and word choice. Consider one example, shown in the lower panel of
Figure 3: the setter looks at a red toy aeroplane, and, prompted to instruct the solver to lift

2Inspired by Wittgenstein’s ideas about the utility of communication (Wittgenstein, 1953).
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Instruction

Play

Dialogue

Q&A

Count

Color

Location

Position

Lift

Go

Not explored 

..
.

Interaction InstructionPrompt

Provided by environment Generated by setter agent online during episode

..
.

in this work

Please place any toy train beside a toy car

Grab the red toy on the table and lift it

Lift any object which is close to the magenta table

Go as far away from the table as possible

Can you lift the rocket on the bookshelf?

Count the lamps on the floor

How many toys are on the bed?

Where is the blue duck?

Can you please count the number of blue things

Figure 2: Generating Diverse Interactions. Interactions in the Playroom could take myriad
forms. To encourage diverse interactions in the Playroom, we provided prompts (in orange) to
humans which they expanded into specific language instructions (in red) for the other human or
agent. Prompts shown here are short forms: e.g. Lift corresponded to “Ask the other player to lift
something in the room,” Color corresponded to “Ask the other player about the color of something
in the room.”

something, asks the solver to “please lift the object next to the magenta table,” presumably
referring to the aeroplane. The solver then moves to the magenta table and instead finds a
blue keyboard, which it then lifts. This constituted a successful interaction even though the
referential intention of the instruction was ambiguous.

Altogether, we collected 610,608 episodes of humans interacting as a setter-solver pair.
From this total we allocated 549,468 episodes for training, and 61,140 for validation.
Episodes lasted up to a maximum of 2 minutes (3,600 steps), with a mean and standard
deviation of 55 ± 25s (1,658 ± 746 steps). The relative proportion of language games can
be found in Table 6 in the Appendix. Setters took 26 ± 16s (784 ± 504 steps) to pose a
task for a solver, given the environment prompt (which was communicated at the start of an
episode). In the 610,608 episodes there were 320,144 unique setter utterances, and 26,023
unique solver utterances, with an average length of 7.5± 2.5 words and a maximum length
of 29 words for setters. To put it another way, this signifies that there are 320,144 unique
tasks instructed in the dataset. For solvers, the average length was 4.1 ± 2.4 and a maxi-
mum length of 26. Upon receiving a setter instruction, the time solvers took to complete
the task was 28 ± 18s (859 ± 549 steps). Figure 4 depicts the average action composi-
tion for a solver in an episode. Notably, the density of actions was low, and when actions
were taken, the distribution of action choice was highly skewed. This was even more
pronounced for language emissions (Figure 11A), where approximately one utterance was
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Move
Look
Grab

Speak
"lift the plane which is in front 

of the dining table"

Prompt: Ask the other player to lift something

1. Setter Gives Instruction 2. Solver Completes Task

Setter

Solver

1

2

Move
Look
Grab

Speak

Episode Timestep
0 500 1000 1500

"please lift the object next to
the magenta table"

Episode Timestep
0 1000 2000 3000

1. Setter Gives Instruction 2. Solver Completes Task

Move
Look
Grab

Speak

Setter
1

Solver
2

Move
Look
Grab

Speak

Figure 3: Example Trajectories. In these two human-human episodes, the setter was prompted
to ask the solver to lift an object in the room. In the top example, the setter sets the task and the
solver completes it in a straightforward manner. In the bottom example, there is some ambiguity:
the setter was presumably referring to the red airplane on the ground, but the solver proceeded to
lift the blue keyboard, which was also near the magenta table. The task was nevertheless completed
successfully.

made per episode for setters, with word choices following a long-tailed distribution for a
vocabulary of approximately 550 words.

2.4 Agent Architecture
2.4.1 Action Representation

Our agents control the virtual robot in much the same way as the human players. The
action space is multidimensional and contains a continuous 2D mouse look action. The
agent space also includes several keyboard buttons, including forward, left, backward, right
(corresponding to keys ‘WASD’), along with mixtures of these keys (Figure 3). Finally, a
grab action allows the agent to grab or drop an object. The full details of the observation
and action spaces are given in Appendix 3.4.

The agent operates in discrete time and produces 15 actions per second. These actions
are produced by a stochastic policy, a probability distribution, π, defined jointly over all
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Figure 4: Action Composition. Across each of the move, look, and grab actions we observed
a skewed distribution with respect to the chosen actions (middle, right), and whether an action or
no-op is chosen (left). For the move action, “forward” is heavily represented, whilst look actions
are clustered mainly around the origin (corresponding to small shifts in gaze direction), and along
the borders (corresponding to large rotations). Each action is relatively rare in the entire trajectory,
as seen by the proportion of no-ops to ops.

the action variables produced in one time step, a: π(a) = π(look, key, grab) (At times, we
may use the words agent and policy interchangeably, but when we mean to indicate the
conditional distribution of actions given observations, we will refer to this as the policy
exclusively.) In detail, we include no-operation (“no-op”) actions to simplify the pro-
duction of a null mouse movement or key press. Although we have in part based our
introductory discussion on the formalism of fully-observed Markov Decision Processes,
we actually specify our interaction problem more generally. At any time t in an episode,
the policy distribution is conditioned on the preceding perceptual observations, which we
denote o≤t ≡ (o0,o1, . . . ,ot). The policy is additionally autoregressive. That is, the agent
samples one action component first, then conditions the distribution over the second action
component on the choice of the first, and so on. If we denote the choice of the look no-op
action at time t as a(0)

t , the choice of the look action as a(1)
t , the choice of the key no-op as

a
(2)
t , the choice of the key as a(3)

t , and so on, the action distribution is jointly expressed as:

πθ(at | o≤t) =
K∏
k=0

πθ(a
(k)
t | o≤t, a

(<k)
t ),

where θ are the parameters of the neural network used to define the policy. The mouse
look action distribution is in turn also defined autoregressively: the first sampled action
splits the window bounded by (−1, 1) × (−1, 1) in width and height into 9 squares. The
second action splits the selected square into 9 further squares, and so on. Repeating this
process several times allows the agent to express any continuous mouse movement up to a
threshold resolution.
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2.4.2 Perception and Language

Agents perceive the environment visually using “RGB” pixel input at resolution of 96×72.
When an object can be grasped by the manipulator, a bounding box outlines the object
(Figures 1, 3, & 4). Agents also process text inputs coming from either another player
(including humans), from the environment (agents that imitate the setter role must process
the language game prompt), or from their own language output at the previous time step.
Language input is buffered so that all past tokens up to a buffer length are observed at
once. We will denote the different modalities of vision, language input arriving from the
language game prompt, language input coming from the other agent, and language input
coming from the agent itself at the last time step as oV, oLP, and oLO, and oLS, respectively.

Language output is sampled one token at a time, with this step performed after the
autoregressive movement actions have been chosen. The language output token is observed
by the agent at the next time step. We process and produce language at the level of whole
words, using a vocabulary consisting of the approximately 550 most common words in the
human data distribution (Section 10) and used an ‘UNK’ token for the rest.

2.4.3 Network Components

The agent architecture (Figure 5) uses a ResNet (He et al., 2016) for vision. At the highest
level of the ResNet, a spatial map of dimensions (width× height× number-of-channels) is
produced. The vectors from all the width×height positions in this spatial array are concate-
nated with the embeddings of the language input tokens, which include words comprising
the inter-agent communication, the prompt delivered from the environment (to the setter
only), and previous language emissions. These concatenated vectors are jointly processed
by a transformer network (Vaswani et al., 2017), which we refer to as the multi-modal
transformer (MMT). The output of the MMT consists of a mean-pooling across all output
embeddings, concatenated with dedicated output embeddings that function much like the
“CLS” embedding in the BERT model (Devlin et al., 2018) (see Section 3.2 in the Appendix
for more information). This output provides the input to an LSTM memory, which in turn
provides the input to smaller networks that parameterise the aforementioned policies.

2.5 Learning
Our approach to training interactive agents combines diverse techniques from imitation
learning with additional supervised and unsupervised learning objectives to regularise rep-
resentations. We first explain the basic principles behind each method, then explain how
they are brought together.

2.5.1 Behavioural Cloning

The most direct approach to imitation learning, known as behavioural cloning (BC) (Pomer-
leau, 1989; Osa et al., 2018), frames the problem of copying behaviour as a supervised
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Text String

Tokenize & Embed

Multi-Modal Transformer

Flatten

Movement Policy

Language Policy
(Word, No-Op)

LSTM

...
...

...
...

xN

Image

(Move      Look      Grab, No-Op)

ResNet

Inter-Agent Comms.

Prompt

Prev. Lang.

96x72 RGB

Autoregressive

Figure 5: Agent Architecture. The agent receives both RGB images and text strings as inputs.
The former gets encoded through a ResNet, and the latter are tokenized by word using a custom
vocabulary, and subsequently embedded as distributed vectors. Together the ResNet “hyper-pixels”
and tokenized words comprise a set of vectors that is the input to a multi-modal transformer. The
transformer’s output provides the input to an LSTM, which in turn provides input to the motor and
language policies.

sequence prediction problem (Graves, 2013). Recalling the discussion of the performance
difference lemma, behavioural cloning is an approach that tries to make π(a | s) = π∗(a |
s), or, in our case, π(at | o≤t) = π∗(at | o≤t). It requires a dataset of observation and
action sequences produced by expert demonstrators.

A temporal observation sequence o≤T ≡ (o0,o1,o2, . . . ,oT ) and a temporal action
sequence a≤T ≡ (a0, a1, a2, . . . , aT ) together comprise a trajectory. (Length, or trajectory
length, refers to the number of elements in the observation or action sequence, and while
trajectory lengths can vary, for simplicity we develop the fixed length case.) The dataset is
distributed according to some unknown distribution π∗(o≤T , a≤T ). For language games, we
constructed separate datasets of setter trajectories and solver trajectories. The loss function
for behavioural cloning is the (forward) Kullback-Leibler divergence between π∗ and πθ:

LBC(θ) = KL [π∗‖πθ]

= Eπ∗(o≤T ,a≤T )

[
ln
π∗(o≤T , a≤T )

πθ(o≤T , a≤T )

]
= const(θ)− Eπ∗(o≤T ,a≤T ) [lnπθ(o≤T , a≤T )] ,

where const(θ) collects the demonstrator distribution entropy term, which is a constant in-
dependent of the policy parameters. The policy trajectory distribution πθ(o≤T , a≤T ) is a
product of conditional distributions from each time step. The product alternates between
terms that are a function of the policy directly, πθ(at | o≤t, a<t), and terms that are a
function of the environment and independent of the policy parameters, pENV(ot | o<t, a<t).
The product is πθ(o≤T , a≤T ) =

∏T
t=0 p

ENV(ot | o<t, a<t)πθ(at | o≤t, a<t). Ignoring con-
stants with respect to the parameters, the argument of the logarithm can therefore be further
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broken down by time step:

LBC(θ) = −Eπ∗(o≤T ,a≤T )

[
ln

T∏
t=0

pENV(ot | o<t, a<t)πθ(at | o≤t, a<t)

]

= −Eπ∗(o≤T ,a≤T )

[
T∑
t=0

ln pENV(ot | o<t, a<t) + ln πθ(at | o≤t, a<t)

]

= const(θ)− Eπ∗(o≤T ,a≤T )

[
T∑
t=0

lnπθ(at | o≤t, a<t)

]
.

We have optionally decided to drop explicit conditioning of the policy on past actions,
except insofar as they influence the observations, giving

LBC(θ) = −Eπ∗(o≤T ,a≤T )

[
T∑
t=0

ln πθ(at | o≤t)

]
. (1)

We can observe that the expectation is under the demonstration distribution. In practice,
we train on the empirical distribution of trajectories in the demonstration dataset. In each
evaluation of the loss function, we sample a batch of B trajectories from the dataset:

LBC(θ) = − 1

B

B∑
n=1

T∑
t=0

ln πθ(an,t | on,≤t).

Although demonstrators interact in the environment to provide data, with BC the agent
exclusively learns without acting at all. This feature of BC can be considered an advantage
or a disadvantage: an advantage because the agent need not perform trial and error in
the world to learn, and a disadvantage because it cannot utilise self-directed environment
interaction to learn more. Despite this problem, behavioural cloning is still a principled and
reliable algorithm. It performs best when datasets are large, and the policy distribution is
able to represent complex correlations among components of the action – hence our choice
of autoregressive action distributions. However, behavioural cloning can be improved, as
we will show.

2.5.2 Auxiliary Learning and Regularisation

Behavioural cloning, like other supervised learning methods that learn a map from inputs to
outputs, can benefit from regularisation. When the agent (policy) acts in the environment, it
will encounter observation sequences that are novel. This is an inevitability due to the high
dimensionality of the perceptual inputs and the combinatorics of the room and of language
itself. But it is more than a statement about combinatorics and dimensionality: when the
agent acts it directly alters the state of the world and its own reafferent observations. And,
when the policy distribution is conditioned on an observation sequence that is distinct from
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the training data, πθ(at | oUNSEEN,≤t), the desired response is nominally undefined and must
be inferred by appropriate generalisation.

In the Playroom (or indeed, in any human-compatible environment), we know that
pixels are grouped into higher-order structures that we perceive as toys, furniture, the back-
ground, etc. These higher-order structures are multi-scale and include the even higher-
order spatial relationships among the objects and features in the room. Together, these
perceptual structures influence human behaviour in the room. Our regularisation proce-
dures aim to reduce the number of degrees of freedom in the input data source and the
network representations, while preserving information that is correlated with attested hu-
man behaviour. These regularisation procedures produce representations that effectively
reduce the discriminability of some pairs of observation sequences (oi,≤t,oj,≤t) while in-
creasing the discriminability of others. The geometry of these representations then shapes
how the policy network infers its responses, and how it generalises to unseen observations.

We use two kinds of regularisation, both of which help to produce visual representations
that improve BC agents with respect to our evaluation metrics. The first regularisation,
which we call Language Matching (LM), is closely related to the Contrastive Predictive
Coding algorithm (van den Oord et al., 2018; Hénaff et al., 2019) and Noise Contrastive
Estimation (Gutmann and Hyvärinen, 2010) and helps produce visual representations re-
flecting linguistic concepts. A classifier Dθ is attached to the agent network and provided
input primarily from the mean-pooling vector of the MMT. It is trained to determine if the
visual input and the solver language input (i.e., the instruction provided by the setter) come
from the same episode or different episodes (see Appendix section 3.2):

LLM(θ) = − 1

B

B∑
n=1

T∑
t=0

[
lnDθ(o

V
n,t,o

LO
n,t ) + ln

(
1−Dθ(o

V
n,t,o

LO
SHIFT(n),t)

)]
, (2)

where B is the batch size and SHIFT(n) is the n-th index after a modular shift of the in-
tegers: 1 → 2, 2 → 3 . . . , B → 1. The loss is “contrastive” because the classifier must
distinguish between real episodes and decoys. To improve the classifier loss, the visual en-
coder must produce representations with high mutual information to the encoded language
input. We apply this loss to data from human solver demonstration trajectories where there
is often strong alignment between the instructed language and the visual representation:
for example, “Lift a red robot” predicts that there is likely to be a red object at the centre
of fixation, and “Put three balls in a row” predicts that three spheres will intersect a ray
through the image.

The second regularisation, which we call the “Object-in-View” loss (OV), is designed
very straightforwardly to produce visual representations encoding the objects and their
colours in the frame. We build a second classifier to contrast between strings describ-
ing coloured objects in frame versus fictitious objects that are not in frame. To do this,
we use information about visible objects derived directly from the environment simulator,
although equivalent results could likely be obtainable by conventional human segmentation
and labeling of images (Girshick, 2015; He et al., 2017). Notably, this information is only
present during training, and not at inference time.
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Together, we refer to these regularising objective functions as “auxiliary losses.”

2.5.3 Inverse Reinforcement Learning

In the Markov Decision Process formalism, we can write the behavioural cloning objective
another way to examine the sense in which it tries to make the agent imitate the demonstra-
tor:

LBC(θ) = Eπ∗(s) [KL [π∗(a | s)‖πθ(a | s)]] .

The imitator learns to match the demonstrator’s policy distribution over actions in the ob-
servation sequences generated by the demonstrator. Theoretical analysis of behavioural
cloning (Ross et al., 2011) suggests that errors of the imitator agent in predicting the demon-
strator’s actions lead to a performance gap that compounds.3 The root problem is that each
mistake of the imitator changes the distribution of future states so that πθ(s) differs from
π∗(s). The states the imitator reaches may not be the ones in which it has been trained to
respond. Thus, a BC-trained policy can “run off the rails,” reaching states it is not able to
recover from. Imitation learning algorithms that also learn along the imitator’s trajectory
distribution can reduce this suboptimality (Ross et al., 2011).

The regularisation schemes presented in the last section can improve the generalisation
properties of BC policies to novel inputs, but they cannot train the policy to exert active con-
trol in the environment to attain states that are probable in the demonstrator’s distribution.
By contrast, inverse reinforcement learning (IRL) algorithms (Ziebart, 2010; Finn et al.,
2016) attempt to infer the reward function underlying the intentions of the demonstrator
(e.g., which states it prefers), and optimise the policy itself using reinforcement learning to
pursue this reward function. IRL can avoid this failure mode of BC and train a policy to
“get back on the rails” (i.e., return to states likely in the demonstrator’s state distribution;
see previous discussion on the performance difference lemma). For an instructive example,
consider using inverse reinforcement learning to imitate a very talented Go player. If the
reward function that is being inferred is constrained to observe only the win state at the end
of the game, then the estimated function will encode that winning is what the demonstra-
tor does. Optimising the imitator policy with this reward function can then recover more
information about playing Go well than was contained in the dataset of games played by
the demonstrator alone. Whereas a behavioural cloning policy might find itself in a losing
situation with no counterpart in its training set, an inverse reinforcement learning algorithm
can use trial and error to acquire knowledge about how to achieve win states from unseen
conditions.

Generative Adversarial Imitation Learning (GAIL) (Ho and Ermon, 2016) is an algo-
rithm closely related to IRL (Ziebart, 2010; Finn et al., 2016). Its objective trains the

3Under relatively weak assumptions (bounded task rewards per time step), the suboptimality for BC is
linear in the action prediction error rate ε but up to quadratic in the length of the episode T , giving O(εT 2).
The performance difference would be linear in the episode length, O(εT ), if each mistake of the imitator
incurred a loss only at that time step; quadratic suboptimality means roughly that an error exacts a toll for
each subsequent step in the episode.
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policy to make the distribution πθ(s, a) match π∗(s, a). To do so, GAIL constructs a surro-
gate model, the discriminator, which serves as a reward function. The discriminator, Dφ,
is trained using conventional cross entropy to judge if a state and action pair is sampled
from a demonstrator or imitator trajectory:

LDISC(φ) = −Eπ∗(s,a) [lnDφ(s, a)]− Eπθ(s,a) [ln(1−Dφ(s, a))] .

The optimal discriminator, according to this objective, satisfies Dφ(s, a) =
π∗(s,a)

π∗(s,a)+πθ(s,a)
.4

We have been deliberately careless about defining π(s, a) precisely but rectify this now.
In the discounted case, it can be defined as the discounted summed probability of being
in a state and producing an action: π(s, a) ≡ (1 − γ)

∑
t γ

tp(st = s | π)π(a | s). The
objective of the policy is to minimise the classification accuracy of the discriminator, which,
intuitively, should make the two distributions as indiscriminable as possible: i.e., the same.
Therefore, the policy should maximise

J GAIL(θ) = −Eπθ(s,a) [ln(1−Dφ(s, a))] .

This is exactly a reinforcement learning objective with per time step reward function r(s, a) =
− ln(1 − Dφ(s, a)). It trains the policy during interaction with the environment: the ex-
pectation is under the imitator policy’s distribution, not the demonstrator’s. Plugging in the
optimal discriminator on the right-hand side, we have

J GAIL(θ) ≈ −Eπθ(s,a)
[
ln

πθ(s, a)

π∗(s, a) + πθ(s, a)

]
.

At the saddle point, optimised both with respect to the discriminator and with respect to
the policy, one can show that πθ(s, a) = π∗(s, a).5 GAIL differs from traditional IRL
algorithms, however, because the reward function it estimates is non-stationary: it changes
as the imitator policy changes since it represents information about the probability of a
trajectory in the demonstrator data compared to the current policy.

GAIL provides flexibility. Instead of matching πθ(s, a) = π∗(s, a), one can instead
attempt to enforce only that πθ(s) = π∗(s) (Merel et al., 2017; Ghasemipour et al., 2020).
We have taken this approach both to simplify the model inputs, and because it is sufficient
for our needs: behavioural cloning can be used to imitate the policy conditional distribution
π∗(a | s), while GAIL can be used to imitate the distribution over states themselves π∗(s).
In this case the correct objective functions are:

LDISC(φ) = −Eπ∗(s) [lnDφ(s)]− Eπθ(s) [ln(1−Dφ(s))] ,

J GAIL(θ) = −Eπθ(s,a) [ln(1−Dφ(s))] .

4As was noted in Goodfellow et al. (2014) and as is possible to derive by directly computing the stationary
point with respect to Dφ(s,a): π∗(s,a)/Dφ(s,a)− πθ(s,a)/(1−Dφ(s,a)) = 0, etc.

5Solving the constrained optimisation problem J GAIL(θ) + λ[
∑

a πθ(s,a) − 1] shows that
πθ(s,a)

π∗(s,a)+πθ(s,a)
= const for all s,a. Therefore, πθ(s,a) = π∗(s,a).
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Figure 6: GAIL Discriminator Architecture: The discriminator receives the same inputs as the
agent, RGB images and text strings, and encodes them with similar encoders (ResNet, text em-
bedder, and Multi-Modal Transformer) into a single summary vector. The encoded inputs are then
processed by a Temporal Transformer that has access to the summary vectors from previous time
steps. The mean-pooled output of this transformer is then passed through an MLP to obtain a single
output representing the probability that the observation sequence is part of a demonstrator trajectory.
The encoders are simultaneously trained by the auxiliary Language Matching objective.

In practice, returning to our Playroom setting with partial observability and two agents
interacting, we cannot assume knowledge of a state st. Instead, we supply the discriminator
with observation sequences st ≈ (ot−sk,ot−s(k−1), . . . ,ot) of fixed length k and stride s;
the policy is still conditioned as in Equation 1.

These observation sequences are short movies with language and vision and are con-
sequently high-dimensional. We are not aware of extant work that has applied GAIL to
observations this high-dimensional (see Li et al. (2017); Zolna et al. (2019) for applica-
tions of GAIL to simpler but still visual input), and, perhaps, for good reason. The dis-
criminator classifier must represent the relative probability of a demonstrator trajectory
compared to an imitator trajectory, but with high-dimensional input there are many unde-
sirable classification boundaries the discriminator can draw. It can use capacity to over-fit
spurious coincidences: e.g., it can memorise that in one demonstrator interaction a pixel
patch was hexadecimal colour #ffb3b3, etc., while ignoring the interaction’s semantic con-
tent. Consequently, regularisation, as we motivated in the behavioural cloning context,
is equally important for making the GAIL discriminator limit its classification to human-
interpretable events, thereby giving reward to the policy if it acts in ways that humans also
think are descriptive and relevant. For the GAIL discriminator, we use a popular data aug-
mentation technique RandAugment (Cubuk et al., 2020) designed to make computer vision
more invariant. This technique stochastically perturbs each image that is sent to the vi-
sual ResNet. We use random cropping, rotation, translation, and shearing of the images.
These perturbations substantially alter the pixel-level visual input without altering human
understanding of the content of the images or the desired outputs for the network to pro-
duce. At the same time, we use the same language matching objective we introduced in
the behavioural cloning section, which extracts representations that align between vision
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and language. This objective is active only when the input to the model is demonstrator
observation sequence data, not when the imitator is producing data.

The architecture of the discriminator is shown in Figure 6. RandAugment is applied
to the images, and a ResNet processes frames, converting them into a spatial array of vec-
tor embeddings. The language is also similarly embedded, and both are passed through a
multi-modal transformer. No parameters are shared between the reward model and policy.
The top of the MMT applies a mean-pooling operation to arrive at a single embedding per
time step, and the language matching loss is computed based on this averaged vector. Sub-
sequently, a second transformer processes the vectors that were produced across time steps
before mean-pooling again and applying a multi-layer perceptron classifier representing
the discriminator output.

Reward
model

Forward
RL

Inverse
RL

Human
demonstrations

Auxiliary learning

Behavioural cloning

Policy

Auxiliary learning

Figure 7: Training schematic. We train policies using human demonstrations via a mixture of
behavioural cloning and reinforcement learning on a learned discriminator reward model. The re-
ward model is trained to discriminate between human demonstrations (positive examples) and agent
trajectories (negative examples). Both the policy and the reward model are regularised by auxiliary
objectives.

Figure 7 summarises how we train agents. We gather human demonstrations of inter-
active language games. These trajectories are used to fit policies by behavioural cloning.
We additionally use a variant of the GAIL algorithm to train a discriminator reward model,
classifying trajectories as generated by either the humans or a policy. Simultaneously, the
policy derives reward if the discriminator classifies its trajectory as likely to be human.
Both the policy and discriminator reward model are regularised by auxiliary learning ob-
jectives.

In Figure 8, we compare the performance of our imitation learning algorithms applied
to a simplified task in the Playroom. A dataset was collected of a group of subjects in-
structed using synthetic language to put an object in the room on the bed. A programmatic
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Figure 8: Comparison of Imitation Learning Methods on Simple ‘Put X on Bed’ Task. In this
task, an agent is instructed to put an object in the room on the bed using synthetic language. The
data comprised 40, 498 human episodes pre-selected based on success. The GAIL agent (G·A),
even with auxiliary loss regularisation of the agent and discriminator, failed to learn, while the
simple BC (B) agent learned to retrieve objects at random but did not identify the correct one.
Combining BC with GAIL (BG) or BC with auxiliary regularisation (B·A) improved performance.
Further performance was reached by combining GAIL, BC, and auxiliary losses (BG·A). Note that
certain possible comparison models were not run here, including simple GAIL (G), and variations
that would use auxiliary losses on the agent but not the discriminator and vice versa.

reward function that detects what object is placed on the bed was used to evaluate perfor-
mance. Under no condition was the reward function used to train any agent. The agent and
discriminator trained by GAIL with the regularisation (G·A; ‘A’ denotes the inclusion of
‘auxiliary’ regularisation, including the LM loss and RandAugment on the discriminator)
was unable to improve beyond its random initialisation. The behavioural cloning agent (B)
was slightly better but did not effectively understand the task: its performance implies it
picked up objects at random and put them on the bed. Combining the behavioural cloning
with GAIL (BG) by simply adding the loss terms together achieved reasonable results,
implying that GAIL was better at reshaping a behavioural prior than structuring it from
scratch. However, behavioural cloning with the additional regularisation (B·A; LM and
OV on the policy) achieved essentially the same or better results. Adding the auxiliary
LM and OV losses to behavioural cloning and the GAIL discriminator was the best of all
(BG·A). While this task is simple, we will show that this rough stratification of agents per-
sisted even when we trained agents with complicated language games data and reported
scores based on human evaluations.

2.5.4 Interactive Training

While this training recipe is sufficient for simple tasks defined with programmed language
and reward, to build agents from language games data requires further innovation to model
both the setter and solver behaviour and their interaction. In this work, we train one single
agent that acts as both a setter and a solver, with the agent engaged as a setter if and only

18



Input modalities Training algorithms

Name Vision Language BC GAIL Setter replay Auxiliary losses

BGR·A 3 3 3 3 3 3

BG·A 3 3 3 3 7 3

BG 3 3 3 3 7 7

G·A 3 3 7 3 7 7

B·A 3 3 3 7 7 3

B 3 3 3 7 7 7

B(no vis.) 7 3 3 7 7 7

B(no lang.) 3 7 3 7 7 7

Table 1: Agent Nomenclature. Note that “no vis.” and “no lang.” indicate no vision and language
input, respectively.

if the language prompt oLP is non-empty. In the original data, two humans interacted,
with the setter producing an instruction, and the solver carrying it out. Likewise, during
interactive training, two agents interact together: one agent in the setter role receives a
randomly sampled prompt, investigates the room, and emits an instruction; meanwhile
another agent acts as the solver and carries out the instructed task. Together, the setter and
solver improvise a small interaction scenario.

Both the setter and solver trajectories from the language games dataset are used to
compute the behavioural cloning loss function. During interactive training, the solver is
additionally trained by rewards generated by the GAIL discriminator, which is conditioned
on the solver observation sequence. In this way, the setter generates tasks for the solver,
and the solver is trained by reward feedback to accomplish them. The role of a human in
commissioning instructions and communicating their preferences to critique and improve
the agent’s behaviour is thus approximated by the combined action of the setter agent and
the discriminator’s reward.

We will see that interactive training significantly improves on the results of behavioural
cloning. However, during the early stages of training, the interactions are wasted because
the setter’s language policy in particular is untrained. This leads to the production of er-
roneous, unsatisfiable instructions, which are useless for training the solver policy. As
a method to warm start training, in half the episodes in which the solver is training, the
Playroom’s initial configuration is drawn directly from an episode in the language games
database, and the setter activity is replayed step-by-step from the same episode data. We
call this condition setter replay to denote that the human setter actions from the dataset
are replayed. Agents trained using this technique are abbreviated ‘BGR·A’ (‘R’ for Re-
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play). This mechanism is not completely without compromise: it has limited applicability
for continued back-and-forth interaction between the setter and the solver, and it would
be impractical to rely on in a real robotic application. Fortunately, setter replay is help-
ful for improving agent performance and training time, but not crucial. For reference, the
abbreviated names of the agents and their properties are summarised in Table 1.

2.6 Evaluation
The ecological necessity to interact with the physical world and with other agents is the
force that has catalysed and constrained the development of human intelligence (Dunbar,
1993). Likewise, the fitness criterion we hope to evaluate and select for in agents is their
capability to interact with human beings. As the capability to interact is, largely, commen-
surate with psychological notions of intelligence (Duncan, 2010), evaluating interactions
is perhaps as hard as evaluating intelligence (Turing, 1950; Chollet, 2019). Indeed, if we
could hypothetically create an oracle that could evaluate any interaction with an agent –
e.g., how well the agent understands and relates to a human – then, as a corollary, we
would have already created human-level AI.

Consequently, the development of evaluation techniques and intelligent agents must
proceed in tandem, with improvements in one occasioning and stimulating improvements
in the other. Our own evaluation methodology is multi-pronged and ranges from simple
automated metrics computed as a function of agent behaviour, to fixed testing environ-
ments, known as scripted probe tasks, resembling conventional reinforcement learning
problems, to observational human evaluation of videos of agents, to Turing test-like in-
teractive human evaluation where humans directly engage with agents. We also develop
machine learning evaluation models, trained from previously collected datasets of human
evaluations, whose complexity is comparable to our agents, and whose judgements pre-
dict human evaluation of held-out episodes or held-out agents. We will show that these
evaluations, from simple, scripted metrics and testing environments, up to freewheeling
human interactive evaluation, generally agree with one another in regard to their rankings
of agent performance. We thus have our cake and eat it, too: we have cheap and automated
evaluation methods for developing agents and more expensive, large-scale, comprehensive
human-agent interaction as the gold standard final test of agent quality.

3 Results
As described, we trained agents with behavioural cloning, auxiliary losses, and interactive
training, alongside ablated versions thereof. We were able to show statistically signifi-
cant differences among the models in performance across a variety of evaluation methods.
Experiments required large-scale compute resources, so exhaustive hyperparameter search
per model configuration was prohibitive. Instead, model hyperparameters that were shared
across all model variants (optimiser, batch size, learning rate, network sizes, etc.) were set
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through multiple rounds of experimentation across the duration of the project, and hyper-
parameters specific to each model variant were searched for in runs preceding final results.
For the results and learning curves presented here, we ran two random seeds for each agent
variant. For subsequent analyses, we chose the specific trained model seed and the time to
stop training it based on aggregated performance on the scripted probe tasks. See Appendix
sections 4, 4.4, and 5 for further experimental details.

In what follows, we describe the automated learning diagnostics and probe tasks used
to evaluate training. We examine details of the agent and the GAIL discriminator’s be-
haviour in different settings. We then report the results of large-scale evaluation by human
subjects passively observing or actively interacting with the agents, and show these are to
some extent predicted by the simpler automated evaluations. We then study how the agents
improve with increasing quantities of data, and, conversely, how training on multi-task lan-
guage games protects the agents from degrading rapidly when specific tranches of data are
held out. Using the data collected during observational human evaluation, we demonstrate
the feasibility of training evaluation models that begin to capture the essential shape of
human judgements about agent interactive performance.

3.1 Training and Simple Automated Metrics
The probability that an untrained agent succeeds in any of the tasks performed by humans
in the Playroom is close to zero. To provide meaningful baseline performance levels, we
trained three agents using behavioural cloning (BC, abbreviated further to B) as the sole
means of updating parameters: these were a conventional BC agent (B), an agent with-
out language input (B(no lang.)) and a second agent without vision (B(no vis.)). These
were compared to the agents that included auxiliary losses (B·A), interactive GAIL training
(BG·A), and the setter replay (BGR·A) mechanism. Since BGR·A was the best perform-
ing agent across most evaluations, any reference to a default agent will indicate this one.
Further agent ablations are examined in Appendix 4.

Figure 9A shows the progression of three of the losses associated with training the
BGR·A agent (top row), as well as three automated metrics which we track during the
course of training (bottom row). Neither the BC loss, the GAIL discriminator loss, nor
the auxiliary losses directly indicates how well our agents will perform when judged by
humans, but they are nonetheless useful to track whether our learning objectives are being
optimised as training progresses. Accordingly, we see that the BC and Language Match
losses were monotonically optimised over the course of training. The GAIL discriminator
loss increased as agent behaviour became difficult to distinguish from demonstrator be-
haviour and then descended as the discriminator got better at distinguishing human demon-
strators from the agent. Anecdotally, discriminator over-fitting, where the discriminator
assigned low probability to held-out human demonstrator trajectories, was a leading in-
dicator that an agent would behave poorly. Automated metrics played a similar role as
the losses: on a validation set of episodes with a setter replay instruction, we monitored
whether the first object lifted by a solver agent was the same as that lifted by a human. We
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Figure 9: Learning Metrics. A. The top row shows the trajectory of learning for three training
losses: the behavioural cloning loss (top left, total loss which includes losses for the motor actions,
language actions, and auxiliary tasks scaled accordingly to their relative contribution), the GAIL
discriminator loss (top middle), and the language matching auxiliary loss (top right). B. The bottom
row shows tracked heuristic measures along the same trajectory, which proved useful in addition to
the losses for assessing and comparing agent performance. Same Object Lifted measures whether
the solver agent has lifted the same object as the human in the equivalent validation episode; Object
Mention Accuracy measures whether an object is indeed within the room if it happens to be men-
tioned by the setter in a validation episode; and Average Evaluation Reward measures the reward
obtained by a solver agent when trying to solve scripted probe tasks that we developed for agent
development. (Rewards in these tasks were not used for training, just for evaluation purposes.)
C. Agent and human performance compared on the same scripted probe tasks. Agents were di-
vided based on their included components (e.g., trained purely by behavioural cloning or also by
interactive training with GAIL, or whether they were ablated agents that, for example, did not in-
clude vision). We observed a gradual improvement in agent performance as we introduced auxiliary
losses, interactive training, and setter replay.

also measured if object and colour combinations mentioned by the agent were indeed in
the room. Intuitively, if this metric increased it indicated that the agent could adequately
perceive and speak about its surroundings. This was an important metric used while devel-
oping setter language. However, it is only a rough heuristic measure: utterances such as,
“Is there a train in the room?” can be perfectly valid even if there is indeed no train in the
room.
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3.2 Scripted Probe Tasks
In the general case, it is impossible to write a program that checks if an interaction be-
tween a human and an agent (or between two agents) has “succeeded,” even in the context
of a virtual environment. However, for certain very canonical interactions, with a specific
flavour of success criterion, it is possible to write down propositions describing physical
states of the environment that approximate human judgements about the correctness of
following instructions or answering questions. We therefore developed six scripted probe
tasks in which the linguistic behaviour of the setter was scripted to provide clear instruc-
tions or questions (e.g., “Pick up the X”; “Put the X near the Y”; “What colour is the X?”).
Three of these were instruction following (Go, Lift, Position) and three question answer-
ing (Colour, Exist, Count) (see Figure 9 and Appendix 7.2.2 for details) The responses
to these instructions or questions could be unambiguously scored (under certain assump-
tions) by callbacks from the environment engine. Thus, the probe tasks aimed to provide
a cheap and unambiguous way of scoring the behaviour of the solver agent in a way that
approximates the language games played by humans but without requiring costly human
evaluation. During learning we monitored the average performance of our solvers across a
set of these probe tasks (Figure 9, Avg. Eval. Reward). Figure 9B shows the performance
of human players and the trained solver agents across these tasks. Overall, the interac-
tively trained agents, with or without setter replay, performed as well as or better than all
comparisons. See Appendix Table 11 for precise numeric values.

To establish baselines, we measured human performance on these tasks without provid-
ing feedback about success as the humans played. Interestingly, we found that, even though
the tasks involve elementary challenges like picking up and placing objects relative to each
other, human performance under these conditions (which are the same conditions faced by
the agent) was evaluated to be good but not perfect. This underlines the fact that, even for
instruction-following and question-answering tasks that require little planning, reasoning,
or dexterous motor control, what constitutes success is subjective, and the intuitions human
participants brought to bear when deciding they had completed tasks did not always match
our own programmed definition of task success. Furthermore, for more nuanced types of
interaction, we would have been unable to program rule-based evaluations at all.

3.3 Action Prediction Metrics
We also tracked performance at predicting human actions on a validation set of human
demonstrations during training – that is, the behavioural cloning validation set loss. Track-
ing this metric allowed us to observe over-fitting and other training-related problems. How-
ever, as we will see, the BC validation metric was not on its own always a useful guide for
understanding agent task performance. To compute the metric, we held out a random subset
of the human demonstration data and examined how well our agent predicted the human
actions while the agent processed the observations derived from the trajectories. In the
Playroom, the agents use motor actions and language actions. Figure 10 shows the vali-
dation log probabilities for motor actions taken by our agent in the solver role. Training
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drove performance on this metric up both for our agent and main ablations. Strikingly, both
agents trained interactively via GAIL (BGR·A and BG·A) performed worse on with regard
to behavioural cloning loss on the validation set than agents trained to produce actions via
BC alone (B and B·A). This is notable given what we observed in the scripted probe tasks
shown in Figure 9C – that interactive training produced the best performing agents. As we
will see, human judgement of task success agreed more closely with the probe task eval-
uation. Thus, while convenient and sometimes instructive, BC validation set performance
was unreliable for understanding how well agents perform tasks as directed and evaluated
by humans. BC validation curves for language actions and the setter role are shown in
Appendix 4.
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Figure 10: Behavioural Cloning Validation Metrics. Models trained by interaction (BGR·A &
BG·A) performed better than those that were not (B·A & B) in scripted probe task performance
(Figure 9C), but worse in terms of the BC validation set log probability (depicted here).

3.4 Automated Setter Metrics
Table 2 shows automated metrics we used to help develop agents’ capacities to perform
in the role of the setter. These metrics could be measured while training, offering hints
about where training was failing, and which agent variations might perform better. We
measured: 1. if setters referred to objects in the room; 2. the average number of words in
an utterance; 3. the average number of utterances produced in an episode; 4. the 1-gram
entropy of the utterances. To a first approximation, a model’s statistics should roughly
match the human distributions, which are also shown in Table 2. Our agent performed
better than the behavioural cloning baseline B, but GAIL was not a key factor (as it was
not used directly to optimise the setter behaviour). Rather, the main driver of success
was the introduction of auxiliary losses, which we believe helped the model to link visual
information with linguistic content.

To ground our intuitions, we examined the word frequencies of our agent’s utterances
when it played as the setter. To compute these metrics consistently across agent variants, we
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Obj. mention
accuracy

Avg. utterance
length (words)

Avg. num.
utterances

Entropy

Human 0.870± 0.011 6.31± 0.04 1 6.1± 0.2

BGR·A 0.686± 0.007 5.59± 0.02 0.856± 0.003 5.8± 0.2

BG·A 0.691± 0.007 5.78± 0.02 0.893± 0.003 5.8± 0.3

B·A 0.660± 0.007 5.75± 0.02 0.926± 0.004 5.8± 0.3

B 0.241± 0.007 5.67± 0.02 0.845± 0.003 5.8± 0.2

B(no lang.) 0.255± 0.008 5.29± 0.03 0.846± 0.004 6.0± 0.2

B(no vis.) 0.077± 0.005 5.68± 0.02 0.777± 0.004 5.9± 0.2

Table 2: Automated Setter Metrics. Object Mention Accuracy calculates how often a colour
adjective with an object name is found in the room. This measure is not always perfect since
humans can use colours that are not detected by our internal dictionary of acceptable answers;
hence the imperfect human score. The improvement of auxiliary losses over behavioural cloning is
particularly notable. Human episodes were filtered to include one and only one instruction.

forced the agent observations explicitly along the human demonstration episodes in a held-
aside validation set (see Appendix 7.1 for details). Figure 11A plots the word frequencies
from human setter utterances. For illustrative purposes, Figure 11B plots these frequencies
versus those computed for human setter utterances for a subset of words. The data are
clustered around the unity line, indicating that our agent uttered a particular word about
as often as humans did in the same circumstances. For comparison, Figure 11C shows
the agent produced word frequency versus those for a dataset constructed from Wikipedia
(Guo et al., 2020).

3.5 Agent Behaviour and Discriminator Reward Traces
Figure 12 encapsulates a single episode performed by the BGR·A agent. The prompt for
this episode requested that the setter “Ask the player to position something relative to some-
thing else”. The setter followed the prompt by asking the solver agent to “take the white
robot and place it on the bed.” The top row shows the solver finding the object and placing
it on the bed. The lower panel of Figure 12 shows the corresponding output of the GAIL
discriminator reward model over the course of the episode. The model gave positive reward
at several points during the episode, especially at points where the agent interacted with the
correct object. Since our GAIL model takes the setter language as input along with the
solver vision, we are also able to examine counterfactual scenarios. We altered the colour
in the setter utterance to make “take the red robot and place it on the bed,” and reran the
reward model over the episode. This new request was impossible to fulfil given that no
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Figure 11: Language Diversity in Setter Utterances. A. Frequency of the most common words in
human setter language emissions. B. Frequency of the top-100 most common words in the BGR·A
agent setter emissions versus human setter language emission and C. versus the English Wiki40B
dataset (Guo et al., 2020).

red robot existed in the room. Correspondingly, in the counterfactual condition the GAIL
discriminator yielded little reward throughout the episode. Thus, the reward model appears
to possess some understanding the consistency of a setter instruction and the solver agent
behaviour.

3.6 Observational human evaluation
One step closer to our ultimate interactive evaluation of agent behaviour, we simulated
rollouts of agents playing as either the setter or the solver and asked humans to score
whether the behaviour was correct (Figure 13A). These rollouts were then evaluated offline
using an interface that allowed human raters to skip forwards and backwards through each
trajectory of observations and text emissions (Cabi et al., 2019). The raters were asked to
score each episode as either “successful” or “unsuccessful.” For successful episodes, the
raters were also asked to mark the moment in time when success first occurred. This is
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Figure 12: Single Episode Agent Behaviour and Discriminator Reward Traces. The setter
viewed the room [1], and asked the solver to “take the white robot and place it on the bed”. The
solver found the correct object [2], and lifted it onto the bed [3]. The GAIL reward model gave
positive reward, temporally correlated with finding and depositing the object (blue, at [2] & [3]). It
gave less reward when, instead of the original instruction, the reward model received the counter-
factual instruction, “take the blue robot and place it on the bed,” which was inconsistent with the
visual observations (grey). In both cases, reward was high at the beginning of the episode because
the GAIL discriminator was uncertain about classifying between imitator agent and demonstrator
human behaviour while the solver agent awaited the setter instruction.

a relatively high throughput method in comparison to interactive evaluation (Section 3.7),
since simulated rollouts can be generated much faster than real-time in large batches, and
a human rater can typically judge whether or not an episode was successful in much less
time than it would take to execute a live interaction with an agent. Using this paradigm we
were able to collect on the order of 10,000 annotated episodes for each of our agents.

To evaluate solvers in this mode, we replayed human setter actions (both language
and motor) from episodes in a held out test set of demonstration episodes. Since setter
actions were replayed without regard to the solver’s activity, this approach was limited to
interactions that do not involve back-and-forth dialogue or active cooperation between the
setter and solver (we excluded two prompts – “hand me” and “do two things in a row” –
for this reason). In addition, there are cases where the replayed actions of the setter may
impede the solver’s ability to complete the task (for example, by disturbing other objects
in the room). These cases make up a very small fraction of episodes and only contribute
negatively to agent evaluation.

To evaluate agents in the setter role, a dummy solver agent with no control policy
was placed in the environment. Human observers were asked to determine that the setter
produced an utterance which was consistent with the prompt as well as what the setter saw
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Figure 13: Observational Human Evaluation of Agent Performance. A: Success rates for agents
performing the role of either solver or setter, as judged by human annotators. Agent solver and setter
episodes were generated by rolling out a pre-trained policy for ∼200 episodes per script. The bars
represent the proportion of episodes that were marked as “successful” by human annotators. Each
bar represents a weighted average over all prompts within the movement or question-answering
categories. Each script was weighted according to its frequency within the human demonstration
data that was used to train the agents. The human baseline was calculated using annotations of
episodes from the human demonstration data. Error bars represent a 95% CI of the mean. B: Joint
success rates for episodes where the same pre-trained policy performed the roles of both setter and
solver. In this case the setter and solver trajectories for each episode were annotated separately, and
only episodes where both the setter and solver were labelled as successful.

in the room up to the point of the language emission. If no utterance was emitted by the
setter, the episode was deemed unsuccessful.

We used the same interface and instructions to have humans evaluate episodes carried
out by pairs of humans in our main dataset. As expected, humans were judged as complet-
ing all of our tasks (setter & solver, action & language) with high fidelity (>90% success
rate; grey bars in Figure 13). Humans may disagree about what counts as success due
to inherent ambiguity (for example whether a particular object is close enough to be con-
sidered ‘near’), or may be be incorrect in their judgement due to a misreading or lack of
attention. We did not attempt to disambiguate between these two cases. In order to mea-
sure the degree of inter-rater agreement we collected multiple annotations for a subset of
human and agent episodes. We treated the majority label for each episode as the ground
truth (in the case of a tie between successful and unsuccessful annotations the episode was
considered unsuccessful), and measured the proportion of individual annotations that were
in agreement with the majority label. The proportion of annotations that were in agreement
with the majority label was 87.56%±0.22 for human solver episodes, and 91.88%±0.05
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for human setter episodes. We obtained similar results for annotations of agent episodes
(see Table 8 for detailed results).

The top row of Figure 13A shows the success rates for human and agent solvers, as
judged by human raters. When evaluated as solvers, the B(no lang.) and B(no vis.) base-
line agents were able to successfully complete the setter’s instruction in less than 5% of
episodes, and the model trained with BC alone succeeded 20.12%±1.13 of the time. In
contrast, the BGR·A agent was judged to be successful 57.02%±0.89 of the time. Abla-
tions B·A and BG·A were judged to perform at an intermediate level (37.28%±0.84 and
46.80%±0.88 respectively). The bottom row of panel A shows equivalent results for setter
episodes. The success rates for setter episodes were higher overall in comparison to solver
episodes. In particular the B(no vis.) baseline agent achieved a much higher success rate
as a setter than as a solver (17.77%±0.69, compared to 2.27%±0.30), reflecting the fact
that it is often possible for a setter to give a valid instruction without attending to the initial
state of the room. Overall, these results speak clearly to the advantage of using auxiliary
objectives and interactive training for improving solver agents beyond straightforward BC
in the context of grounded language interactions. Although the agents do not yet attain
human-level performance, we will soon describe scaling experiments which suggest that
this gap could be closed substantially simply by collecting more data. Perhaps most cru-
cially, even when the BGR·A agent failed to perform a given task, it frequently performed
sequences of actions that were “close” to what was asked. Thus, we believe it is a good
candidate to be optimised further using human evaluative feedback.

We also examined the performance of our best performing agents in joint episodes, in
which the same agent performed the roles of both the setter and the solver in the inter-
action. As before, human raters annotated both sides (setter & solver) of these entirely
simulated interactions. We considered an episode to be a joint success only if both the set-
ter and the solver were marked as successful by humans. Figure 13B shows that the BGR·A
was successful in playing both sides of the interaction for 39.58%±0.9 of episodes. Thus,
agents were often capable of both setting tasks relevant to their surroundings, as well as
responding intelligently to those requested tasks. Combined with automated success la-
belling, which we will explore later in this document, this capability may open the door
to using self-play as a mechanism for optimising behaviour. As expected, the B, B·A, and
BG·A models were less capable at completing jointly successful episodes, achieving suc-
cess rates of 10.38%±1.15, 23.59%±1.67, and 33.89%±0.87 respectively. Figure 21 in the
Appendix contains a more detailed breakdown of agent performance according to prompt.

3.7 Interactive Human Evaluation
Finally, we evaluated the ability of our agents to engage in direct interactions with humans.
In these experiments, humans played the role of the setter6 just as they do in the human-

6We did not evaluate setter agents in a fully interactive mode because, for all but one of the tasks we
explored, the solver behaviour is largely irrelevant to the success of the setter. That is, setter success is
determined by the prompt and what they see up to their first utterance.
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human episodes we collected: they received a prompt, looked around the room and ex-
panded the prompt to an instruction, observed the agent, and terminated the episode when
they considered it solved, or were certain that the solver had failed. These human-agent
interactions were recorded, and then the solver (i.e. agent) side of each interaction was
annotated offline by human raters, using the same interface as in Section 3.6. Compared
to purely observational evaluation, where humans could fast-forward through movies, in-
teractive evaluation is a relatively low throughput method, since each human player can
interact with only a single agent at a time, and the interactions must happen in real time.
We collected a total of 27,895 annotated episodes across four different agents.
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Figure 14: Interactive Human Evaluation. Top row: mean solver success rates for live interac-
tions, categorised as instruction-following or question-answering, where a human played the role of
the setter, as judged by human raters. The human baselines (grey bar) represent live human-human
interactions, as shown in the top row of Figure 13A. Error bars denote a 95% CI of the mean. Bot-
tom row: scatter plots comparing the mean success rates achieved for interactive evaluation (x-axis)
and observational evaluation (y-axis). The observational success rates are the same values plotted
in the top row of Figure 13A.

Figure 14 shows the interactive human evaluation results for the agents. Both the
ordering and the absolute magnitudes of the success rates for live human-agent interac-
tions correspond closely to those for observational evaluation. Our agent was judged to be
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successful 59.01%±1.06 of the time during human-agent interactions (60.10%±1.32 and
57.25%±1.75 for action and question-answering tasks respectively). This is slightly higher
than the average success rate for this agent in observational evaluations (57.02%±0.89).
One possible explanation for this difference is that in the interactive setting the human
setter may react to the solver’s position and, for example, stay out of its way.

3.8 Scaling & Transfer
It is natural to wonder how the highest-performing agent would have improved if we had
collected and trained with more data, and how it generalises to unseen situations. We ran
experiments to examine the scaling (Kaplan et al., 2020) and transfer properties of imitation
learning for behaviour in the Playroom.

First, we examined how the performance of our agents changed as a function of the
size of the dataset trained on. We trained the B·A and BG·A agents using random splits
of 1

16
, 1

8
, 1

4
, and 1

2
the size of our full training set. Figure 15A shows the average per-

formance across the instruction-following and question-answering scripted probe tasks for
these dataset sizes. The scripted probe tasks are imperfect measures of model performance,
but as we have shown above, they tend to be well correlated with model performance under
human evaluation. With each doubling of the dataset size, performance grew by approxi-
mately the same increment. The rate of performance, in particular for instruction-following
tasks, was larger for the BG·A model compared to B·A. Generally, these results give us con-
fidence that we could continue to improve the performance of the agents straightforwardly
by increasing the dataset size.

We examined the question of whether our agents transferred knowledge from several
angles. First, Figure 15B shows the results of training across multiple prompts at once
versus training on the data associated with a single prompt. Assessed via the six scripted
probe tasks, a model that trained across all prompts performed as well as or better than a
model that only trained on the data corresponding to a single prompt.

A signature of transfer learning is that agents would require less data to learn new tasks
given a background of previous knowledge. To test this, we divided our data into two sets:
one in which the instruction given by the setter contained the words “put,” “position,” or
“place”, which we refer to as the positional dataset, and the complement of this set. We then
trained on varying fractions (1

8
, 1
4
, 1
2
, 1) of the positional data in isolation, or in conjunction

with the second set of data, that is, all other setter instructions. Figure 15C shows the
performance of BG·A models trained using these splits on the Position scripted probe
task. When trained in conjunction with all other setter instructions, the model performed
better with only 1

8
of the positional data than when trained with all of the positional data

alone.
Zooming in further on the question of generalisation, we randomly selected one object-

colour combination, orange ducks, and removed all instances of orange ducks from all
training data, including both human demonstration data and interactive training episodes.
In total we removed 23K episodes containing orange ducks, regardless of whether they
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Figure 15: Scaling & Transfer. A. Scaling properties for two of our agents. The agent’s perfor-
mance on the scripted probe tasks increased as we trained on more data. In instruction-following
tasks in particular, the rate of this increase was higher for BC+GAIL compared to BC (scatter points
indicate seeds). B. Transfer learning across different language game prompts. Training on multiple
language games simultaneously led to higher performance than training on each single prompt in-
dependently. C. Multitask training improved data efficiency. We held out episodes with instructions
that contain the words “put,” “position” or “place” and studied how much of this data was required
to learn to position objects in the room. When simultaneously trained on all language game prompts,
using 1

8 of the Position data led to 60% of the performance with all data, compared to 7% if we
used the positional data alone. D. Object-colour generalisation. We removed all instances of orange
ducks from the data and environment, but we left all other orange objects and all non-orange ducks.
The performance at scripted tasks testing for this particular object-colour combination was similar
to baseline.
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where referred to by the setters or not. Importantly, we kept episodes with other orange
objects and those with non-orange ducks. This was possible using the game engine to check
which object types/colours were present in a given configuration of the Playroom. We then
trained the BG·A model on either this reduced dataset or on all of the data. After training,
we asked the models to “Lift an orange duck” or “What colour is the duck?” We examined
the performance for these requests in randomly configured contexts appropriate for testing
the model’s understanding. For the Lift instruction, there was always at least one orange
duck in addition to differently coloured distractor ducks. For the Color instruction, there
was a single orange duck in the room. Figure 15D shows that the agent trained without
orange ducks performed almost as well on these restricted Lift and Color probe tasks as
an agent trained with all of the data. These results demonstrate explicitly what our results
elsewhere suggest: that agents trained to imitate human action and language demonstrate
powerful combinatorial generalisation capabilities. While they have never encountered the
entity, they know what an “orange duck” is and how to interact with one when asked to do
so for the first time. This particular example was chosen at random; we have every reason
to believe that similar effects would be observed for other compound concepts.

3.9 Evaluation Models
Our results thus far show how to leverage imitation learning to create agents with powerful
behavioural priors that generalise beyond the instances they have been trained on. We have
relied on scripted probe task evaluations during training, but these are labour intensive to
build, and we expect they will be increasingly misaligned with human intuitions as the
complexity of tasks increases. Looking forward, we are interested in whether it is possible
to automate the evaluation of agents trained to interact with humans. Ultimately, if a model
robustly captures task reward, we may wish to directly optimise it. To this end, we trained
network models to predict the success/failure labels annotated by humans on our human
paired data. Here we report results for instruction-following tasks. Early experiments with
similar models for question-answering data are reported in Appendix 6.

We trained the evaluation model exclusively on human instruction-following task data.
Humans labelled paired human episodes as successful 93.27% of the time. Evaluation
therefore needs to contend with significant class imbalance, so we tracked balanced accu-
racy as our main metric for model performance. Though we trained models on only human
instruction-following episode data, we selected our best models using balanced accuracy
computed on a mixture of human validation data as well as data from two previously trained
agents (which we refer to as a “validation score”; for more details, see Appendix 6.2). We
use balanced accuracy as a metric throughout this section since episodes are unbalanced
with respect to success and failure — a model that merely predicts success 100% of the
time would be correct 93.27% of the time for human data. Balanced accuracy is computed
as the average of the proportion of correct predictions across the two classes: (% successes
predicted correctly + % failures predicted correctly) / 2.

Our evaluation model consumes a video of the episode from the solver’s perspective
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Figure 16: Evaluation Models. A. Balanced accuracy of the evaluation model computed for human
validation episodes and for agent rollouts. B. Actual and predicted success rates for instruction-
following episodes across human and agent data. The evaluation model was trained on human
data alone, so performance on agent data requires generalisation out of distribution. C. Correlation
between actual versus predicted success rates for ablations. Dark grey dots are ablations presented
in Appendix 6.

along with the language instruction emitted by the setter. To reduce the demand of process-
ing whole episodes, the evaluation model processes observations with temporal striding,
reducing the number of inputs seen in the episode. It assigns a probability to the episode’s
success (y = 1) according to ŷ = rθ(o

V
≤T ,o

LI), where T is the final time of the episode,
given the video and language instruction, which we collectively denote as τ = [oV≤T ,o

LI ]
for convenience. The video is passed through a standard residual network (He et al., 2016).
Language instructions are embedded and summed along the token dimension to produce
a single summary vector. The video and text representations are then concatenated and
fed through a transformer, followed by an MLP and a logistic output unit. The model was
trained by minimising the evaluation loss, LEV, which was defined as the binary cross-
entropy loss over the human data training set:

LEV(θ) = E(y,τ)∼D [−yi ln rθ(τi) + (1− yi) ln(1− rθ(τi))] . (3)

During training, we balanced the positive and negative examples within a batch. We regu-
larised the model’s representations via a full-episode variant of the language matching loss
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presented above in equation 2, which we compute on the positive examples in the batch.

LELM(θ) = − 1

B

B∑
n=1

[
ln rθ(o

V
≤T ,o

LO
n ) + ln

(
1− rθ(oV

≤T ,o
LO
SHIFT(n))

)]
. (4)

We optimised a convex combination of the LEV and LELM losses, where the scaling coeffi-
cient was chosen by hyperparameter search. The language matching loss was found to be
crucial for best performance, contributing to a 3.38% improvement in validation score. See
Appendix 6 for details of model construction and training.

After training, we applied the model across our entire human validation dataset as
well as the simulated rollouts for our BGR·A agent and ablations (from Figure 13). Each
episode was assigned a label using a threshold determined on a human validation dataset.
Figure 16A shows the balanced accuracy of our model applied to the human data (grey,
82.17%), our BGR·A agent (magenta, 62.47%), and ablated variants. For comparison, ad-
ditional human ratings achieved an average balanced accuracy of 90.24% across human
data and rollouts from ablations. Figure 16B compares the success rates for the agents
as labelled by humans (solid bars; as in Figure 13A) and our evaluation model (dashed
bars). The model is imperfect, but is clearly able to distinguish between better and worse
performing models. Figure 16C furthers this point; it shows a scatter of the actual and
predicted success rates for the ablations presented in the main text, along with additional
ablation agents detailed in Appendix 6. Our evaluation model agrees with human success
evaluations for a wide range of agent configurations, giving a trend line close to unity and
with an R2 of 0.923.

Finally, we trained a variant of the evaluation model which was additionally able to
predict the time at which success was achieved, as humans did when annotating videos.
This model achieves similar performance to our transformer model with a validation score
of 75.84% compared to the transformer model’s validation score of 76.08%. Details for
this model, as well as ablations, may be found in Appendix 6.

Our evaluation model robustly tracked the performance of agents across a vast spectrum
of competence in the Playroom, from near-random agents up to human demonstrators. The
reasonable correspondence between machine-learned evaluation models and human judge-
ment strongly suggests the possibility that further improvements to the agents described
in this work can be evaluated readily with the same models. Future work will explore us-
ing these models to evaluate agents during training, select hyperparameters, and directly
optimise agent parameters.

4 Discussion & Related Work
Integrated AI Research. Artificial intelligence research is mostly fragmented into spe-
cialized subfields, each with its own repertoire of domain-specific solutions. While the
field has made much progress through this reductionist programme, we feel that integrated
research is also required to understand how different elements of cognition functionally
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inter-relate. Here, we have taken steps to construct a more general programme of AI re-
search that emphasises the holistic integration of perception, goal-directed, embodied con-
trol, and natural language processing, as has been advocated for previously (McClelland
et al., 2019; Lake and Murphy, 2020).

Central to our integrated research methodology were “interactions.” Historically, Tur-
ing argued that a machine would be intelligent if it could interact indistinguishably from
a human when paired with a human examiner, a protocol he called “the imitation game,”
(Turing, 1950). Such work provided clear inspiration to Winograd whose “SHRDLU” sys-
tem comprised an embodied robot (a stationary manipulator) in a simple blocks world that
could bidirectionally process limited language while engaging in interactions with a human
(Winograd, 1972). Winograd envisioned computers that are not “tyrants,” but rather ma-
chines that understand and assist us interactively, and it is this view that ultimately led him
to advocate convergence between artificial intelligence and human-computer interaction
(Winograd, 2006).

Imitating Human Behaviour at Scale. Our method for building integrated, interactive
artificial intelligent rests on a base of imitation of human behaviour. A central challenge
for any attempt to learn models of human behaviour is a process to elicit and measure it. In
developmental psychology, several previous projects have attempted large-scale collection
of human behavioural data. Roy et al. (2006) sought to record video and sound data from
all rooms of a family home as a single child grew from birth to three years old. Following
Yoshida and Smith (2008), Sullivan et al. (2020) recorded a large dataset of audio-visual
experience from head-cameras on children aged 6-32 months. These studies have not so
far attempted to use data to learn behavioural models. Further, it is at present intrinsically
difficult to do so because algorithms and systems have not yet been developed that can
perceive and understand the intentions of humans in a way that transfers across radical
changes in embodiment, environment, and perspective (Stadie et al., 2017; Borsa et al.,
2017; Aytar et al., 2018; Merel et al., 2017).

Massive text corpora are a very different example of large-scale behavioural data that
is relatively abundant and easy to collect (Devlin et al., 2018; Radford et al., 2019; Brown
et al., 2020). Inter-person dialogue can be recorded in text form, which can capture a form
of interactive and goal-driven behaviour. However, modelling text does not satisfy our
goal of integrating perception, motor behaviour and language. Moreover, studying how
to build agents that understand the “grounding” of language (Harnad, 1990) within their
sensorimotor embodiment is both fundamentally interesting (Hill et al., 2019a; McClelland
et al., 2019) and of obvious use for building robotic and other personal assistant artificial
intelligences. Nevertheless, we have observed dramatic progress in artificial intelligence
in the language domain, which has been made possible by increasing model and dataset
size, the latter made possible by the vast quantity of text available on the internet. While
these two ingredients – model and dataset size – may not constitute a complete recipe
for creating generally intelligent agents, they have proven sufficient to produce sometimes
astonishing models (Brown et al., 2020). In this work we have focused on a domain yet to
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profit from this approach, embodied, interactive agents, where natural language, complex
motor control, and multi-modal sensory information come together. A hurdle for this study
is that there is no equivalent to a large and publicly available text dataset that can be applied
directly to train models.

Computer games provide an alternative possibility for collecting large-scale interactive
behaviour. The multi-player Starcraft gameplay data collected by Vinyals et al. (2019) is
sufficiently rich to produce interesting interactive agents. However, even the most complex
and realistic computer games typically make a major simplifying assumption: that there
is a single well-defined objective designed by the game creator, relative to which perfor-
mance (winning or losing) can be measured unambiguously. Our strategies to overcome
the absence of such a metric when modelling human behaviour are a key contribution of
this work.

Language, Interactions, and Robotics. Recent work in robotics demonstrated the pos-
sibility of conditioning simulated robotic manipulators with natural language instructions
(Lynch and Sermanet, 2020). Other work on language and interaction based in 3D sim-
ulated environments has focused on embodied instruction-following (Hill et al., 2019b),
navigation (Anderson et al., 2017) or question-answering (Das et al., 2018). These ap-
proaches share commonalities with our work here but also present important differences.
First, in prior work, language has typically described behaviour observed in short, few sec-
ond windows. (By comparison, interactions in the Playroom can last upwards of a minute.)
Second, prior work has largely focused on comparatively constrained sets of behaviours,
involving uncluttered environments with few objects to manipulate (Lynch and Sermanet,
2020; Hill et al., 2019a), or has studied navigation absent of environment manipulation
altogether (Anderson et al., 2017). Third, our agents not only interpret language but also
produce language output. While producing context-specific, embodied language is notable
in its own right, it has also presented many practical difficulties that were not faced in
previous work (including the problem of making language congruent with perception and
learning from sparse language output data).

In some sense, robotics is the ultimate integrated, interactive research platform (see
e.g. Tellex et al. (2011) for a pioneering study of language understanding in robotics).
Ultimately, what we wished to accomplish here in simulation was to build a research pro-
gram to study a way to build intelligent agents in general. Compared to a typical robotics
platform, our virtual environment allowed for faster iteration and few hardware challenges,
making it an ideal place to start this research. An obvious next step is to take the lessons
learned from our proposed process model of building AI, and apply them to the real world.

Imitation Among Humans. Social learning, imitation, and mimicry are found through-
out the animal kingdom (Heyes and Galef Jr, 1996; Laland, 2004; Byrne, 2009), and hu-
man infants are intrinsically motivated to imitate. They imitate the phonemes, words, and
grammatical structures of the language that they encounter in their environment (Chom-
sky, 1959), as well as observed interactions with objects in their environment (Heyes and
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Galef Jr, 1996). Infants appear to leverage sophisticated and abstract capacities for imi-
tation for much the same reason we have proposed here: to bootstrap from other agents’
behaviour to acquire basic competence. “Program-level imitation,” where an individual
recognises the gist of a complex task, shifts the burden of learning from tabula rasa explo-
ration to refinement through practice (Byrne and Russon, 1998; Byrne, 2009).

Challenges of the Approach The approach to building agents that we have pursued so
far has relied substantially on imitation learning techniques to approximate the distribution
of human behaviour in the Playroom. We have argued that imitation learning jumpstarts
initial competency for engaging in human interactions. However, imitation learning has its
own limitations for producing ultimately intelligent, interactive agents. On its own, imita-
tion learning does not distinguish between human skill and human error, what is desirable
or what is counterproductive. The full distribution of behaviour in our dataset includes,
for example, mispellings, clumsiness, and lapses of attention. Eliminating these errors
and producing agents with mastery and grace in their environment will require additional
techniques, including adaptation from human evaluative feedback. To record sufficiently
diverse behaviour, we have “gamified” human-human interaction via the instrument of lan-
guage games. These language games have helped generate data targeting basic and desir-
able capabilities for agents, but we believe that it is through interacting with and learning
directly from humans, not merely imitating pre-existing human interaction datasets, that we
can produce broadly capable agents. To go beyond competence within somewhat stereo-
typed scenarios toward interactive agents that can actively acquire and creatively recombine
knowledge to cope with new challenges may require as yet unknown methods for knowl-
edge representation and credit assignment, or, failing this, larger scales of data. Multiple
avenues, including understanding more deeply the mechanisms of creative, knowledge-
rich thought, or transferring knowledge from large, real world datasets, may offer a way
forward.

5 Conclusion
In this work, we sought to build embodied artificial agents that interact with their world,
with each other, and with us. The agents could perceive and manipulate their environment,
produce language, and react capably when given general requests and instructions by hu-
mans. They also generalised and transferred knowledge to new tasks. Although the agents
undertook tasks without easily programmed success criteria, we were able to develop a va-
riety of robust and effective strategies for evaluating their performance. While the agents’
behaviours were not perfect, even when they failed to satisfy instructions, they routinely
undertook actions that seemed to reflect some understanding of the original instruction,
thus exhibiting behaviour primed to profit from interactive feedback.

Ultimately, we endeavour to create agents that assist us in our daily lives. Therefore,
they will need to understand and learn from us while we interact with them. If the agents
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introduced into human environments are not reasonably capable from the start, we believe
there will be little incentive to engage with them subsequently. Here, we have made some
material progress by creating agents that may be interesting enough to entertain contin-
ued interaction, and, in a virtuous circle, it is this interaction that promises to select for
increasingly intelligent, useful agents.
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Appendix for Imitating Interactive Intelligence
Interactive Agents Group

DeepMind

1 Playroom Environment Description
The Playroom environment is a configurable room developed in the Unity game engine
(Ward et al., 2020). As described below, many aspects of the room are randomised in each
episode.

Small objects Furniture objects Object colours Wall and ceiling colours

basketball arm chair aquamarine light red
book book case blue light blue
cushion chair green light yellow
football chest magenta light green
hairdryer dining table orange light purple
headphones stool purple light orange
mug wardrobe pink light aquamarine
picture frame bed red light magenta
potted plant shelf white
rubber duck storage box yellow
table lamp
teddy
boat
bus
car
carriage
helicopter
keyboard
plane
robot
rocket
train
racket

Table 3: The total repository of objects and colours. In each episode, small objects and furniture
are objects are sampled from these sets and object colours are applied to them at random as well as
one of three sizes. The colours of the walls and ceilings are sampled from a list of lighter shades.
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1.1 Objects and furniture in the Playroom
Inside the Playroom is a selection of toys and furniture chosen randomly on a per-episode
basis from the repository described in Table 3. Figure 17 illustrates these objects.

Figure 17: Repository of small objects and furniture in the Playroom environment. The colours of
the objects are chosen at random from the list described in Table 3.

1.2 Randomisation
The following properties of the room are randomised per-episode. Where ranges are spec-
ified, the sampling interval is closed (inclusive) and the randomisation is uniform over
integers (object quantities) or reals (dimensions):

• The shape and size of the room: the room is an L-shape, with the two longest walls
varying in length between 6 and 10 metres, and no part of the room being narrower
than 4 metres.

• The initial position and orientation of the agent anywhere inside the room.

• The initial position and height of the shelves on the walls (between 0 and 8 shelves).

• The initial position of the doors and windows.

• The initial location of furniture, against the walls (between 2 and 4 items inclusive)

• The initial location and orientation of small objects on the floor (between 2 and 6
inclusive, chosen uniformly).

• The initial location and orientation of small objects on top of furniture items (between
2 and 6).

48



2 Data
In this section we provide additional details regarding our data collection process. The
data we collected fall into two main categories: language game demonstrations and human
annotations.

2.1 Human Participants
Participants were recruited through Google’s internal labeling platform, a service that hires
contractors to complete tasks. Subjects were given consent forms under DeepMind’s HuBREC
human subject research review protocol and were paid a fixed hourly rate.

2.2 Language Games
Each language game episode consists of a two-player interaction where one player (the
setter) provides an instruction that the other player (the solver) must complete. This inter-
action takes place within the Playroom described in Section 1. The web interface used for
collecting human demonstrations is shown in Figure 18. Players controlled their respective
avatars with a keyboard and mouse, using the control scheme described in Section 2.4.1.
Players communicated via a chat dialogue in a sidebar.

2.2.1 Data Collection Procedure

At the beginning of each recording session the participants were randomly divided into two
groups of equal size, A and B, with group A initially assigned the role of setter and group B
the role of solver. Pairs of participants were randomly selected, one from group A and one
from group B, and assigned to play together in a particular game instance. Participants
were not told the identity of the partner they were paired with, and the two groups were
seated apart from each other to ensure that the setter and solver could not see each others’
screens or communicate with outside the game. Within a pair, the players switched setter
and solver roles every 30 minutes. The pairs themselves were randomly shuffled every
hour, such that each player from group A was paired with a different partner from group B.
Each participant therefore spent equal time playing as a setter and as a solver and had the
opportunity to interact with multiple different partners over the course of data collection.

2.2.2 Detailed Instructions

Figure 19 represents the order of events within a single language game episode. At the
beginning of each episode, the setter was given a textual cue indicating what type of in-
struction or question they should pose to the solver. This cue consisted of two randomly
sampled components: a “prompt” specifying the general type of instruction to give and a
“modifier” that stipulated additional constraints the setter’s instruction must satisfy. For
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Figure 18: User interface for collecting language games demonstrations.

Top: Solver’s view, bottom: setter’s view. Numbered elements: 1. First-person camera view;
2. Game script (only shown to the setter); 3. Meter showing the amount of time remaining until
the episode ends automatically; 4. Text entry box for typing messages to the other player; 5. Chat
history showing previous messages typed by both players.
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example, the combination of the Lift prompt with the “refer to objects by colour” modi-
fier resulted in the final cue “Ask the other player to lift something. Try to refer to objects
by colour.” The modifier was omitted in a random a subset of episodes. We found that
including modifiers helped to increase the overall diversity of the language used by the
human setters, and in particular encouraged setters to refer to attributes of objects other
than their names (for example, colour or relative position). Tables 4 and 5 contain the full
set of prompts and modifiers respectively. Table 6 contains the total number of human
demonstration episodes recorded for each combination of prompt and modifier.

Having given an instruction, the setter then observed the behaviour of the solver, and
terminated the episode via key press if they were either satisfied that their instruction was
completed successfully by the solver, or if they were certain that the solver would not be
able to succeed (for example if the solver made an obvious mistake). The episode ended
automatically after two minutes if the setter did not terminate it manually within that time.

Environment

Environment

Setter

Setter

Solver

Solver

“Ask the other player
to count something”

“How many red
toys are there?”

“There are 2.”
End episode
by key-press

Figure 19: Sequence diagram representing the order of events within a single language games
episode.

Table 6: Numbers of human demonstration episodes recorded for each combination of prompt and
modifier. ‘–’ denotes cases where the prompt was given without a modifier.

Prompt Modifier(s) Episodes

arrange – 14215

bring me – 14314

count

– 35989

refer to objects by colour 6229
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Table 6: (continued)

Prompt Modifier(s) Episodes

refer to objects by location 6212

use negation words 6106

use shape words 6111

describe location

– 35691

refer to objects by colour 6211

use negation words 6213

use shape words 6084

do two things in a row – 13046

freestyle activity – 14582

go

– 35777

not bed, door, or window 6274

refer to location by colour 6156

use horizontal position words 6137

use proximity words 6086

lift

– 49263

refer to objects by colour 6194

refer to objects by location 6108

use horizontal position words 6209

use negation words 6161

use proximity words 6094

use shape words 6118

use vertical position words 6170

make a row – 14354

position object

– 35531

refer to objects by colour 6017

52



Table 6: (continued)

Prompt Modifier(s) Episodes

refer to objects by location 6147

use horizontal position words 6230

use negation words 6111

use proximity words 6137

use shape words 6075

position yourself – 14470

push object – 14297

put on top – 14197

put underneath – 14337

question about colour

– 35688

refer to objects by location 6074

use horizontal position words 6169

use negation words 6114

use proximity words 6122

use quantifier words 6092

use shape words 6124

use vertical position words 6156

question about existence – 14329

say what you see – 14564

touch – 14544

2.3 Human Annotations
The second type of data we collected comprised human annotations of prerecorded episodes,
generated either by human players or agents.
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Prompt Full text

go Ask the other player to go somewhere

lift Ask the other player to lift something

position object Ask the other player to position something rela-
tive to something else

position yourself Ask the other player to stand in some position rel-
ative to you

bring me Ask the other player to bring you one or more ob-
jects

touch Ask the other player to touch an object using an-
other object

push object Ask the other player to push an object around us-
ing another object

make a row Ask the other player to put three or more specific
objects in a row

arrange Ask the other player to move a group of objects
into a simple arrangement

put on top Ask the other player to put something on top of
something else

put underneath Ask the other player to put something underneath
something else

freestyle activity Ask the other player to perform an activity of your
choice

say what you see Ask the other player to say what they are looking
at or noticing right now

question about colour Ask a question about the colour of something

question about existence Ask the other player whether a particular thing ex-
ists in the room

describe location Ask the other player to describe where something
is

count Ask the other player to count something

Table 4: Prompts used in language games.
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Modifier Full text

refer to objects by colour Try to refer to objects by colour

refer to location by colour Try to refer to the location by colour

use shape words Try to use shape words like: circular, rectangular, round,
pointy, long

refer to objects by location Try to refer to objects by location

use proximity words Try to use words like: near, far, close to, next to

use horizontal position words Try to use words like: in front, behind, left of, right of,
between

use vertical position words Try to use words like: on top, beneath, above, below

use negation words Try to use words like: not, isn’t

use quantifier words Try to use words like: some, all, most, many, none

not bed, door, or window Do not use the words: bed, door, window

Table 5: Modifiers used in language games

2.3.1 Annotation Interface

These data were collected using a “sketching” interface similar to that used by Cabi et al.
2019 (Figure 20). This interface allows human raters to scan through trajectories of first-
person visual and text observations by moving the mouse cursor left and right, and to draw
a “reward sketch” whose height represents the player’s performance over time.

Although the sketching interface can record a graded level of reward across time, we
found that this continuous mode of annotation was time-consuming for human raters to
perform, and it was difficult to achieve consistency across different prompts and different
human raters. We instead chose to collect binary sketches by setting a height threshold
representing the point at which the task is considered “solved,” represented by the green
horizontal bars in Figure 20. Raters were instructed to decide whether the player suc-
ceeded, and if so, to mark the moment of success by drawing a small “spike” that enters
the green “success” region. Each sketch therefore captures information about whether or
not a particular episode was successful, and about when success occurred. For evaluation
purposes, each sketch was binarised and then reduced along the time dimension, yielding a
single boolean label indicating whether or not the height of the sketch exceeded the success
threshold at any point within the episode.
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Figure 20: User interface for collecting annotations of language games episodes. Top: Solver’s
view; bottom: Setter’s view. Numbered elements: 1. First-person camera view; 2. Sketching inter-
face; 3. Marker indicating when a setter language emission occurred, 4. Marker indicating when
a solver language emission occurred; 5. Setter language emission; 6. Solver language emission;
7. Prompt and modifier (only shown for setter sketching); 8. “Submit” button.
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2.3.2 Generating Episodes for Annotation

In addition to collecting annotations for human-human demonstration episodes, we also
collected annotations for four different types of episode that were generated by rolling
out an agent policy (Table 7). The cases included annotation of solver performance with
a replayed setter instruction, annotation of setter success at producing a valid, feasible
instruction, annotation of the success of a setter and solver agent interacting together, and
annotation of solver success when interacting with a live human setter. In cases where the
setter was a live human, episodes were usually terminated manually by the setter before
the two minute time limit. However, in cases where the setter was either a replayed human
setter trajectory or an agent, no manual terminations were available, and therefore episodes
always had a fixed duration of two minutes.

Setter Solver Termination

Human demonstration Live human Live human Key-press or 2 min time limit

Solver offline eval. Replayed human Agent 2 min time limit

Setter offline eval. Agent No-op 2 min time limit

Joint offline eval. Agent Agent 2 min time limit

Solver online eval. Live human Agent Key-press or 2 min time limit

Table 7: Episode types used for annotation.

2.3.3 Truncation of Frame Sequences for Annotation

We found that displaying full episodes made the annotation process slower and more dif-
ficult, since annotating longer frame sequences requires a greater degree of concentration
and manual dexterity than shorter sequences. We therefore truncated each sequence of
frames that was displayed to the annotators in order to exclude frames that were unlikely
to have a bearing on whether or not the episode should be judged as successful.

In the case of solver episodes we excluded all of the frames that came before the setter’s
first language emission, since during this time the solver had no instruction to carry out.
We also excluded all frames that came more than 5 seconds after the solver’s first language
emission (if there was one), since we required the solver’s first emission to be correct in
order for an episode to be considered successful. 5 seconds was chosen as the cut-off
because over 95% of human episodes where there was a solver language emission ended
less than 5 seconds after the emission occurred. For example, if the solver made multiple
attempts to answer a question then we only counted the first answer they gave. Finally, we
truncated each frame sequence to a maximum duration of 60 seconds. This time limit was
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chosen because over 95% of human episodes terminated within 60 seconds after the setter
gave the instruction.

In the case of setter episodes we excluded all frames that came after the setter’s first
language emission. The motivation for doing this was that the setter should give an instruc-
tion that is valid given their current knowledge of the state of the room, so only frames that
occur before the instruction was given are relevant for judging its validity. For example, a
setter might say “lift the blue teddy bear” without first looking around the room to see if
it contains a blue teddy bear. We considered this to be a failure even if the setter happens
to guess correctly, and there is indeed a blue teddy bear in the room. We also truncated
setter episodes to a maximum length of 75 seconds. This time limit was chosen because it
encompassed over 95% of human setter emissions.

Accuracy Balanced accuracy

Setter Solver Setter Solver

Human 87.56 ± 0.22 91.88 ± 0.05 86.89 ± 0.24 88.24 ± 0.10

BGR·A 88.30 ± 0.38 88.05 ± 0.38 86.38 ± 0.47 86.32 ± 0.56

BG·A 88.61 ± 0.37 89.51 ± 0.48 86.87 ± 0.46 87.70 ± 0.82

B·A 87.29 ± 0.38 90.30 ± 0.46 85.26 ± 0.49 88.11 ± 1.41

B 88.13 ± 0.40 94.08 ± 0.34 87.80 ± 0.46 89.90 ± 1.76

B(no vis.) 87.69 ± 0.32 98.22 ± 0.13 84.05 ± 0.91 84.33 ± 4.08

B(no lang.) 97.91 ± 0.14 98.01 ± 0.15 89.90 ± 2.60 86.07 ± 3.39

Table 8: Agreement between Human Annotations of Human and Agent Episodes. Accuracy
corresponds to the proportion of individual annotations that are equal to the majority label for the
corresponding episode. Balanced accuracy was calculated by computing separate accuracies for
episodes where the majority label was successful or unsuccessful respectively, and then taking the
mean of these two values. ± denotes a 95% CI of the mean.

3 Agent Architecture

3.1 Inputs
Setter and solver agents inputs comprised multi-modal sensory perceptions and miscella-
neous extra information used for auxiliary supervised learning or unsupervised learning,
or used as hard-coded features (such as whether an object is currently being grasped, or
previously chosen actions).

58



3.1.1 Perception

Each agent’s multi-modal input comprised 96 × 72 × 3 resolution RGB images depicting
the agent’s first person perspective of the 3-D room, and two types of language, formatted
as simple multi-word text strings. The first language text came from the environment and
provided information to the setter about the episode’s particular interaction type (e.g. “Tell
the other player to lift something”), or an empty string for the solver. The second came from
the other agent in the room, providing a dialogue channel used, for example, by setters to
communicate an instruction to a solver.

RGB images were processed by a ResNet architecture (He et al., 2016), composed of
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Figure 21: Observational Human Evaluation Results per Prompt. Each heat map pixel repre-
sents the mean success rate of a given agent as judged by human raters, expressed as a fraction of
human baseline performance for the corresponding script.
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5 residual blocks. Each residual block had two stages of processing. The first consisted of
a 3 × 3 convolution followed by an optional max pooling operation with a 3 × 3 window
size, downsampling the incoming image by half along each dimension. The second stage
consisted of two loops over a sequence of 4 computations: a ReLU non-linearity, a 3 × 3
convolution, a ReLU non-linearity, and a final 3 × 3 convolution. The input to each pass
of the loop is summed with the output, implementing a residual connection. Finally, the
output of the entire residual block is passed through a ReLU non-linearity. Therefore, al-
together each residual block consisted of 5 total convolutions, one optional max-pool, and
two residual connections. The ResNet architecture as a whole thus had 25 total convolu-
tional layers. In pseudocode, the ResNet block was:
d e f r e s i d u a l b l o c k ( i n p u t ) :

c o n v o u t = conv ( i n p u t )
b l o c k i n p u t = max pool ( c o n v o u t )
f o r i n r a n g e ( 2 ) :

c o n v o u t = b l o c k i n p u t
c o n v o u t = r e l u ( conv ( c o n v o u t ) )
c o n v o u t = r e l u ( conv ( c o n v o u t ) )
b l o c k i n p u t = c o n v o u t + b l o c k i n p u t

r e t u r n c o n v o u t

Each of the 5 convolutions within a given residual block used the same number of ker-
nels. The number of kernels for each block were 16, 32, 64, 128, and 256. We opted to
implement max-pooling for every residual block except the first, resulting in 4 downsam-
pling operations across the ResNet. Therefore, the ResNet computed a 6× 5× 256 output
for a given 96 × 72 × 3 input image. Finally, each of the 6 × 5 ResNet output vectors of
length 256 was linearly projected to 512 dimensions (i.e., 6 × 5 × 512), and then the set
were reshaped to be a 30× 512 matrix by merging the height and width dimensions. Each
row, therefore, corresponded to a 512 dimensional feature vector for a particular “pixel” in
the ResNet output.

3.1.2 Text Preprocessing

Text inputs underwent minor preprocessing before being provided as inputs to the agent.
First, we tokenised the string using a space delimiter, forced lower casing, and stripped
punctuation. Next, we applied basic typo correction using the following four-step process
to each word token: (1) if the word was already present in the output vocabulary then it
was returned unchanged; (2) if the word was a concatenation of two words in the output
vocabulary then the missing space was inserted; (3) if there was a predefined correction
specified in a custom typo-fix dictionary, which manually mapped common typos to their
corrections, then this correction was be applied; (4) if the word was within a closeness
threshold, implemented using the standard Python difflib package with a threshold setting
of 0.5, or a word in the output vocabulary then it was replaced by the word from the output
vocabulary.

We constructed our agents’ vocabulary by processing a sample of human language
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from our dataset, correcting for typos as just described, and selecting the top 500 most
frequently used words. Next, we appended to this vocabulary words known to be used in
the procedural evaluation instructions, resulting in the final vocabulary for our agents. We
constructed a spelling correction table to detect common typos. Both the vocabulary and
the typo correction table are attached in Section 10.

Input strings, which at this point are tokenised into words and typo corrected, were then
converted to integers using a static word-to-integer mapping and either truncated or padded
to a set length of 16 total integers. Finally, these sequences of 16 integers were used to look
up an learned embedding table, resulting in size 512 vectors representing each token. Each
set of 16 vectors therefore represented each source of input text to the agent; i.e., text from
the environment or inter-agent communication.

3.1.3 Miscellaneous Features

The final source of inputs to the agent were miscellaneous features, comprising an extra text
source for auxiliary supervised or unsupervised learning, an extra text source indicating the
previous language action, hard-coded features indicating the number of steps since the last
non-noop target, and hard-coded features indicating the number of steps since the last time
an agent made a decision about whether to emit an action (as opposed to choosing not to
act, or no-oping). The latter were represented on a log scale, log(steps), and were provided
as input to the no-op policy, as described below in section 3.4.

3.2 Sensory Integration by the Multi-Modal Transformer (MMT)
After perceptual processing, the agent had available a set of 30 512-dimensional visual
representations, one for each “pixel” in the ResNet output, two sets of 16 512-dimensional
vector embeddings, one for each word in each of the text inputs, and one 512-dimensional
vector representing the token from the previous step’s language emission. These vectors
comprised a size 30 + 16 + 16 + 1 = 63 set of 512-dimensional vectors.

To this set of 63 vectors we appended two more 512-dimensional vectors whose initial
activations were learned. These additional two vectors were used in a way analogous to the
CLS token used in BERT architectures Devlin et al. (2018), as will be described. Together,
the 65 vectors comprised the input to an 8-layer, 8-head transformer Vaswani et al. (2017)
with size 512 embeddings and MLP layers, using relative position encoding Shaw et al.
(2018).

The CLS-like channels were free to attend to all of the other input embeddings, acting as
a dedicated attention-based “output aggregator” for the transformer (since transformer out-
puts are a set of embeddings, some sort of aggregation or reshaping is needed to pass their
output to any downstream module, which in our case was an LSTM). We also performed a
feature-size mean-pooling operation across all the others embeddings. These three vectors
(the 2 CLS-like embeddings and the one aggregate embedding) were concatenated together
to form a 1536-dimensional vector that was passed along to an LSTM.
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3.3 Memory
We used a two-layer, 512-dimensional LSTM as memory in our agent. The output of the
LSTM, a 1024-dimensional vector, was concatenated with the LSTM’s input to implement
a rudimentary skip connection past the LSTM memory. This vector served as the inputs to
the various policy heads in our agent, described next.

3.4 Outputs
The output of the agent’s memory served as the input to various policy heads: an aggregate
motor policy, which produced actions for movement, looking, and grabbing, and a language
policy, which produced single word emissions from the agent’s vocabulary per timestep.
Overriding each of the motor and language policies was a no-op policy, which dictated
whether an action should be chosen for the current step or not. When trained with GAIL,
motor actions were produced at 15 frames per second and repeated for two steps in a row to
reach 30 frames per second. The behavioural cloning loss skipped every other action in the
dataset. This was probably not an optimal modelling choice, but it initially helped GAIL
training by simplifying the reinforcement learning exploration and credit assignment. For
BC agents that did not also train with GAIL, we tried modelling actions at 30 frames per
second and at 15, with 30 working better.

3.4.1 Language Policy

The input to the agent’s language policy was the output from the memory, described in
section 3.3, concatenated with two features: a bit representing the decision about whether
or not to act, as determined by the no-op policy (see section 3.4.3), and a bit representing
whether the agent had already acted in the episode.

For the agent’s language policy we used a simple one-layer, 512-dimensional MLP
with ReLU non-linearity followed by a 512-unit linear layer. We then computed weights
corresponding to the agent’s preferred word emission, w = softmax(Ex), where E is the
row-wise learnable embedding matrix for the vocabulary mentioned previously for tokeniz-
ing and embedding input text, and x is the linear layer’s output. These weights were used
a logits for a categorical distribution across the vocabulary, which allowed us to compute
log probabilities of the target word when doing behavioural cloning, or for sampling when
running the agent online.

A notable feature of this language policy was the shared encoding and decoding of
language embeddings: the embeddings used to encode text in the agent input were the
same as those used to decode the agent’s output representation into a word, E. Thus, the
agent used the same representation for a given word whether it was processing it as input
(e.g., when a solver is told to “lift a duck”), or whether it was choosing a word to utter (e.g.,
when a setter is asking a solver to “lift a duck”).
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3.4.2 Motor Policy

The motor policy had three subcomponents: the movement policy, the grab policy, and the
look policy. The movement policy consisted of a one-layer, 512-dimensional MLP with
ReLU non-linearity followed by a linear projection to a 9-dimensional vector representing
the logits for a categorical distribution across movement actions: right, left, forward, back,
forward right, forward left, backward left, backward right, and no movement (no-op). The
grab policy was similar to the movement policy except the categorical distribution was
across two actions: grab and no-op. The look policy also started with a one-layer, 512-
dimensional MLP with ReLU non-linearity. This provided the input to a small 100-unit
LSTM that implemented a recursive discrete decision procedure where coarse decisions
about where to look were gradually refined over 5 steps. At each step, each dimension
of the continuous “looking space” (i.e., the space represented by the current visual RGB
input) was divided into 9 segments, partitioning both the height and width dimension of
the space into 3 discrete partitions. One partition was sampled for each dimension and
recursively divided in the same manner. In this way one action in the continuous space
was represented as a sequence of discrete actions. This procedure provided a limit to the
resolution for “looking,” which could increase if the number of steps was increased, but
we capped the resolution at 0.01, assuming an original size of 2 units for each x- and
y-dimension.

3.4.3 No-Op Policies

Both the motor and language policies could be vetoed by a no-op policy, which decided
whether an action should be exposed by the agent to the environment at any given timestep
(practically, the motor and language policies always sampled actions, but it was the no-op
policies’ job to determine whether these actions would be passed along to the environment,
and hence, whether they would actually be enacted by the agent). The no-op policies were
one-layer, 512-dimensional MLPs with ReLU non-linearities, followed by a linear projec-
tion to a 2-dimensional vector, which acted as the logits to a categorical distribution over
two actions: op, and no-op. The input to the MLP was the output described in section 3.3
concatenated with the hard-coded features described in section 3.1.3: hard-coded features
indicating the number of steps since the last non-no-op target, and hard-coded features in-
dicated the number of steps since the last time an agent made a decision about whether to
emit an action.

4 Agent Training
We used two principal methods to train agents: supervised learning-based behavioural
cloning to expert human interactions, and a form of inverse reinforcement learning, specif-
ically Generative Adversarial Imitation Learning (Ho and Ermon, 2016).
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4.1 Data Processing
We preprocessed the language games data, described in Section 2.2, before it was used
in training. When the human player does not move, actions are registered as “no-ops.”
We removed these actions and their corresponding observations from trajectories. If a
trajectory contains a sequence of no-ops, we condensed them to a sequence of just two
no-op actions.

The recorded text fields in the data were also preprocessed to correct for typos and
match the agent’s vocabulary as described in 3.1.2.

4.2 Supervised Learning (Behavioural Cloning)
An expert trajectory comprised the observations, or inputs (RGB images, and any text
input, see section 3.1) and the actions taken (see section 3.4 for information about the
variety of actions). Therefore, for a single trajectory in a batch, expert observations are
given sequentially to the agent, which then produces its predicted action distribution for
the move, look, grab, no-op, and language policies. Each of these policies was trained
to maximise the likelihood of the expert action. The loss terms had unequal coefficients:
ωLANG = 50, ωMOVE = 1. We used the ADAM optimizer (Kingma and Ba, 2014) with
a batch size of 192 and sequence (unroll) length of 50. Hyperparameters for all training,
including RL, are presented in Table 9.

While expert language productions were multi-word (e.g., “lift the yellow duck on the
table”) and recorded at the time point when the subjects pressed enter, to simplify the
model we preprocessed these target language actions in the dataset by smearing the tokens
across time, after the emission, ensuring that each step only required the agent to predict
a single word token, rather than the full multi-word text. For example, if at time t the
language target was “lift the yellow duck on the table” according to the expert human
data, then after preprocessing the target at time t became “lift”, the target at t + 1 became
“the”, and so on. While this method produced a slight distortion between the time the
experts actually emitted language and when the agents were asked to emit language, in
practice we did not see any detrimental effects. Instead, agents performed better when
only tasked with emitting a single token per timestep. While we did not fully explore
the exact reasons behind this, we hypothesize a number of effects might be at play: (1)
smearing language across time increases the proportion of timesteps that include a language
target, decreasing the sparsity of the language gradients, which can have subtle implications
for computing, for example, the momentum parameters in the optimizer; (2) smearing
language across time allows the agent core to receive an unadulterated gradient signal for
any given word prediction, as opposed to the non-smeared case where the gradients across
all word predictions are intermingled; (3) the model architecture was simplified. However,
we believe these results were context-dependent, and there may be cause to revisit them.

Although agents were trained as both setters and solvers, we did not explicitly indicate
the particular role of the agent (i.e., whether it was a setter or a solver for a given episode)
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because this information was indirectly revealed by the presence for the setter or absence
for the solver of the prompt language input.

4.3 Unsupervised and Auxiliary Supervised Learning
A particularly difficult aspect of modeling the expert data using behavioural cloning was
the relative density of each policy target. Move and look actions more densely populated
the trajectories (though were still relatively sparse compared to no-ops), while the grab and
language policies were very sparse. Given that most trajectories involved only a single
language emission for the setter (and sometimes zero language emissions for the solver,
if it was just performing a motor task), only a single time step out of approximately 2000
contained a language target (though, after smearing, this resulted in about 6 timesteps out
of every 2000, with an average emission length of approximately 6).

This was a non-ideal circumstance for supervised learning, since batches of data could
only be expected to have a handful of language and grabbing targets, significantly reducing
the effective batch size for these targets. Unfortunately, the effects of sparsity are even
more pernicious and difficult to resolve. With a relatively strong learning signal to train the
move and look policies, and a weak signal to learn the language policy, we found that naive
supervised training on expert data resulted in very poor language policies regardless of the
length of training. We did not complete a full battery of experiments to conclude exactly
what the underlying effect was; however, we hypothesise a few: (1) if there is a strong,
low-variance gradient for one type of target policy compared to another, then the model
parameters may specialise to predict the dense targets and at the expense of the sparse
targets; (2) the effective batch size for the sparse targets might simply be too low for ef-
fective training, precluding proper learning in any practical amount of time; (3) the sparse,
high-variance language action gradients and dense, low-variance gradients may compete to
influence the updates for the optimiser parameters (e.g. the normaliser in Adam), and the
optimiser may then become even less sensitive to the language gradients.

This sparsity problem was important to overcome since the language target data was a
rich source of information to learn about object identities, grounding the words for partic-
ular words (“duck”) to the pixel inputs (i.e., the actual shape of a duck in the visual field).
This is not only useful for setter language policies, but also motor policies, since being able
to recognise objects is a necessary condition for being able to manipulate them.

We fortunately developed a robust solution with two prongs using both unsupervised
learning and auxiliary supervised learning. These methods enabled the agents’ perceptual
systems to develop the capacity to recognise objects and actions and provided dense and
discriminative gradients at each time step.

4.3.1 Language Matching (LM)

The Language Matching (LM) auxiliary task was partially inspired by developments in
contrastive self-supervised learning (Chopra et al., 2005; Gutmann and Hyvärinen, 2010;
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van den Oord et al., 2018; Hénaff et al., 2019). The idea was that the visual observations in
an expert trajectory are correlated with the instruction provided by the expert setter. This
was especially true for instructions like manipulating named objects, going to locations,
etc. We made use of this observation by effectively doubling the batch size: in the first part
of the batch we had the visual observations and associated language input to solver from
real trajectories; in the other part of the batch, we had the same visual observations and the
language input from other trajectories (shuffled from the same batch by taking the language
from the next batch element modulo the batch size B).

We added a simple MLP classifier head to the multi-modal transformer taking in the
original batch elements and the shuffled ones, training it to classify them correctly using
a conventional bernoulli cross entropy loss. This loss was only active during behavioural
cloning training of the solver and non-active during interactive training or when training as
the setter.

4.3.2 Object-in-View Auxiliary Supervised Learning (OV)

Many of the emissions in the expert setter language involved objects in the room. For setter
agents, language often referred to objects at a distance as well, where they were harder
to recognise. Solvers would often approach and manipulate objects, giving them clearer
views, which made the language matching loss work. However, for setter training, lan-
guage matching was insufficient for training agents to recognise objects at a distance in
crowded scenes to enable successful language generation. We introduced the Object-in-
View (OV) auxiliary task, which worked by proposing particular colour-object combina-
tions (e.g., “yellow duck”) and forcing the agent to decide whether this combination was
in view or not. Intuitively, an agent that can successfully learn of this task should have a
strong command over basic object and colour identification, invariant to the object’s posi-
tion, angle, partial occlusion, and so on.

To implement this loss we began by choosing a colour-object combination for each
timestep, choosing with a 50% probability whether a given step would include a colour-
object pair that was within view or not. The colour-object pair was represented by a sim-
ple two-word string, which we embedded into two 512-dimensional vectors using the lan-
guage embedding method described previously for processing text inputs. We then took
the feature-wise mean of these two vectors as the final representation of the colour-object
pair.

Next, we took the output of the agent’s LSTM memory (concatenated with the LSTM
input, as described previously), and passed it through a 2-layer MLP with 512 units per
layer. We then performed the dot product between the MLP output and the colour-object
representation, the result of which was used to compute a bernoulli cross entropy loss with
the binary target. Similar to the behavioural cloning losses, we used a scalar coefficient of
20 for the OV loss.
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4.4 GAIL and Interactive Training
In addition to training the agent via a supervised method such as behavioural cloning we
also used a form of inverse reinforcement learning, specifically Generative Adversarial Im-
itation Learning (GAIL) (Ho and Ermon, 2016). GAIL is an algorithm closely related to
IRL (Ziebart, 2010; Finn et al., 2016), which trains a discriminator model to distinguish
demonstrator trajectories from imitator / agent trajectories. A function of the discrimina-
tor’s output is converted into a reward for the agent, which trains by RL to make trajectories
that appear to the discriminator like the demonstrator trajectories.

4.4.1 GAIL Data Processing

When training with GAIL, we additionally preprocessed the data. First, the visual obser-
vations provided to the discriminator were modified using RandAugment (Cubuk et al.,
2020). In particular, two random image geometric image augmentations were performed
from the set of rotation, shearing, and translation. In addition, the images were randomly
cropped by 10 pixels.

The original data was recorded at 30 frames per second. However, to improve the RL
movement policy exploration, we strided the data and used every other observation and
original action. When executing the agent, the actions were sampled by the agent at 15
frames per second, with each action repeated for two time steps in a row. Empirically, this
substantially improved RL training with GAIL. Future work using stronger RL optimisers
may enable this action repeat to be dropped.

4.4.2 Interactive Training

Experience for the reinforcement learning updates was generated through two different
simulation environments: a multi-player interactive training environment and a setter re-
play environment. In each of these environments, the agent generated a trajectory and
received reward from the reward model.

In the multi-player interactive training mode, one single model was instantiated twice,
one acting as a setter and one as a solver. The agent in the setter role received a prompt
from the environment and had to produce an instruction or question which is achievable
given the current room configuration. The agent in the solver role received this instruction
and had to carry out the task or answer the question. The trajectories generated during the
interaction were processed by the GAIL discriminator and used to train via reinforcement
learning. In this work, we only updated the policy via RL on solver trajectories.

4.4.3 Setter Replay (SR)

During early stages of training, when the language policy was still largely untrained, the
instructions produced by the setter were often erroneous or not achievable. This produced a
significant number of interactions that were not useful for training the solver, and therefore
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wasted compute time. To mitigate this, in half the episodes we replayed human setter
trajectories from the dataset verbatim instead of running the setter agent policy. For this,
we also retrieved the Playroom’s initial configuration from an episode in our database and
followed the human setter activity from that episode step-by-step.

4.4.4 GAIL Discriminator Architecture

4.4.5 Inputs

The discriminator scored short sequences of observations, which were then converted into
a reward to train the agent. Both trajectories generated from the multi-player interactive
environment and from the setter replay served as negative examples for the discriminator
training. Observation sequences from the expert dataset of human interactions served as
positive examples.

4.4.6 Perception

As in the agent, the discriminator processed multi-modal perceptual inputs with images,
depicting the agent’s first person perspective of the 3-D room, and language input, format-
ted as simple multi-word text strings. The text input came from either the agent, from the
other agent via setter replay of prerecorded trajectories, or from human interaction when
executing the trained agent.

The discriminator used the same ResNet architecture as the agent to process RGB im-
ages. As in the agent, each of the 5 convolutions within a given residual block used the
same number of kernels. The number of kernels for each block were 16, 32, 64, 128 and
256. The ResNet output was reshaped to be a 30×256 matrix by merging height and width
dimensions. Each row, therefore, corresponded to a 256 dimensional feature vector for a
particular vector in the ResNet output’s spatial array.

The text input was similarly preprocessed by tokenising and typo correcting. The dis-
criminator was also provided with an extra text source indicating the language action from
the agent from the last time step.

4.4.7 Multi-Modal Integration

After encoding the image and text, the discriminator also used a multi-modal transformer
(MMT) to merge visual and text representations (see Section 3.2). The output of this mod-
ule at each timestep was mean-pooled and concatenated to the output from 2 CLS-like
channels, making a 768d vector et, which was passed to a two-layer MLP (hidden size
256) to train a language matching classifier (see Section 4.4.9).

4.4.8 Buffered Memory

We used buffered sequences of the outputs of the MMT within the discriminator. These se-
quences consisted of the 8 previous MMT outputs strided by 2 steps: et−16, et−14 . . . , et−2, et.

68



With the agent already operating on strided observations of 2 steps, this extended the ob-
servation history for the discriminator to 32 real time frames or about 1 second of history.

The buffered (over time) input, was passed through a second temporal transformer using
relative position encoding Shaw et al. (2018) with 2-layers and 4-heads Vaswani et al.
(2017) with size 256 embeddings. The transformer output was then passed to a final MLP,
with hidden size of 256 to produce the discriminator output Dt. Reward for the policy was
computed as rt = − ln(1−Dt).

4.4.9 Language Matching (LM)

We applied the same language matching loss LLM that we used in the agent (see Sec-
tion 4.3.1) within the discriminator. We primarily relied on language matching to optimise
representations in the discriminator, by reducing the relative scale of the discriminator cross
entropy loss: LLM + αLGAIL, with α set to 0.01.

LLM was applied to the output of the MMT and only trained using data from expert
trajectories (shuffled and unshuffled), whereas LGAIL was applied to the whole output of
the discriminator after processing with the temporal transformer.

4.4.10 Reinforcement Learning

We adopted the distributed RL training framework Importance Weighted Actor-Learner Ar-
chitecture (Espeholt et al., 2018). Agent trajectories were generated on “actor” computers
on CPUs and then sent to a “learner” in a [T,B] format, where T is the unroll length and B
the batch size. The trajectories for supervised learning were combined with the trajectories
from RL, making a full batch of size 2 × 192, with different losses applied to supervised
learning and RL batch elements. The value function baseline for RL was implemented in
the agent by an additional MLP head with a hidden layer size of 512 taking in the same
inputs as policy heads do. We used a small entropy loss in the policy gradient update (Mnih
et al., 2016; Espeholt et al., 2018). Both the movement and language policy (Section 3.4)
shared the same rewards and value function Vθ. The returns Rt for each policy head were
computed independently using the respective off-policy corrections (Espeholt et al., 2018).
Table 9 contains a list of all the training hyperparameters.

5 Distributed Training Infrastructure
The agent and reward model were trained in a distributed fashion. Overall the setup was
similar to IMPALA (Importance Weighted Actor-Learner Architectures) Espeholt et al.
(2018). Actors ran on multiple CPUs. Actors simulated environments and performed infer-
ence on agent models to generate actions. Learners ran on accelerators, in this case tensor
processing units (TPUs) (Jouppi et al., 2017), and performed parameter updates using the
data generated on actors. Model parameters were synchronised from learners to actors on
a regular basis.
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Hyperparameter Value Description

ηa 1e-4 Agent learning rate (BC & RL)

ηd 1e-4 Discriminator learning rate

βπ1 0.0 Agent Adam β1

βπ2 0.999 Agent Adam β2

βD1 0.9 Discriminator Adam β1

βD2 0.999 Discriminator Adam β2

γ 0.9 Agent discount factor

ε 1e-5 Scale factor for entropy term

T 50 Unroll length

B 192 Batch size

α 1e-2 Balance between GAIL and LM loss in discriminator

T 50 Unroll length

B 192 Batch size

ωLANG 50 coefficient for language policy loss

ωMOVE 1 coefficient all movement policy losses (move, grab, and look)

ωLM 1 coefficient for language matching loss

ωOV 20 coefficient for Object-in-View Loss

Table 9: Hyperparameters for supervised learning and RL.

The difference from IMPALA for the experiments presented here was that there were
several types of actor. Some ran through setter and solver dataset trajectories for supervised
training; some generated both setter and solver trajectories for interactive training; and
some generated setter replay episodes where the room layout and the setter actions came
from dataset trajectories. We used two separate learners: one for the agent and one for the
reward model. In addition, to monitor training, we used two types of evaluation actors: one
for the scripted probe tasks and one to calculate metrics like log-probabilities and language
output metrics by running through dataset trajectories. More details follow in the remainder
of this section.

5.1 Actors
Actors were split into three types, which sync parameters at the start of each unroll:
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1. Dataset Actors: Episodes for the environment on these actors are replays of the
episodes in the stored human data, from the view of the setter or the solver (in equal
proportion). Teacher forcing is used for agent actions, i.e. actions (for both movement
and language) are forced to be the same as the actions in the data. For each timestep,
inference is run on the agent and reward model and as usual state is maintained be-
tween steps (and reset to initial state at the start of each episode). Once enough steps
have been taken to complete one unroll (episode boundaries may come in the middle
of this) the data is stacked and sent to both the agent and reward model learners, to
be used for behavioural cloning and GAIL discriminator learning respectively.

2. Interactive Training Actors: Episodes for the environment on these actors are ran-
dom instantiations of the Playroom environment described in section 1. The current
agent parameters are used to do inference (separately) on observations from the point
of view of setter and solver. This inference produces actions for both players that are
used to step the environment. Inference is also run on the current reward model,
based on visual observations from the solver perspective only, and rewards are thus
generated for the solver. Once enough steps have been taken to complete one un-
roll (episode boundaries may come in the middle of this) the solver data is stacked
and sent to both the agent and reward model learners, to be used for reinforcement
learning and GAIL discriminator learning, respectively.

3. Setter Replay Actors: Episodes for the environment on these actors are partial replays
of the episodes in the stored human data. The initial layout of the room, including the
type, colour and position of all objects, is taken from an episode of stored data. The
actions of the setter are taken from the human setter trajectory. In all other respects,
these actors are then the same as the interactive training actors.

Note that on all these actors, the language output of the setter becomes the language
input observation for the solver, and vice versa. The language game prompt is provided as
an observation to the setter only. Note also that each CPU can run multiple environments
simultaneously. For the experiments presented here, we used 2,000 dataset actors with 8
environments per actor and 2,000 online environment actors with 4 environments per actor.
Online actors were either all interactive training or all setter replay, or 1,000 of each.

5.2 Learners
There are two different learners:

1. Agent Learner: The agent learner updates parameters for the agent. Per step it re-
ceives one batch of mixed setter and solver unrolls from the dataset actors, which it
uses for behavioural cloning, language matching, and object-in-view losses. It also
receives per step a batch of solver unrolls (same batch size) from online environ-
ment actors (the two types of online actors, if they are both running, feed to the same
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queue), which it uses for reinforcement learning losses with the rewards coming from
the GAIL reward model (already computed on the actors).

2. Reward Model Learner: The reward model learner updates parameters for the reward
model. Per step it receives a batch of solver data from dataset actors and a batch (with
the same size) of solver data from online actors (the two types of online actors, if they
are both running, feed to the same queue). It uses the dataset batch for the language
matching loss and then both batches together for the GAIL discriminator loss.

Note that parameters are synced to separate cacher CPU workers regularly and actors
sync their parameters from these cachers rather than directly from the learners. The sync
frequency from learners to cachers is shorter than the time for either learner to take a single
step. The batch size used in all cases was 2× 192. Each learner ran on 16 TPU chips.

5.3 Evaluation Actors
There are two types of evaluation actors, which both sync parameters at the start of an
episode:

1. Single Player Online Evaluation Actors: These actors run all the scripted probe eval-
uation tasks, with the current agent parameters used for solver inference and action
choice. Procedural rewards are logged per episode.

2. Dataset Evaluation Actors: Similar to the dataset actors, these actors take episodes
from the human data (training or validation, logged separately) and replay them from
the perspective of setter or solver. Agent inference is run on the observations to get
log probabilities of actions and various language output metrics.

6 Evaluation models
As discussed in Section 3.6, one way in which we could measure our progress is to have
humans directly score how often our agents are successful at completing instructions.
However, collecting human annotations is relatively expensive, and in order to acceler-
ate progress it is desirable to have an automated method for evaluating agent performance.
Automated evaluations can be employed in several ways:

• They can be used to remove poor quality human demonstration data before we apply
imitation learning approaches;

• They can be used to perform hyperparameter tuning for imitation learning architec-
tures and algorithms;

• They can be used to produce reward to optimise agent performance using reinforce-
ment learning.
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We trained supervised models to predict labels given by human annotators who viewed
episodes. The models themselves observed strided or decimated sequences of observations
to reduce model size. We chose to predict a binary success/failure label for each episode as
a simple, albeit not completely general, approach to evaluation. We found there was a high
degree of agreement among human annotators for this type of score on our dataset (about
85-90%; see Table 8). In this work, we focused on building models to evaluate solver
behaviour only. This section presents a detailed view of the evaluation model architecture
presented in the main text, the different models with which we experimented, the process
we used to select our best models, and additional results.

6.1 Architecture
The description of the evaluation model architecture can be divided into three parts: pro-
cessing the inputs, constructing the model, and defining the losses to optimise. Processing
the inputs transforms trajectories of observations into a format that the model can effi-
ciently ingest, while defining the model and losses connect the different modalities in the
observations to evaluate if an episode was successful.

6.1.1 Inputs

Each episode consists of a sequence of frames, a single setter instruction, and a single
solver language emission. We used a majority vote across all human annotations of an
episode to determine the label.

The inputs are processed as follows:

• Video: we selected x frames (where x is a hyperparameter with default x = 32)
evenly spaced, starting at the index of the setter instruction and ending at the end of
the episode.

• Setter Instruction: we take the first setter emission, use the same typo correction
system used in the agent, and pad with zeros to fill 16 tokens.

• Solver Emission: we take the first solver emission, use the same typo correction
system used in the agent, and pad with zeros to fill 10 tokens.

• Binary Reward: we binarised the reward sketches by labeling a sketch as a success
if any frame of the sketch passed the success threshold. We then took the majority
vote across all annotations for a single episode if we had multiple sketches.

• Binarised Evaluation Sequence: for moment of success prediction, we reduce the
annotation sequences down to a one-hot encoding of moment of success of length
num-frames-selected + 1. The 1 occurred at the time index of the first frame on
or after the median moment of success marked in the reward sketches, or at the last
index if the episode was unsuccessful. Note: this was only used for the success frame
prediction loss.
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Because the human training data was heavily imbalanced, with the vast majority of
episodes being successful, we constructed batches of episodes (default batch size was 32)
by selecting an equal number of successful episodes and unsuccessful episodes.

6.1.2 Models

One of the biggest challenges in developing evaluation models is that we had long episodes
with multiple modalities to combine: video frames, setter instruction, and solver emission.
The model thus had to learn to determine what constituted success for a particular instruc-
tion based on the video and the solver emission (in the question-answering case). We ex-
plored different model architectures to aid in solving this problem in a way that generalised
from human episodes to agent episodes.

One of our models was based on a ResNet architecture. This model first computed
embeddings for each of the modalities: video, setter instruction, and solver emission. For
the vision stack, we had a hyperparameter controlling whether to use a standard ResNet-50
(He et al., 2016) or a TSM ResNet, which adds a temporal shift module inside the residual
block (Lin et al., 2019). We used the standard dm-haiku embedding module (Hennigan
et al., 2020) to calculate an embedding for the setter instruction and an embedding for
solver emission. We then had two methods for combining modalities:

1. Concatenation: Concatenate the embeddings of each modality, then pass the con-
catenated embeddings through an MLP head to get the output of the model.

2. Product: Multiply the embeddings of each modality, then take the mean across the
embedding size as the output of the model.

Another of our models was a transformer-based architecture. In addition to the three
inputs from video, setter instruction, and solver emission, we additionally introduced two
dummy embeddings analogous to the CLS input in BERT (Devlin et al., 2018). For the
setter instruction and solver emission embeddings, the token embedding for each modality
used a separate learnable parameter lookup embedding, with embedding dimension 512,
with the same vocabulary as used by the agent architecture. The embedding of the video
frames was produced by a ResNet-50 (He et al., 2016), where the normal output was re-
placed with a 512 dimensional vector. We concatenate the embeddings from all modalities
and added to them segment and position embeddings to form a total embedding. The seg-
ment and position embeddings were also learnable embeddings, with dimension 512. The
segment embedding encoded which of the four modalities the input was from. The posi-
tion embedding encoded the position in the sequence, with frames and words appearing in
time order. Correspondingly, the vocab sizes was 4 for the segment embeddings and 60 for
the position embeddings (the sum of number of frames, 32, setter instruction length, 16,
solver emission length, 10, and dummy inputs, 2) respectively. The total embedding was
then passed through a transformer with 16 self-attention heads, and 16 transformer-block
layers, without dropout. We use the same transformer block as in (Radford et al., 2019), ex-
cept we used standard rather than masked attention. We took a mean over the non-dummy
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outputs, and concatenated this with the dummy outputs, then flattened the result before
passing it through an MLP head with 2 hidden layers each of size 512. We trained with
batch size 32. We grid searched over learning rates 3e−3, 1e−3, 3e−4, 1e−4. In the next
section, we will describe the losses in more detail. For this model, we compared relative
weightings of success loss to language matching loss of 0., 0.5, 1.0.

6.1.3 Losses

In addition to the standard supervised loss, we compared two auxiliary loss options whose
weighting was controlled by hyperparameters. These auxiliary losses helped the model to
learn better representations and generalise to unseen episodes. We computed these losses
in the same place as the standard supervised loss by passing augmented batches through
the model (and potentially adding a separate head), then we summed the weighted losses.

1. ELM loss: The full-episode variant of the language matching loss, as defined in
Equation 4, was computed on only successful episodes in the batch, yielding a batch
size equal to half the total batch size. We augmented the batch by shuffling the
instruction field for half of the successful episodes, holding the video and the solver
emission field constant. We then used a boolean array denoting whether the language
instruction field was shuffled or not as the targets. For the concatenation version
of the model, another hyperparameter determined whether or not to share the same
weights for the success MLP head and the language matching MLP head.

2. Success frame prediction loss: The success frame prediction loss helps the model
overcome the difference in distribution of human episodes and agent episodes. In
human episodes, the moment of success is skewed towards the end of the episode,
whereas in agent episodes the moment of success is skewed towards the beginning
of the episode (for more details, see Section 6.3 below). We computed the success
frame prediction loss by using a separate MLP head to predict a sequence of length
num-frames-selected where a 1 at index i signifies that success occurred at sampled
frame i. We then use a cross entropy loss to classify the moment of success we
derived from the reward sketches, computing the loss on successful episodes only.
This loss was only used on the ResNet-based evaluation model.

6.2 Model Selection
In Table 10, all of the evaluation models are listed, with architectural details, active losses,
and number of input observations.
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Name TSM Concat/
Product

ELM
Loss

Success
Frame
Loss

Transformer Number of
Frames

RC·S·Tr 7 C 3 7 3 32

RCT·S·SF 3 C 3 3 7 32

RC·S 7 C 3 7 7 32

RP·L 7 P 3 7 7 48

RPT·L 3 P 3 7 7 48

RPT·S 3 P 3 7 7 32

RCT·S 3 C 3 7 7 32

RC·S·Tr (no ELM) 7 C 7 7 3 32

RPT·S (ELM only) 3 P 3 7 7 32

RC·S·Tr (ELM only) 7 C 3 7 3 32

RC·S (no ELM) 7 C 7 7 7 32

Table 10: Evaluation Model Property List. We name the models based on the features they
contain, where R denotes using a ResNet to embed the video frames, C or P denotes the method used
to combine modalities (concatenation or product), T denotes using TSM, S or L denotes the length
of the video (short=32 frames or long=48 frames), SF denotes using the success frame prediction
loss, and Tr denotes using the transformer-based architecture.

We used a “validation score” to both select the best model among those presented in
Table 10 and to select the best hyperparameter combination per model. The formula for the
validation score was as follows:

validation-score = 0.5× balanced-acc-human + 0.25× balanced-acc-weak-agent
+ 0.25× balanced-acc-strong-agent,

where weak-agent and strong-agent were previously trained agents. We selected the model,
best hyperparameter combination (including the model’s threshold for success), and model
training step from smoothed online evaluation of the validation score.
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Figure 22: Validation scores for model ablations.

6.3 Additional Instruction-Following Results
The success frame prediction loss, in conjunction with the TSM, yielded a model almost
as good as the transformer model. The validation score was only slightly lower for the
success frame model, and it achieved higher balanced accuracy measures for some of the
test agents. We hypothesise that the combination of transformer based models with success
prediction may produce stronger models, though we have not tested this here.
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Figure 23: Success frame prediction results.

In the human demonstrations, the episodes were stopped shortly after the moment of
success, leading to a distribution of moment of success that was heavily skewed towards
the end of the episode (see Figure 24). In the agent episodes, however, episodes were run
for a fixed length of time, skewing the distribution of moment of success to earlier in the
episode. Thus, since our evaluation models were trained only on human episodes, this
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distribution mismatch presents a challenge for the evaluation models. The success frame
prediction loss encourages the model to understand the moment of success regardless of
when success happens within the episode.
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Figure 24: Moment of success prediction. The evaluation model predicts the moment of success
well for human data (on which it’s trained), and is able to partially overcome the distributional shift
on previously unseen agent data. Frames are indexed after decimating the video.

6.4 Question-Answering Results
The results previously highlighted focused on instruction-following tasks. Ultimately we
want to develop evaluation models that work across both instruction-following and question-
answering tasks. The question-answering domain is more difficult than the instruction-
following domain for several reasons, including the challenge of combining three modal-
ities (instruction, video, and response). Figure 25 shows the results with an early model
developed to evaluation question-answering episodes.

78



0.0 0.2 0.4 0.6 0.8 1.0
Success rate

B (no vis.)

B (no lang.)

B

B·A

BG·A

BGR·A

Human

Predicted
Actual

0.0 0.2 0.4 0.6 0.8 1.0
Balanced accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Actual success rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
te

d 
su

cc
es

s 
ra

te

Human
BGR·A

BG·A
B·A

B

B (no lang.)

B (no vis.)

R2 = 0.737

Figure 25: Question-Answering results.

For this model, we use a ResNet augmented with FiLM (Perez et al., 2018), which
has elsewhere proved effective for visual reasoning tasks. Otherwise, the model was con-
structed according to the ResNet Product model with 32 decimated frames and the auxil-
iary ELM loss. Though the ordering of agents it produces is close to correct, the balanced
accuracy per agent and correlation are significantly worse than the models for instruction-
following tasks. Additionally, the success rate per agent was overpredicted, likely because
the human episodes used as training data had few negative examples.

7 Automated Evaluation Metrics

7.1 Setter Language Metrics
To evaluate our setters’ language output we used log probabilities as well as several heuris-
tics that captured the agents’ ability to refer to objects present in the scene. The object
error rate measures the fraction of setter sentences that mention an object type that exists
in the room (e.g., a toy duck or a helicopter). The error rate captures the ability of the agent
to recognise object categories but not necessarily their colour.

To understand whether our setters are also able to detect the correct object colour, we in-
troduced the colour object error rate, which measures the proportion of setter sentences that
mention valid objects with their true colour out of all the sentences that mention coloured
objects. When calculating these error rates we also applied a mapping to canonicalise the
colour vocabulary: e.g., mapping “turquoise” to “blue.”

We used these metrics to measure training progress and to evaluate in an automated
manner how contextually relevant setter instructions were. We acknowledge that these
metrics do not capture many desiderata in language output. For example, they express
nothing about the relative positioning of objects; errors related to descriptions of spatial
relationships were undetected in our automated metrics.
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7.2 Procedural Tasks
7.2.1 Automated Metrics

We designed a set of automated metrics for evaluating solver agent performance during
training as well. These metrics compared an agent trajectory to a human demonstration in
a setter replay episode, with an instruction and inital room pulled from the human dataset.
In many of our language games, holding and lifting specific objects was part of the human
demonstration. In the “first-object-lifted by-both” metric, we checked whether the first
object lifted by the agent was the same as that lifted by the human in the corresponding
episode. This was a useful correlational indicator of agent performance. However, multiple
objects can exist in the environment that satisfy the instruction, and some episodes involve
no such lifting instructions, so it was only useful for relative comparisons across agents
and during training. We additionally computed metrics that measured if the colour and
type of the two objects lifted were the same, even if not the exact same instance, in the
“number-of-colour-objects-lifted-by-both” metric. We adjusted this metric to account for
the average number of objects that the human and agent lifted within an episode for each
language game.

7.2.2 Scripted Probe Tasks

Our agents were not trained in reinforcement learning environments providing unambigu-
ous rewards for reaching particular goal states. Nevertheless, we found it valuable to pro-
gram a small set of such tasks for the purpose of evaluating our agents since the reward
function provides an objective and repeatable measure of success. In each of these tasks, as
in the agent’s training environment, the distribution of objects and the initial position of the
agent were randomised on a per-episode basis. We typically ran trained agents for 1, 000
episodes in each task to obtain an estimate of its expected success rate.

Go Somewhere After a random delay of up to 10 seconds, an instruction is presented to
the agent of the form Go near the X, where X can be an object (ball, teddy bear, box),
furniture (table, bed) or landmark (door, window, shelf). The agent must move to within
1m of the target before the 30 second episode time limit is reached.

Lift Something After a random delay of up to 10 seconds, an instruction is presented to
the agent of the form Lift an X, where X is a movable object (ball, teddy bear, box etc.).
The agent must pick the object up higher than 1m. If the agent at any point picks up an
object that is not an X, or if the 2 minute time limit is reached, the episode ends with a
score of zero. If the agent picks up an X, the episode also ends, with a score of one.

Position Relative The environment checks the episode’s initial conditions to ensure that
no objects of type X are within 1m of any objects of type Y. After a random delay of
up to 10 seconds, an instruction is presented to the agent of the form Put an X near a
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Y, where X is a movable object (ball, teddy bear, box etc.) and Y is a movable object or
furniture (bed, table etc.). If at any timestep an object of type X is within 1m of an object
of type Y, the episode ends with a score of one. Otherwise, the episode ends after 2 minutes
with a score of zero.

Ask about Colour After a random delay of up to 10 seconds, an question is presented to
the agent of the form What colour is the X, where X is a movable object (ball, teddy
bear, box etc.) or furniture (bed, table etc.). The episode ends when the agent generates
some language or when the 2 minute time limit is reached. If the agent’s response is among
the set of allowed correct answers for the episode (corresponding to the colour of object
X), the score is one, otherwise it is zero.

Ask about Existence After a random delay of up to 10 seconds, an question is presented
to the agent of the form Is there an X in the room, where X is a movable object (ball,
teddy bear, box etc.) or furniture (bed, table etc.). The episode ends when the agent gen-
erates some language or when the 2 minute time limit is reached. If the agent’s response
is correct (either yes or no), a score of one is awarded. If the response is incorrect or the
agent does not respond within the 2 minute time limit, the score is zero. Note that the task
generator is designed to construct approximately equal numbers of episodes for which the
correct answer is yes and no.

Count Something After a random delay of up to 10 seconds, an question is presented
to the agent of the form How many X are there in the room, where X is a movable
object (ball, teddy bear, box etc.) or furniture (bed, table etc.). The episode ends when the
agent generates some language or when the 2 minute time limit is reached. If the agent’s
response is correct (correct answers range between zero and five), a score of one is awarded.
If the response is incorrect or the agent does not respond within the 2 minute time limit, the
score is zero. Note that the distribution of answers across the set {0 . . . 5} is not uniform,
with zero, one and two being the most frequent responses, so comparing agent scores to
baseline controls (e.g. blind, language-only agents) is important for valid interpretation of
the scores.

Numerical performance of each agent on these tasks is show in Table 11.

8 Scaling Experiments
In this set of experiments we studied the scaling properties of our main models. Focusing
on the scripted probe tasks, we quantified the performance of our agents as we increased
the amount of training data. We ran these experiments for the two models B·A and BG·A.
We controlled the size of the datasets by randomly subsampling our original data, resulting
in the following number of episodes for each fraction of the complete dataset:
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Colour Existence Count Go Lift Position

Human 0.73 0.8 0.85 0.84 0.93 0.65

BGR·A 0.57 0.72 0.28 0.69 0.79 0.37

BG·A 0.47 0.61 0.32 0.64 0.76 0.32

B·A 0.43 0.69 0.34 0.47 0.55 0.19

B 0.18 0.59 0.27 0.35 0.13 0.14

B(no lang.) 0.04 0.03 0.02 0.19 0.04 0.12

B(no vis.) 0.14 0.56 0.28 0.17 0.0 0.02

Table 11: Agent performance on the scripted probe tasks. Standard errors were all less than
0.03.

Relative size 1 1/2 1/4 1/8 1/16

Number of episodes 548K 274K 137K 68K 34K

Figure 15A shows the accumulated reward averaged over instruction-following (lift some-
thing, go somewhere and position relative to) and question-answering (ask about color, ask
about existence and count something) scripted probe tasks. For both, B·A and BG·A, the
performance increased smoothly with the amount of data. However, particularly for the
instruction-following levels, the rate of increase in performance for the agent using GAIL
(BG·A) was higher than for the agent trained with BC (B·A).

9 Transfer Experiments
In this set of experiments we tested an agents’ ability to generalise behaviour to situations
that are either unseen or rare in the training data. We used a slightly smaller network (4
layers instead of 8 in the multi-modal transformer and an embedding size of 256 instead of
512) for this set of experiments compared to our default setup, however, we reran relevant
baselines in this setup in order to maintain fair comparisons. We used the BG·A agent in
all of these experiments.

9.1 Multi-task Transfer
The next group of experiments aimed to evaluate transfer of agent skills across different
tasks. We studied two aspects of transfer learning: 1) Do agents trained on multiple task
perform better than agents trained in each task separately? and 2) Does training on multiple
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tasks lead to agents that require less data to learn a new task? To answer these questions,
we performed two sets of experiments: one where we varied the type of task we trained on,
and one where we varied the amount of data we saw from within a task.

9.1.1 Single-task versus Multi-task

In the first setup we trained our agent on a subsets of the data containing only a particular
task (such as lift something, or ask about color), and compared the performance on these
tasks against an agent trained on all data from all tasks. Figure 15B shows that using
data from all tasks yielded higher rewards on the scripted probe tasks than the single-task
case. This occurred presumably because motor behaviours like navigation of the room
and grasping objects, along with linguistic knowledge like representations of object names,
transferred across tasks.

9.1.2 Multi-task Data Efficiency

In this experiment, we wanted to analyse whether training on multiple tasks led to agents
that required less data to learn a new task. We studied this by entirely removing data from
a particular task and adding it back in controlled amounts. Specifically, we tested how
much data was required to learn the behaviour of positioning an object relative to another
by transferring skills learned from other types of interactions (such as lifting and counting).
We constructed a “position” dataset of 73K episodes with human instructions containing
one of the verbs “put,” “place,” or “position” and excluded these episodes from the pool
of 548 background tasks. Then, we incrementally added some proportion of the “position”
dataset (1/8, 1/4, and 1/2) to these background tasks, effectively creating several new
datasets with a different amount of “position” data.

Figure 15C shows that with as little as 1/8th of the “position” data, the agent could
easily learn to position objects relative to one another provided that it was also exposed
to the background of multi-task data from other tasks during training. As we increased
the amount of positioning data, performance improved for both the single and multi-task
cases. However, to achieve good scores on the scripted probe tasks, we needed much less
data when we trained on all tasks in the multi-task condition.

9.2 Colour-Object Generalisation
To check how well our agents generalised over different features of the environment, we
performed the following experiment: we removed all occurrences of a certain colour-object
combination from the environment during training (both from the dataset and the environ-
ment), we created probe tasks that require the agent to interact with the held-out coloured
object, and we compared the performance on these tasks with agents trained without any
object restrictions. Because the agent was exposed to that particular colour in other ob-
jects and to that particular object in other colours, we were testing to what extent it could
generalise to unseen combinations of known features.
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Without loss of generality, we picked orange ducks as the held-out coloured object. We
removed all instances of it from the training data and from the environment, and we created
scripted probe tasks that refer to this object in particular (e.g. lift the orange duck or what
is the color of the duck?)

There were approximately 23K episodes in the whole dataset across all language games
that contained orange ducks. Note that to exclude relevant episodes, we inspected ground
truth information about what objects were in the Playroom instance.

We designed special-case scripted probe tasks to evaluate the agents that were similar
to the previously described scripted probe tasks (lift something, ask about color, position
relative to, and go somewhere). In this case, they specifically examined performance with
respect to this particular colour-object combination. Each task was balanced by providing
appropriate distractors. For example, when asking to lift an orange duck, there was always
a non-orange duck in the room as well. This guaranteed that the agent did not just interact
with this type of object regardless of its colour.

Figure 15D summarises the results. Overall, our agents were able to successfully inter-
act with the colour-object combinations that they had never been exposed to in the training
data, with only a small performance drop across all games we evaluated on compared to
the control experiment that used an equal total number of episodes but no restrictions on
the types of objects seen in the data.

10 Vocabulary and Spelling Correction Table

10.1 Vocabulary

a
able
about
above
activity
adjacent
after
again
air
airplane
all
along
also
am
among
an
and
animal
another
answer
any

anything
anywhere
aqua
aquamarine
are
arent
arm
armchair
around
arrange
arrangement
article
as
aside
ask
at
available
away
baby
back
bad

ball
basket
basketball
bat
be
bear
bed
before
behind
below
beneath
beside
between
big
bigger
biggest
bike
bin
black
block
blue

board
boat
book
bookshelf
both
box
brighter
bring
brown
bus
bush
but
by
cabinet
cactus
can
car
carriage
case
cat
catch

ceiling
center
chair
change
check
chest
choice
circle
circular
clean
clear
clock
close
closer
closet
coffee
collect
color
come
common
compare

comparing
compartment
consist
contain
container
corner
correct
cot
couch
could
count
cream
cube
cup
cupboard
currently
cushion
cyan
cylinder
cylindrical
dance

dark
darker
describe
desk
diagonal
did
difference
different
dining
direction
disturb
disturbing
do
does
dog
doll
door
down
drag
drawer
drier

drop
duck
each
ear
ears
edge
eight
eighteen
eighty
either
elevate
eleven
else
empty
end
engine
enter
equal
ever
every
everything
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exact
exactly
except
exist
existed
existing
explain
face
facing
falling
fan
far
favorite
feet
few
fifteen
fifty
find
finished
first
five
flight
flip
floor
flower
flying
foot
football
for
forty
four
fourteen
frame
from
front
gather
get
give
go
good
grab
gray
green
grey
ground
group
had
hair

hairdryer
hand
handle
hang
has
have
he
head
headphone
headphones
height
helicopter
help
here
hide
hit
hold
how
human
hundred
i
identical
if
im
in
including
inside
instrument
into
is
isnt
it
item
its
jug
jump
just
keep
key
keyboard
kick
know
lamp
large
larger
largest
lavender
laying

ledge
left
leg
legged
less
lies
lift
light
lighter
like
liked
line
located
location
locomotive
long
look
looking
lying
magenta
main
make
man
many
maroon
mattress
maximum
may
me
mention
mess
middle
mine
mirror
moment
more
most
mostly
move
moving
much
mug
musical
my
name
navy
near
nearer

nearest
neat
next
nine
nineteen
no
non
none
not
notice
noticed
noticing
now
number
object
objective
observing
of
off
olive
on
one
only
onto
opposite
or
orange
order
other
out
oval
over
own
paint
painted
painting
pale
parallel
parrot
pass
peach
pen
perform
phone
photo
piano
pick
picture

pillow
pink
place
placed
plane
plant
play
player
please
pointed
pointy
position
possess
pot
potted
present
purple
push
put
question
rack
racket
rail
rectangle
rectangular
red
refer
relative
remove
replace
right
roam
robot
rocket
roof
room
round
rounded
row
rubber
run
same
say
sea
see
seeing
seen
self

sequence
set
setter
seven
seventeen
seventy
shape
shaped
sheet
shelf
shift
ship
show
side
silver
similar
simple
single
sit
situated
six
sixteen
sixty
size
sizes
sky
small
smaller
smallest
so
soccer
soda
sofa
some
something
somewhere
spacious
specific
square
squared
stand
standing
staring
stool
storage
straight
study
table

take
takeoff
taller
task
tea
teal
teddy
tell
ten
tennis
than
that
thats
the
their
them
then
there
these
they
thing
think
thirteen
thirty
this
those
thousand
three
through
throw
time
to
together
top
total
touch
touching
towards
toy
train
tree
triangle
try
tube
turn
turquoise
tv
twelve

twenty
two
under
underneath
until
up
upon
upside
use
used
using
van
vehicle
very
view
violet
visible
wait
walk
wall
want
wardrobe
was
watching
way
we
were
what
whatever
wheels
when
where
whether
which
white
window
wise
wish
with
without
wooden
word
yellow
yes
you
your
yourself
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10.2 Typo Table
The custom typo dictionary is enumerated below. Please note that this also “corrects” for
pluralisation. Future work will explore the use of subword tokenisation to better construct
and learn large vocabularies:

’-yesno’: ’yes or no’
’03’: ’three’
’0bjects’: ’object’
’1’: ’one’
’10’: ’ten’
’100’: ’one hundred’
’1000’: ’one thousand’
’10000’: ’ten thousand’
’100objects’: ’one
hundred object’
’10objects’: ’ten object’
’11’: ’eleven’
’111’: ’eleven’
’12’: ’twelve’
’120’: ’twelve’
’13’: ’thirteen’
’14’: ’fourteen’
’15’: ’fifteen’
’150’: ’fifteen’
’16’: ’sixteen’
’17’: ’seventeen’
’18’: ’eighteen’
’19’: ’nineteen’
’2’: ’two’
’20’: ’twenty’
’200’: ’two hundred’
’2000’: ’two thousand’
’20teddys’: ’twenty
teddy bear’
’21’: ’twenty one’
’22’: ’twenty two’
’23’: ’twenty three’
’24’: ’twenty four’
’25’: ’twenty five’
’26’: ’twenty six’
’27’: ’twenty seven’
’28’: ’twenty eight’
’29’: ’twenty nine’
’2objects’: ’two object’
’3’: ’three’
’30’: ’thirty’
’300’: ’three hundred’
’32’: ’thirty two’
’33’: ’thirty three’
’34’: ’thirty four’

’35’: ’thirty five’
’36’: ’thirty six’
’3objects’: ’three object’
’4’: ’four’
’40’: ’forty’
’42’: ’forty two’
’43’: ’forty three’
’45’: ’forty five’
’46’: ’forty six’
’4objects’: ’four object’
’5’: ’five’
’50’: ’fifty’
’500’: ’five hundred’
’5000’: ’five thousand’
’50objects’: ’fifty object’
’52’: ’fifty two’
’55’: ’fifty five’
’5balls’: ’five ball’
’5objects’: ’five object’
’6’: ’six’
’60’: ’sixty’
’69’: ’sixty nine’
’7’: ’seven’
’70’: ’seventy’
’75’: ’seventy five’
’8’: ’eight’
’88’: ’eighty eight’
’9’: ’nine’
’90’: ’ninety’
’‘place’: ’place’
’a’: ’a’
’aa’: ’a’
’aany’: ’any’
’abed’: ’a bed’
’abject’: ’object’
’abjects’: ’object’
’able’: ’able’
’abll’: ’a ball’
’ablue’: ’a blue’
’about’: ’about’
’above’: ’above’
’ac’: ’a’
’according’: ’according’
’acircle’: ’a circle’
’acorner’: ’a corner’

’acr’: ’car’
’action’: ’action’
’active’: ’active’
’activity’: ’activity’
’adjacent’: ’adjacent’
’adjust’: ’adjust’
’adn’: ’and’
’aero’: ’airplane’
’aeroplain’: ’airplane’
’aeroplane’: ’airplane’
’aeroplanes’: ’airplane’
’after’: ’after’
’again’: ’again’
’against’: ’against’
’aid’: ’aid’
’air’: ’air’
’aircraft’: ’airplane’
’aircrafts’: ’airplane’
’airplane’: ’airplane’
’airplanes’: ’airplane’
’airport”’: ’airplane’
’al’: ’all’
’aline’: ’a line’
’all’: ’all’
’alla’: ’all of’
’alll’: ’all’
’almirah’: ’wardrobe’
’along’: ’along’
’also’: ’also’
’am’: ’am’
’amd’: ’and’
’ame’: ’and’
’amny’: ’many’
’among’: ’among’
’an’: ’an’
’and’: ’and’
’andplace’: ’and place’
’andstand’: ’and stand’
’angle’: ’angle’
’animal’: ’animal’
’another’: ’another’
’ans’: ’and’
’answer’: ’answer’
’ant’: ’any’
’anu’: ’any’

’any’: ’any’
’anyof’: ’any of’
’anyone’: ’anyone’
’anyother’: ’another’
’anything’: ’anything’
’anywhere’: ’anywhere’
’anyy’: ’any’
’apart’: ’apart’
’apink’: ’a pink’
’approximately’:
’approximately’
’aqua’: ’aqua’
’ar’: ’are’
’araange’: ’arrange’
’arange’: ’arrange’
’arch’: ’arch’
’are’: ’are’
’area’: ’area’
’ared’: ’a red’
’aree’: ’are’
’areoplane’: ’airplane’
’arew’: ’are’
’arm’: ’arm’
’armchair’: ’armchair’
’armchairs’: ’armchair’
’arocket’: ’a rocket’
’aroe’: ’a row’
’aroom’: ’a room’
’around’: ’around’
’arounf’: ’around’
’arow’: ’a row’
’arragement’:
’arrangement’
’arrange’: ’arrange’
’arrangement’:
’arrangement’
’arrangements’:
’arrangement’
’arrangment’:
’arrangement’
’arre’: ’are’
’arrrange’: ’arrange’
’arte’: ’are’
’articles’: ’article’
’as’: ’as’
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’ash’: ’grey’
’aside’: ’aside’
’asimple’: ’a simple’
’asingle’: ’a single’
’ask’: ’ask’
’assemble’: ’assemble’
’at’: ’at’
’atand’: ’and’
’ate’: ’at’
’athe’: ’the’
’atleast’: ’at least’
’att’: ’at’
’auto’: ’car’
’available’: ’available’
’avalable’: ’available’
’away’: ’away’
’b’: ”
’ba’: ’bed’
’baal’: ’ball’
’baasket’: ’basket’
’baby’: ’baby’
’back’: ’back’
’backside’: ’back’
’bad’: ’bed’
’bag’: ’bag’
’bal’: ’ball’
’balcony’: ’balcony’
’ball’: ’ball’
’balll’: ’ball’
’ballls’: ’ball’
’balloon’: ’balloon’
’balls’: ’ball’
’bals’: ’ball’
’baot’: ’boat’
’bar’: ’bear’
’bas’: ’ball’
’bascket’: ’basket’
’basket’: ’basket’
’basketball’: ’basketball’
’basketballs’:
’basketball’
’basketbox’: ’basket’
’baskets’: ’basket’
’basketsboxes’: ’basket’
’baskety’: ’basket’
’bat’: ’bat’
’bathroom’: ’bathroom’
’bats’: ’bat’
’bax’: ’bat’
’bbed’: ’bed’
’bbok’: ’book’

’bd’: ’bed’
’bde’: ’bed’
’be’: ’be’
’bear’: ’bear’
’bears’: ’bear’
’beat’: ’beat’
’beautiful’: ’beautiful’
’bec’: ’bed’
’bed’: ’bed’
’bed”’: ’bed’
’bed-’: ’bed’
’bedand’: ’bed and’
’bedd’: ’bed’
’bedds’: ’bed’
’bede’: ’bed’
’bedf’: ’bed’
’bedlamp’: ’bed lamp’
’bedright’: ’bed right’
’beds’: ’bed’
’bedsheet’: ’bed sheet’
’bedyes’: ’bed yes’
’bedyesno’: ’bed yes no’
’bedyn’: ’bed yes no’
’beed’: ’bed’
’beer’: ’bear’
’bef’: ’bed’
’before’: ’before’
’behind’: ’behind’
’being’: ’being’
’below’: ’below’
’bench’: ’bench’
’beneath’: ’beneath’
’bera’: ’bear’
’berd’: ’bed’
’bes’: ’bed’
’besdie’: ’beside’
’besid’: ’beside’
’beside’: ’beside’
’besides’: ’beside’
’besie’: ’beside’
’best’: ’best’
’bet’: ’bed’
’betweeen’: ’between’
’between’: ’between’
’big’: ’big’
’bigger’: ’bigger’
’biggest’: ’biggest’
’bike’: ’bike’
’bin’: ’bin’
’bins’: ’bin’
’biplane’: ’airplane’

’bird’: ’duck’
’bix’: ’box’
’bjects’: ’object’
’bkue’: ’blue’
’black’: ’black’
’blackyesno’: ’black yes
no’
’ble’: ’blue’
’bll’: ’ball’
’block’: ’block’
’blocks’: ’block’
’blow’: ’below’
’blu’: ’blue’
’blue’: ’blue’
’bluebox’: ’blue box’
’bluish’: ’blue’
’blur’: ’blue’
’bluw’: ’blue’
’bo’: ’boat’
’boa’: ’boat’
’boar’: ’boat’
’board’: ’board’
’boards’: ’board’
’boart’: ’boat’
’boat’: ’boat’
’boats’: ’boat’
’boc’: ’box’
’bojects’: ’object’
’bok’: ’book’
’boll’: ’ball’
’bolls’: ’ball’
’boo’: ’book’
’boojs’: ’book’
’book’: ’book’
’bookl’: ’book’
’bookon’: ’book on’
’books’: ’book’
’bookshelf’: ’bookshelf’
’bool’: ’book’
’boook’: ’book’
’boox’: ’box’
’bot’: ’robot’
’both’: ’both’
’bothe’: ’both’
’bottle’: ’bottle’
’box’: ’box’
’boxbasket’: ’box’
’boxe’: ’box’
’boxes’: ’box’
’boxex’: ’box’
’boxs’: ’box’

’boxtill’: ’box until’
’boxx’: ’box’
’bpox’: ’box’
’brd’: ’bed’
’brig’: ’bring’
’brighter’: ’brighter’
’brightest’: ’brightest’
’brimg’: ’bring’
’brin’: ’bring’
’bring’: ’bring’
’broen’: ’brown’
’brow’: ’brown’
’brown’: ’brown’
’bsket’: ’basket’
’bsll’: ’ball’
’bthe’: ’the’
’bucket’: ’bucket’
’bue’: ’blue’
’bule’: ’blue’
’bus’: ’bus’
’buses’: ’bus’
’bush’: ’bush’
’bushes’: ’bush’
’busket’: ’basket’
’but’: ’but’
’bved’: ’bed’
’bw’: ’between’
’bwd’: ’bed’
’bx’: ’box’
’by’: ’by’
’bye’: ’by’
’c’: ”
’cabinet’: ’cabinet’
’cabinets’: ’cabinet’
’cactus’: ’cactus’
’cacuts’: ’cactus’
’cae’: ’car’
’cahir’: ’chair’
’cair’: ’chair’
’came’: ’come’
’camera’: ’camera’
’camper’: ’camper’
’can’: ’can’
’cant’: ’cant’
’canu’: ’can you’
’car’: ’car’
’cardboard’: ’cupboard’
’care’: ’car’
’cars’: ’car’
’casio’: ’keyboard’
’cat’: ’cat’
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’catch’: ’catch’
’catcus’: ’cactus’
’cautus’: ’cactus’
’ccolor’: ’color’
’ceiling’: ’ceiling’
’ceilling’: ’ceiling’
’celing’: ’ceiling’
’celling’: ’ceiling’
’center’: ’center’
’centre’: ’center’
’chai’: ’chair’
’chair’: ’chair’
’chairs’: ’chair’
’chait’: ’chair’
’change’: ’change’
’chaor’: ’chair’
’char’: ’chair’
’chari’: ’chair’
’chauffer’: ’chauffeur’
’check’: ’check’
’chiar’: ’chair’
’chir’: ’chair’
’choice’: ’choice’
’chopper’: ’helicopter’
’choppers’: ’helicopter’
’chzir’: ’chair’
’circle’: ’circle’
’circular’: ’circular’
’clean’: ’clean’
’cleaner’: ’cleaner’
’clear’: ’clear’
’cleat’: ’clear’
’clock’: ’clock’
’clor’: ’color’
’clored’: ’color’
’close’: ’close’
’closer’: ’closer’
’closet’: ’closet’
’closets’: ’closet’
’clour’: ’color’
’cn’: ’can’
’cna’: ’can’
’co’: ’go’
’coffe’: ’coffee’
’coffee’: ’coffee’
’coffeemug’: ’coffee
mug’
’collect’: ’collect’
’collors’: ’color’
’colo’: ’color’
’colo0r’: ’color’

’coloe’: ’color’
’colof’: ’color’
’cololr’: ’color’
’color’: ’color’
’colore’: ’color’
’colored’: ’color’
’colored”’: ’color’
’coloredd’: ’color’
’colorof’: ’color’
’coloror’: ’color’
’colorright’: ’color right’
’colors’: ’color’
’colorsyn’: ’color yes
no’
’colort’: ’color’
’coloryesno’: ’color yes
no’
’coloryn’: ’color yes no’
’colot’: ’color’
’coloum’: ’color’
’colour’: ’color’
’coloured’: ’color’
’colours’: ’color’
’colouryesno’: ’color
yes no’
’colr’: ’color’
’colred’: ’color’
’colro’: ’color’
’column’: ’column’
’colur’: ’color’
’com’: ’come’
’combined’: ’combine’
’come’: ’come’
’compare’: ’compare’
’compared’: ’compare’
’comparing’:
’comparing’
’compartment’:
’compartment’
’compartments’:
’compartment’
’conditioner’:
’conditioner’
’conner’: ’corner’
’consist’: ’consist’
’consists’: ’consist’
’cont’: ’count’
’contain’: ’contain’
’container’: ’container’
’containers’: ’container’
’contains’: ’contain’

’contents’: ’contents’
’coor’: ’color’
’coored’: ’color’
’coour’: ’color’
’copunt’: ’count’
’corner’: ’corner’
’corners’: ’corner’
’cornor’: ’corner’
’cornr’: ’corner’
’correct’: ’correct’
’cot’: ’cot’
’cou’: ”
’couch’: ’couch’
’couches’: ’couch’
’could’: ’could’
’coumt’: ’count’
’coun’: ’count’
’counr’: ’count’
’count’: ’count’
’counts’: ’count’
’countthe’: ’count the’
’cout’: ’count’
’cover’: ’cover’
’cream’: ’cream’
’cricket’: ’cricket’
’crimson’: ’crimson’
’csn’: ’can’
’cub’: ’cup’
’cubboard’: ’cupboard’
’cube’: ’cube’
’cubebox’: ’box’
’cubes’: ’cube’
’cuboard’: ’cupboard’
’cude’: ’could’
’cuo’: ’cup’
’cuoboard’: ’cupboard’
’cup’: ’cup’
’cupboard’: ’cupboard’
’cupboards’: ’cupboard’
’cupboarf’: ’cupboard’
’cups’: ’cup’
’currently’: ’currently’
’cushion’: ’cushion’
’cushions’: ’cushion’
’cusion’: ’cushion’
’cute’: ’cute’
’cyan’: ’cyan’
’cycle’: ’cycle’
’d’: ”
’dame’: ’same’
’dance’: ’dance’

’dancew’: ’dance’
’dark’: ’dark’
’darker’: ’darker’
’dck’: ’duck’
’ddoor’: ’door’
’dear’: ’door’
’deck’: ’deck’
’decribe’: ’describe’
’der’: ”
’describe’: ’describe’
’desk’: ’desk’
’dhelf’: ’shelf’
’diagonal’: ’diagonal’
’diagonally’: ’diagonal’
’did’: ’did’
’diferent’: ’different’
’diff’: ’different’
’diffent’: ’different’
’differ’: ’different’
’difference’: ’difference’
’different’: ’different’
’differentiate’:
’differentiate’
’differently’:
’differently’
’differnet’: ’different’
’differnt’: ’different’
’diffferent’: ’different’
’diffrent’: ’different’
’diiferent’: ’different’
’dining’: ’dining’
’direction’: ’direction’
’distance’: ’distance’
’distrub’: ’disturb’
’disturb’: ’disturb’
’disturbing’: ’disturbing’
’dloor’: ’floor’
’do’: ’do’
’doddle’: ”
’doe’: ’does’
’does’: ’does’
’dofferent’: ’different’
’dog’: ’dog’
’doing’: ’doing’
’doll’: ’doll’
’dolls’: ’doll’
’dont’: ’dont’
’doo’: ’door’
’dooe’: ’door’
’dooor’: ’door’
’door’: ’door’
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’doors’: ’door’
’doot’: ’door’
’dor’: ’door’
’dorr’: ’door’
’dose’: ’does’
’down’: ’down’
’dplace’: ’place’
’dr’: ’drop’
’drag’: ’drag’
’dragon’: ’drag on’
’draier’: ’drawer’
’drawer’: ’drawer’
’dresser’: ’wardrobe’
’drier’: ’drier’
’driers’: ’drier’
’dries’: ’drier’
’driyer’: ’drier’
’drop’: ’drop’
’dropping’: ’dropping’
’dryeer’: ’drier’
’dryer’: ’drier’
’dryers’: ’drier’
’dsame’: ’same’
’dtool’: ’tool’
’duch’: ’duck’
’duck’: ’duck’
’duckl’: ’duck’
’ducks’: ’duck’
’ducky’: ’duck’
’duckys’: ’duck’
’ducts’: ’duck’
’duk’: ’duck’
’dull’: ’duck’
’dusk’: ’duck’
’duxk’: ’duck’
’dyer’: ’drier’
’e’: ”
’each’: ’each’
’eachother’: ’each other’
’ear’: ’ear’
’earphone’: ’headphone’
’earphones’:
’headphone’
’ebd’: ’bed’
’ebed’: ’bed’
’eblue’: ’blue’
’ecist’: ’exist’
’ecolour’: ’color’
’ed’: ’bed’
’edoor’: ’floor’
’efloor’: ’floor’

’egreen’: ’green’
’ehat’: ’what’
’ehere’: ’where’
’ehich’: ’which’
’eight’: ’eight’
’eighteen’: ’eighteen’
’eith’: ’with’
’either’: ’either’
’elevate’: ’elevate’
’else’: ’else’
’em’: ’me’
’eme’: ’me’
’empty’: ’empty’
’end’: ’end’
’engine’: ’engine’
’engines’: ’engine’
’entire’: ’entire’
’eobjects’: ’object’
’eoof’: ’roof’
’eorange’: ’orange’
’eow’: ’row’
’epink’: ’pink’
’eplace’: ’place’
’equal’: ’equal’
’ered’: ’red’
’eroof’: ’roof’
’eroom’: ’room’
’et’: ’what’
’etable’: ’table’
’ethe’: ’the’
’ever’: ’ever’
’every’: ’every’
’everything’:
’everything’
’exact’: ’exact’
’exactly’: ’exactly’
’except’: ’except’
’exist’: ’exist’
’exista’: ’exist’
’existed’: ’existed’
’existing’: ’existing’
’exists’: ’exist’
’existsin’: ’exist in’
’exit’: ’exist’
’exits’: ’exist’
’exixts’: ’exist’
’exsists’: ’exist’
’exsits’: ’exist’
’f’: ”
’face’: ’face’
’facing’: ’facing’

’fall’: ’fall’
’falling’: ’falling’
’fan’: ’fan’
’far’: ’far’
’farme’: ’far’
’favorite’: ’favorite’
’favourate’: ’favorite’
’favourite’: ’favorite’
’feel’: ’feel’
’feet’: ’feet’
’few’: ’few’
’fifteen’: ’fifteen’
’fifty’: ’fifty’
’fill’: ’fill’
’find’: ’find’
’finished’: ’finished’
’finishing’: ’finishing’
’first’: ’first’
’five’: ’five’
’flight’: ’flight’
’flip’: ’flip’
’flloor’: ’floor’
’fllor’: ’floor’
’floo’: ’floor’
’flooe’: ’floor’
’flooer’: ’floor’
’flooor’: ’floor’
’floor’: ’floor’
’flooring’: ’floor’
’flooryn’: ’floor’
’floot’: ’floor’
’flor’: ’floor’
’florr’: ’floor’
’flower’: ’flower’
’flowerpot’: ’flower pot’
’flying’: ’flying’
’fo’: ’of’
’font’: ’front’
’food’: ’food’
’foor’: ’floor’
’foorball’: ’flootball’
’foot’: ’foot’
’footbal’: ’football’
’football’: ’football’
’footballs’: ’football’
’for’: ’for’
’force’: ’force’
’form’: ’from’
’formate’: ’formation’
’fornt’: ’front’
’foue’: ’four’

’four’: ’four’
’fourteen’: ’fourteen’
’frame’: ’frame’
’framed’: ’frame’
’frames’: ’frame’
’freen’: ’green’
’fridge’: ’refridgerator’
’frier’: ’drier’
’frm’: ’from’
’frnt’: ’front’
’from’: ’from’
’fron’: ’front’
’front’: ’front’
’fryer’: ’drier’
’fuck’: ’duck’
’furniture’: ’furniture’
’g’: ”
’gadget’: ’gadget’
’gat’: ’at’
’gather’: ’gather’
’gave’: ’gave’
’geen’: ’green’
’gereen’: ’green’
’get’: ’get’
’gho’: ’go’
’gimme’: ’give me’
’give’: ’give’
’glass’: ’glass’
’glider’: ’airplane’
’go’: ’go’
’gold’: ’gold’
’golden’: ’gold’
’gonear’: ’go near’
’good’: ’good’
’goodbad’: ’good bad’
’gostand’: ’go stand’
’got’: ’got’
’goto’: ’go to’
’gp’: ’go’
’grab’: ’grab’
’gray’: ’gray’
’gree’: ’green’
’greeb’: ’green’
’greeen’: ’green’
’greem’: ’green’
’green’: ’green’
’greenbook’: ’green
book’
’greentable’: ’green
table’
’gren’: ’green’
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’grenn’: ’green’
’grey’: ’grey’
’grey+white’: ’grey and
white’
’ground’: ’ground’
’group’: ’group’
’grreen’: ’green’
’grren’: ’green’
’gthe’: ’the’
’gun’: ”
’gyrocopter’:
’helicopter’
’ha’: ’have’
’had’: ’had’
’haedset’: ’headphones’
’hai’: ’hair’
’haie’: ’hair’
’hair’: ’hair’
’hairdrier’: ’hair drier’
’hairdriers’: ’hair drier’
’hairdryer’: ’hair drier’
’hairdryers’: ’hair drier’
’hairdyer’: ’ hair drier’
’hand’: ’hand’
’handle’: ’handle’
’handover’: ’hand over’
’hands’: ’hand’
’hang’: ’hang’
’hanndover’: ’hand over’
’has’: ’has’
’have’: ’have’
’havethe’: ’have the’
’havew’: ’have’
’having’: ’have’
’he’: ’he’
’head’: ’head’
’headphoes’:
’headphone’
’headphon’:
’headphone’
’headphone’:
’headphone’
’headphones’:
’headphone’
’headphons’:
’headphone’
’headpones’:
’headphone’
’headset’: ’headphone’
’headsets’: ’headphone’
’headst’: ’headphone’

’heap’: ’heap’
’heart’: ’heart’
’heassets’: ’headphone’
’hed’: ’head’
’height’: ’height’
’heir’: ’hair’
’helcopter’: ’helicopter’
’held’: ’held’
’helicap’: ’helicopter’
’helicaptor’: ’helicopter’
’helicofter’: ’helicopter’
’helicopeter’:
’helicopter’
’helicopter’: ’helicopter’
’helicopters’:
’helicopter’
’helicoptor’: ’helicopter’
’helicoter’: ’helicopter’
’helipad’: ’helicopter’
’help’: ’help’
’here’: ’here’
’hesdset’: ’headphone’
’hide’: ’hide’
’his’: ’his’
’hit’: ’hit’
’hnd’: ’hand’
’ho’: ’how’
’hoe’: ’how’
’hoist’: ’hoist’
’hold’: ’hold’
’holder’: ’hold’
’holding’: ’hold’
’house’: ’house’
’how’: ’how’
’howmany’: ’how many’
’hows’: ’how’
’hte’: ’the’
’human’: ’human’
’hundred’: ’hundred’
’i’: ’i’
’ibjects’: ’object’
’id’: ’is’
’identical’: ’identical’
’ids’: ’is’
’if’: ’if’
’iift’: ’lift’
’iin’: ’in’
’iis’: ’is’
’im’: ’im’
’in’: ’in’
’in-front’: ’in front’

’ina’: ’in a’
’inbetween’: ’in
between’
’including’: ’including’
’infont’: ’in front’
’infornt’: ’in front’
’infron’: ’in front’
’infront’: ’in front’
’infrontof’: ’in front of’
’infrot’: ’in front’
’inj’: ’in’
’ink’: ’in’
’inn’: ’in’
’insame’: ’in same’
’inside’: ’inside’
’instead’: ’instead’
’int’: ’in’
’international’:
’international’
’inthe’: ’in the’
’into’: ’into’
’ion’: ’in’
’ios’: ’is’
’is’: ’is’
’isblue’: ’is blue’
’ison’: ’is on’
’ispink’: ’is pink’
’isthe’: ’is the’
’isthere’: ’is there’
’it’: ’it’
’iteams’: ’item’
’item’: ’item’
’items’: ’item’
’its’: ’its’
’itself’: ’itself’
’jeep’: ’jeep’
’jug’: ’jug’
’jugs’: ’jug’
’jump’: ’jump’
’just’: ’just’
’keeep’: ’keep’
’keep’: ’keep’
’keeping’: ’keeping’
’kep’: ’keep’
’kepp’: ’keep’
’kept’: ’keep’
’key’: ’key’
’keybaord’: ’keyboard’
’keyboard’: ’keyboard’
’keyboards’: ’keyboard’
’keyboars’: ’keyboard’

’khan’: ”
’kick’: ’kick’
’kicking’: ’kicking’
’kift’: ’lift’
’kit’: ’it’
’knock’: ’knock’
’know’: ’know’
’l’: ”
’lace’: ’place’
’laeger’: ’larger’
’lager’: ’larger’
’lam’: ’lamp’
’lamb’: ’lamp’
’lamo’: ’lamp’
’lamp’: ’lamp’
’lampp’: ’lamp’
’lamps’: ’lamp’
’lane’: ’lane’
’lap’: ’lamp’
’lapms’: ’lamp’
’laptop’: ’laptop’
’large’: ’large’
’larger’: ’larger’
’largerbed’: ’larger bed’
’largermirror’: ’larger
mirror’
’largersmaller’: ’larger
smaller’
’largersmalleror’: ’larger
smaller’
’largersmallersame’:
’larger smaller same’
’largerthe’: ’larger the’
’largest’: ’largest’
’last’: ’last’
’later’: ’later’
’lavender’: ’lavender’
’laying’: ’laying’
’ledge’: ’ledge’
’left’: ’left’
’leg’: ’leg’
’leged’: ’legged’
’legs’: ’leg’
’length’: ’length’
’less’: ’less’
’let’: ’let’
’lft’: ’lift’
’li’: ’lift’
’lidt’: ’lift’
’lie’: ’like’
’liek’: ’like’
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’lies’: ’lies’
’lif’: ’lift’
’life’: ’lift’
’lifft’: ’lift’
’lift’: ’lift’
’liftb’: ’lift’
’lifted’: ’lifted’
’lifting’: ’lifting’
’liftt’: ’lift’
’liftthe’: ’lift the’
’lify’: ’lift’
’ligher’: ’lighter’
’light’: ’light’
’lighter’: ’lighter’
’ligt’: ’lift’
’like’: ’like’
’liked’: ’liked’
’line’: ’line’
’lines’: ’line’
’link’: ’link’
’linw’: ’line’
’lion’: ’lion’
’list’: ’list’
’lit’: ’lift’
’lite’: ’light’
’litf’: ’lift’
’lith’: ’lift’
’llift’: ’lift’
’lloking’: ’looking’
’lmap’: ’lamp’
’loacted’: ’located’
’locate’: ’locate’
’located’: ’located’
’location’: ’location’
’locking’: ’looking’
’loco’: ’locomotive’
’locomotive’:
’locomotive’
’locomotives’:
’locomotive’
’loft’: ’lift’
’loking’: ’looking’
’lokking’: ’looking’
’longer’: ’longer’
’looing’: ’looking’
’look’: ’look’
’lookig’: ’looking’
’lookin’: ’looking’
’looking’: ’looking’
’lookingat’: ’looking at’
’lookng’: ’looking’

’looks’: ’look’
’loooking’: ’looking’
’loor’: ’door’
’ls’: ’is’
’luft’: ’lift’
’lying’: ’lying’
’m’: ”
’ma’: ’a’
’magenta’: ’magenta’
’main’: ’main’
’majority’: ’majority’
’make’: ’make’
’man’: ’man’
’manner’: ’manner’
’mant’: ’many’
’manty’: ’many’
’many’: ’many’
’maroon’: ’maroon’
’mat’: ’mat’
’matching’: ’matching’
’matrees’: ’mattress’
’matress’: ’mattress’
’matresses’: ’mattress’
’matters’: ’mattress’
’mattres’: ’mattress’
’mattress’: ’mattress’
’mattresses’: ’mattress’
’maximum’: ’maximum’
’may’: ’may’
’me’: ’me’
’mear’: ’near’
’mee’: ’me’
’mention’: ’mention’
’mer’: ’me’
’mess’: ’mess’
’methe’: ’me the’
’mew’: ’me’
’mg’: ’mug’
’middle’: ’middle’
’mind’: ’mind’
’mine’: ’mine’
’miror’: ’mirror’
’mirors’: ’mirror’
’mirrior’: ’mirror’
’mirriors’: ’mirror’
’mirrir’: ’mirror’
’mirroe’: ’mirror’
’mirron’: ’mirror’
’mirror’: ’mirror’
’mirrors’: ’mirror’
’mirros’: ’mirror’

’mirrow’: ’mirror’
’mirrror’: ’mirror’
’mnay’: ’many’
’mne’: ’me’
’mobile’: ’mobile’
’moment’: ’moment’
’more’: ’more’
’morror’: ’mirror’
’most’: ’most’
’movable’: ’movable’
’move’: ’move’
’movee’: ’move’
’moving’: ’moving’
’mow’: ’now’
’mp’: ”
’mr’: ’me’
’mu’: ’mug’
’much’: ’much’
’muf’: ’mug’
’mug’: ’mug’
’mugs’: ’mug’
’muh’: ’mug’
’mw’: ’me’
’my’: ’my’
’myg’: ’my’
’n’: ”
’nad’: ’and’
’naer’: ’near’
’nall’: ’ball’
’name’: ’name’
’navy’: ’navy’
’nay’: ’navy’
’nbed’: ’bed’
’nbox’: ’box’
’nd’: ’and’
’nder’: ’under’
’ne’: ’me’
’nea’: ’near’
’near’: ’near’
’nearby’: ’nearby’
’neare’: ’near’
’nearest’: ’nearest’
’nearme’: ’near me’
’neart’: ’near to’
’nearto’: ’near to’
’neat’: ’neat’
’neath’: ’beneath’
’ned’: ’bed’
’neqar’: ’near’
’ner’: ’near’
’nera’: ’near’

’nerar’: ’near’
’nesr’: ’near’
’nect’: ’next’
’nice’: ’nice’
’nine’: ’nine’
’nineteen’: ’nineteen’
’niw’: ’now’
’nk’: ’no’
’no’: ’no’
’nonyellow’: ’non
yellow’
’nonred’: ’non red’
’nonblue’: ’non blue’
’nongreen’: ’non green’
’nonviolet’: ’non violet’
’nonwhite’: ’non white’
’nonblack’: ’non black’
’nonbrown’: ’non
brown’
’nonpink’: ’non pink’
’noe’: ’now’
’noew’: ’now’
’nof’: ’number of’
’noof’: ’number of’
’not’: ’not’
’notice’: ’notice’
’noticed’: ’noticed’
’noticeing’: ’noticing’
’noticing’: ’noticing’
’now’: ’now’
’no}’: ’now’
’nrar’: ’near’
’nthe’: ’the’
’nug’: ’mug’
’num’: ’number’
’numbe’: ’number’
’number’: ’number’
’numberof’: ’number of’
’numbers’: ’number’
’ny’: ’my’
’nxt’: ’next’
’o’: ”
’ob’: ’object’
’obects’: ’object’
’obejcts’: ’object’
’obejects’: ’object’
’obhects’: ’object’
’obhjects’: ’object’
’obj’: ’object’
’objct’: ’object’
’objcts’: ’object’
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’objec’: ’object’
’objeccts’: ’object’
’objecs’: ’object’
’objecst’: ’object’
’object’: ’object’
’objecta’: ’object’
’objectives’: ’object’
’objects’: ’object’
’objectsa’: ’object’
’objectsin’: ’object in’
’objectys’: ’object’
’objest’: ’object’
’objetcs’: ’object’
’objets’: ’object’
’objevts’: ’object’
’objs’: ’object’
’obkjects’: ’object’
’observe’: ’observe’
’observing’: ’observing’
’occupies’: ’occupies’
’ocean’: ’ocean’
’od’: ’of’
’odf’: ’off’
’of’: ’of’
’ofbed’: ’of bed’
’off’: ’off’
’ofthings’: ’of things’
’ofwall’: ’of wall’
’og’: ’of’
’oh’: ’on’
’oin’: ’on’
’oink’: ’pink’
’ois’: ’is’
’ojects’: ’object’
’olace’: ’place’
’olive’: ’olive’
’olor’: ’color’
’om’: ’on’
’omn’: ’on’
’on’: ’on’
’onbed’: ’on bed’
’onbjects’: ’object’
’once’: ’once’
’one’: ’one’
’onfloor’: ’on floor’
’ongreen’: ’on green’
’onj’: ’on’
’onjects’: ’object’
’onlt’: ’only’
’only’: ’only’
’ont’: ’on’

’ontable’: ’on table’
’onthe’: ’on the’
’onto’: ’onto’
’onwhite’: ’on white’
’oobjects’: ’object’
’ook’: ’book’
’ooks’: ’book’
’oom’: ’room’
’oon’: ’on’
’open’: ’open’
’oposite’: ’opposite’
’opp’: ’opposite’
’opposite’: ’opposite’
’opposte’: ’opposite’
’or’: ’or’
’oraange’: ’orange’
’orage’: ’orange’
’oragne’: ’orange’
’oramge’: ’orange’
’orane’: ’orange’
’orang’: ’orange’
’orange’: ’orange’
’oranges’: ’orange’
’order’: ’order’
’orgreen’: ’or green’
’ornage’: ’orange’
’ornge’: ’orange’
’orsnge’: ’orange’
’os’: ’is’
’osfa’: ’sofa’
’ot’: ’not’
’otange’: ’orange’
’other’: ’other’
’others’: ’other’
’our’: ’our’
’out’: ’out’
’outside’: ’outside’
’over’: ’over’
’ow’: ’own’
’own’: ’own’
’ox’: ’box’
’p’: ”
’pa’: ”
’pace’: ’place’
’paino’: ’piano’
’paint’: ’paint’
’painted’: ’painted’
’painting’: ’painting’
’pair’: ’pair’
’palace’: ’place’
’palce’: ’place’

’pale’: ’pale’
’pants’: ’plant’
’parallel’: ’parallel’
’parrot’: ’parrot’
’particular’: ’particular’
’parts’: ’parts’
’pass’: ’pass’
’peach’: ’peach’
’pen’: ’pen’
’per’: ’per’
’perform’: ’perform’
’pet’: ’pet’
’pf’: ’of’
’phone’: ’phone’
’phones’: ’phone’
’photo’: ’photo’
’photoframe’: ’photo
frame’
’pi’: ’pink’
’piano’: ’keyboard’
’pianos’: ’keyboard’
’pic’: ’pick’
’pich’: ’pick’
’pick’: ’pick’
’pickup’: ’pick up’
’picture’: ’picture’
’pik’: ’pick’
’pilllow’: ’pillow’
’pillo’: ’pillow’
’pilloe’: ’pillow’
’pillow’: ’pillow’
’pillowa’: ’pillow’
’pillows’: ’pillow’
’piloow’: ’pillow’
’pilow’: ’pillow’
’pilows’: ’pillow’
’pin’: ’pink’
’ping’: ’pink’
’pink’: ’pink’
’pink-’: ’pink’
’pinkball’: ’pink ball’
’pinkbook’: ’pink book’
’pinkl’: ’pink’
’pinkmirror’: ’pink
mirror’
’pinl’: ’pink’
’piono’: ’piano’
’pit’: ’put’
’pivk’: ’pick’
’plaace’: ’place’
’plac’: ’place’

’place’: ’place’
’placed’: ’placed’
’placee’: ’place’
’places’: ’place’
’placewhite’: ’place
white’
’placing’: ’placing’
’plain’: ’airplane’
’plan’: ’airplane’
’plane’: ’airplane’
’planes’: ’airplane’
’plant’: ’plant’
’plantpot’: ’plant pot’
’plants’: ’plant’
’plave’: ’place’
’play’: ’play’
’player’: ’player’
’players’: ’player’
’playing’: ’playing’
’plcae’: ’place’
’plce’: ’place’
’plced’: ’placed’
’please’: ’please’
’plotted’: ’potted’
’plus’: ’plus’
’pn’: ’on’
’pnik’: ’pink’
’pnk’: ’pink’
’pod’: ’pot’
’poillow’: ’pillow’
’poition’: ’position’
’pon’: ’on’
’ponk’: ’pink’
’position’: ’position’
’positionplace’:
’position place’
’possess’: ’possess’
’possible’: ’possible’
’postion’: ’position’
’pot’: ’pot’
’pots’: ’pot’
’potted’: ’potted’
’pottedplant’: ’potted
plant’
’poy’: ’put’
’ppink’: ’pink’
’present’: ’present’
’presently’: ’presently’
’products’: ’product’
’proper’: ’proper’
’pu’: ’put’
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’puch’: ’push’
’pudh’: ’push’
’puink’: ’pink’
’puit’: ’put’
’pull’: ’pull’
’puple’: ’purple’
’puprle’: ’purple’
’pur’: ’put’
’purple’: ’purple’
’purplr’: ’purple’
’purpple’: ’purple’
’pus’: ’push’
’push’: ’push’
’pusht’: ’push’
’pust’: ’push’
’put’: ’put’
’putb’: ’put’
’putt’: ’put’
’putthe’: ’put the’
’r’: ”
’rable’: ’table’
’rack’: ’rack’
’racket’: ’racket’
’rackets’: ’racket’
’rackl’: ’rack’
’racks’: ’rack’
’racqet’: ’racket’
’raild’: ’rail’
’raise’: ’raise’
’randomly’: ’randomly’
’raw’: ’row’
’rd’: ’red’
’re’: ’red’
’real’: ’real’
’rectangle’: ’rectangle’
’rectangular’:
’rectangular’
’red’: ’red’
’red-’: ’red’
’redball’: ’red ball’
’redbook’: ’red book’
’redbox’: ’red box’
’reddy’: ’teddy’
’redmug’: ’red mug’
’redtable’: ’red table’
’redyesno’: ’red yes no’
’reed’: ’red’
’ref’: ’red’
’related’: ’related’
’relative’: ’relative’
’remove’: ’remove’

’replace’: ’replace’
’replacing’: ’replacing’
’res’: ’red’
’respect’: ’respect’
’rhere’: ’are here’
’right’: ’right’
’rightnow’: ’right now’
’ro’: ’row’
’roa’: ’roam’
’roam’: ’roam’
’robat’: ’robot’
’robbo’: ’robot’
’robo’: ’robot’
’roboat’: ’robot’
’roboats’: ’robot’
’robor’: ’robot’
’robort’: ’robot’
’robos’: ’robot’
’robot’: ’robot’
’robots’: ’robot’
’roboy’: ’robot’
’robt’: ’robot’
’rock’: ’rocket’
’rockect’: ’rocket’
’rocker’: ’rocket’
’rockert’: ’rocket’
’rocket’: ’rocket’
’rockets’: ’rocket’
’rockt’: ’rocket’
’rockts’: ’rocket’
’roe’: ’row’
’roew’: ’row’
’rof’: ’row’
’roght’: ’right’
’roiw’: ’row’
’roket’: ’rocket’
’rom’: ’room’
’romm’: ’room’
’ronot’: ’robot’
’roo’: ’room’
’roobo’: ’robot’
’rood’: ’roof’
’roof’: ’roof’
’roofs’: ’roof’
’rooftop’: ’roof’
’room’: ’room’
’room”’: ’room’
’room-’: ’room’
’room-yesno’: ’room yes
no’
’roomm’: ’room’

’roomn’: ’room’
’roomright’: ’room right’
’rooms’: ’room’
’roomyes’: ’room yes’
’roomyesno’: ’room yes
no’
’roomyn’: ’room yes no’
’roon’: ’room’
’roonm’: ’room’
’rooom’: ’room’
’root’: ’robot’
’ropom’: ’room’
’rorbot’: ’robot’
’rotate’: ’rotate’
’round’: ’round’
’rovket’: ’rocket’
’rovkets’: ’rockets’
’row’: ’row’
’rows’: ’row’
’roww’: ’row’
’royal’: ’royal’
’rpbot’: ’robot’
’rpoom’: ’room’
’rpw’: ’row’
’rred’: ’red’
’rrom’: ’room’
’rroom’: ’room’
’rtable’: ’table’
’rthe’: ’the’
’rubber’: ’rubber’
’run’: ’run’
’rw’: ’row’
’rwo’: ’row’
’s’: ”
’safe’: ’safe’
’salman’: ”
’sam’: ’same’
’same’: ’same’
’samecolor’: ’same
color’
’samedifferent’: ’same
different’
’samelarger’: ’same
larger’
’samesize’: ’same size’
’samesmall’: ’same
small’
’sameyesno’: ’same yes
no’
’sameyn’: ’same yes no’
’samller’: ’smaller’

’samw’: ’same’
’sand’: ’same’
’sane’: ’same’
’saofa’: ’sofa’
’satand’: ’stand’
’say’: ’say’
’se’: ’see’
’sea’: ’sea’
’sea-green’: ’sea green’
’seagreen’: ’sea green’
’sealing’: ’ceiling’
’searching’: ’searching’
’seconds’: ’seconds’
’see’: ’see’
’seee’: ’see’
’seeing’: ’seeing’
’self’: ’self’
’sequence’: ’sequence’
’set’: ’set’
’sets’: ’set’
’setter’: ’setter’
’setting’: ’setting’
’seven’: ’seven’
’seventeen’: ’seventeen’
’shaded’: ’shaded’
’shalf’: ’shelf’
’shape’: ’shape’
’sheet’: ’sheet’
’shef’: ’shelf’
’shekf’: ’shelf’
’shelf’: ’shelf’
’shelf”s’: ’shelf’
’shelfs’: ’shelf’
’shelve’: ’shelf’
’shelves’: ’shelf’
’shettle’: ’rocket’
’shift’: ’shift’
’ship’: ’ship’
’ships’: ’ship’
’shlef’: ’shelf’
’shoe’: ’show’
’should’: ’should’
’show’: ’show’
’shuttle’: ’rocket’
’si’: ’is’
’side’: ’side’
’sides’: ’side’
’sifa’: ’sofa’
’silver’: ’silver’
’similar’: ’similar’
’simple’: ’simple’
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’sin’: ’in’
’single’: ’single’
’sit’: ’sit’
’sitting’: ’sitting’
’situated’: ’situated’
’situation’: ’situation’
’six’: ’six’
’sixe’: ’six’
’size’: ’size’
’sized’: ’sized’
’sizes’: ’sizes’
’sizw’: ’size’
’sky’: ’sky’
’skyblue’: ’sky blue’
’sleep’: ’sleep’
’smae’: ’same’
’smal’: ’small’
’small’: ’small’
’smaller’: ’smaller’
’smallerlarger’: ’smaller
larger’
’smalleror’: ’smaller or’
’smallest’: ’smallest’
’smalllarge’: ’small
large’
’smalllargesame’: ’small
large same’
’smallsamelarge’: ’small
same large’
’sme’: ’some’
’so’: ’so’
’soccer’: ’soccer’
’soda’: ’soda’
’sodas’: ’soda’
’sof’: ’sofa’
’sofa’: ’sofa’
’sofas’: ’sofa’
’sofe’: ’sofa’
’sofs’: ’sofa’
’solver’: ’solver’
’some’: ’some’
’something’:
’something’
’somewhere’:
’somewhere’
’son’: ’on’
’song’: ’song’
’soor’: ’door’
’space’: ’space’
’spacious’: ’spacious’
’specific’: ’specific’

’spfa’: ’sofa’
’sqaure’: ’square’
’square’: ’square’
’sre’: ’are’
’ss’: ”
’ssame’: ’same’
’stairs’: ’stairs’
’stamd’: ’stand’
’stan’: ’stand’
’stand’: ’stand’
’standing’: ’standing’
’stands’: ’stand’
’stanf’: ’stand’
’stans’: ’stand’
’star’: ’stare’
’staring’: ’staring’
’starring’: ’staring’
’stay’: ’stay’
’sthe’: ’the’
’still’: ’still’
’stnd’: ’stand’
’stol’: ’stool’
’stole’: ’stool’
’stoll’: ’stool’
’stoo’: ’stool’
’stookl’: ’stool’
’stool’: ’stool’
’stoole’: ’stool’
’stools’: ’stool’
’stop’: ’stop’
’storage’: ’storage’
’straight’: ’straight’
’study’: ’study’
’suck’: ’duck’
’swap’: ’swap’
’t’: ”
’ta’: ’at’
’taable’: ’table’
’tabble’: ’table’
’tabe’: ’table’
’tabel’: ’table’
’tabke’: ’table’
’tabkle’: ’table’
’tabl’: ’table’
’table’: ’table’
’tabled’: ’table’
’tablee’: ’table’
’tablel’: ’table’
’tables’: ’table’
’tablw’: ’table’
’tabvle’: ’table’

’take’: ’take’
’takeoff’: ’takeoff’
’taking’: ’taking’
’tale’: ’table’
’tall’: ’tall’
’taller’: ’taller’
’tand’: ’and’
’tanle’: ’table’
’tarin’: ’duck’
’task’: ’task’
’tavle’: ’table’
’tbale’: ’table’
’tble’: ’table’
’te’: ’the’
’tea’: ’tea’
’teaddy’: ’teddy’
’teaddybear’: ’teddy
bear’
’teaddybears’: ’teddy
bear’
’teady’: ’teddy’
’teadybear’: ’teddy bear’
’teal’: ’teal’
’teble’: ’table’
’ted’: ’red’
’tedddy’: ’teddy’
’teddies’: ’teddy’
’teddt’: ’teddy’
’teddu’: ’teddy’
’teddy’: ’teddy’
’teddy”s’: ’teddy’
’teddybear’: ’teddy bear’
’teddybears’: ’teddy
bear’
’teddys’: ’teddy’
’tedy’: ’teddy’
’teedy’: ’teddy’
’teedys’: ’teddy’
’teh’: ’the’
’tel’: ’tell’
’television’: ’television’
’tell’: ’tell’
’tellow’: ’yellow’
’ten’: ’ten’
’tennis’: ’tennis’
’tesno’: ’yes no’
’tge’: ’the’
’tghe’: ’the’
’th’: ’the’
’tha’: ’the’
’tham’: ’than’

’than’: ’than’
’that’: ’that’
’thats’: ’thats’
’the’: ’the’
’theb’: ’the’
’theball’: ’the ball’
’theballs’: ’the ball’
’thebed’: ’the bed’
’theblue’: ’the blue’
’thebox’: ’the box’
’thechair’: ’the chair’
’thecolor’: ’the color’
’thed’: ’the’
’thedoor’: ’the door’
’theduck’: ’the duck’
’thee’: ’the’
’theere’: ’there’
’thefloor’: ’the floor’
’thegreen’: ’the green’
’their’: ’their’
’them’: ’them’
’then’: ’then’
’theorange’: ’the orange’
’thepink’: ’the pink’
’thepurple’: ’the purple’
’ther’: ’there’
’there’: ’there’
’thered’: ’the red’
’theres’: ’the red’
’theroof’: ’the roof’
’theroom’: ’the room’
’these’: ’these’
’thetable’: ’the table’
’theviolet’: ’the violet’
’thew’: ’the’
’thewhite’: ’the white’
’they’: ’they’
’theyellow’: ’the yellow’
’thge’: ’the’
’thhe’: ’the’
’thier’: ’their’
’thing’: ’thing’
’things’: ’thing’
’think’: ’think’
’thinks’: ’think’
’third’: ’third’
’thirteen’: ’thirteen’
’this’: ’this’
’thje’: ’the’
’thjere’: ’there’
’those’: ’those’
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’thr’: ’the’
’thre’: ’the’
’thred’: ’the red’
’three’: ’three’
’threre’: ’there’
’through’: ’through’
’throw’: ’throw’
’throwing’: ’throwing’
’ths’: ’the’
’tht’: ’that’
’thtree’: ’three’
’thw’: ’the’
’thwe’: ’the’
’thye’: ’the’
’ti’: ’to’
’till’: ’until’
’time’: ’time’
’times’: ’time’
’tis’: ’is’
’tje’: ’the’
’tjhe’: ’the’
’to’: ’to’
’toch’: ’touch’
’tocket’: ’rocket’
’tof’: ’of’
’together’: ’together’
’tome’: ’to me’
’too’: ’to’
’top’: ’top’
’tot’: ’toy’
’total’: ’total’
’tou’: ’two’
’touch’: ’touch’
’touching’: ’touching’
’touvh’: ’touching’
’tow’: ’two’
’towards’: ’towards’
’tower’: ’tower’
’toy’: ’toy’
’toyrobot’: ’toy robot’
’toys’: ’toy’
’tpouch’: ’touch’
’tpuch’: ’touch’
’trable’: ’table’
’train’: ’train’
’traingle’: ’triangle’
’trains’: ’train’
’tray’: ’tray’
’tree’: ’tree’
’trhe’: ’the’
’triangle’: ’triangle’

’triangular’: ’triangular’
’trow’: ’throw’
’truck’: ’truck’
’trucks’: ’trucks’
’true’: ’true’
’try’: ’try’
’tsble’: ’table’
’tthe’: ’the’
’tub’: ’tub’
’tubelight’: ’tube light’
’turn’: ’turn’
’turquoise’: ’turqoise’
’tv’: ’tv’
’twenty’: ’twenty’
’two’: ’two’
’tyhe’: ’the’
’types’: ’types’
’u’: ’you’
’uder’: ’under’
’ug’: ’mug’
’uing’: ’using’
’uisng’: ’using’
’unde’: ’under’
’undeer’: ’under’
’under’: ’under’
’underneath’:
’underneath’
’underthe’: ’under the’
’undr’: ’under’
’undrneath’:
’underneath’
’until’: ’until’
’up’: ’up’
’upon’: ’upon’
’upside’: ’upside’
’ur’: ’your’
’us’: ’is’
’use’: ’use’
’usimg’: ’using’
’usin’: ’using’
’usinf’: ’using’
’using’: ’using’
’usinggreen’: ’using
green’
’usingthe’: ’using the’
’usingyellow’: ’using
yellow’
’vaccum’: ’vacuum’
’van’: ’van’
’vch’: ’which’
’vchs’: ’which is’

’ve’: ”
’vechile’: ’vehicle’
’vechiles’: ’vehicle’
’vehicle’: ’vehicle’
’vehicles’: ’vehicle’
’very’: ’very’
’vhair’: ’chair’
’view’: ’view’
’viloet’: ’violet’
’violet’: ’violet’
’visible’: ’visible’
’vme’: ’me’
’voilet’: ’violet’
’volley’: ’volley’
’volor’: ’color’
’volour’: ’color’
’volvo’: ’volvo’
’vount’: ’count’
’vrs’: ’where is’
’vt’: ’what’
’vth’: ’with’
’vts’: ’what is’
’w’: ”
’wa’: ”
’wadrobe’: ’wardrobe’
’waht’: ’what’
’wait’: ’wait’
’wakll’: ’walk’
’wal’: ’wall’
’walk’: ’walk’
’wall’: ’wall’
’walla’: ’wall’
’walll’: ’wall’
’walls’: ’wall’
’wals’: ’wall’
’want’: ’want’
’wardrobe’: ’wardrobe’
’wardrobes’: ’wardrobe’
’wardrof’: ’wardrobe’
’was’: ’was’
’wat’: ’what’
’watch’: ’watch’
’watching’: ’watching’
’way’: ’way’
’we’: ’we’
’weather’: ’whether’
’weed’: ’weed’
’well’: ’well’
’were’: ’were’
’wether’: ’whether’
’wh’: ”

’wha’: ’what’
’whaere’: ’where’
’whar’: ’where’
’whare’: ’where’
’what’: ’what’
’whatare’: ’what are’
’whatever’: ’whatever’
’whats’: ’what is’
’whatyou’: ’what you’
’whch’: ’which’
’whcih’: ’which’
’wheather’: ’whether’
’wheels’: ’wheels’
’wheer’: ’wheel’
’whellers’: ’wheeler’
’when’: ’when’
’wher’: ’where’
’where’: ’where’
’whereis’: ’where is’
’wheres’: ’where is’
’wherre’: ’where’
’whers’: ’where’
’wherte’: ’where’
’whether’: ’whether’
’whhite’: ’white’
’whic’: ’which’
’which’: ’which’
’whichis’: ’which is’
’whick’: ’which’
’whiite’: ’white’
’while’: ’while’
’whit’: ’white’
’white’: ’white’
’whiteball’: ’white ball’
’whiteduck’: ’white
duck’
’whitee’: ’white’
’whites’: ’white’
’whitw’: ’white’
’who’: ’who’
’whote’: ’white’
’whr’: ’where’
’whre’: ’where’
’whst’: ’what’
’wht’: ’what’
’whta’: ’what’
’whte’: ’white’
’will’: ’will’
’wimdow’: ’window’
’windo’: ’window’
’windoe’: ’window’
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’windos’: ’window’
’window’: ’window’
’windowa’: ’window’
’windows’: ’window’
’wise’: ’wise’
’wish’: ’wish’
’wit’: ’with’
’wite’: ’white’
’with’: ’with’
’witha’: ’with a’
’withe’: ’with the’
’wither’: ’whether’
’withorange’: ’with
orange’
’without’: ’without’
’wll’: ’wall’
’wodden’: ’wooden’

’wondow’: ’window’
’wooden’: ’wooden’
’wordrobe’: ’wardrobe’
’would’: ’would’
’wt’: ’what’
’wthat’: ’what’
’wts’: ’what is’
’ww’: ”
’wwww’: ”
’wwwww’: ”
’wwwwww’: ”
’wwwwwwwwww’: ”
’xylophone’:
’xylophone’
’y’: ’yes’
’ye’: ’yes’
’yeallow’: ’yellow’

’yelllow’: ’yellow’
’yello’: ’yellow’
’yelloe’: ’yellow’
’yelloew’: ’yellow’
’yellow’: ’yellow’
’yellow-’: ’yellow’
’yellowball’: ’yellow
ball’
’yelolow’: ’yellow’
’yeloow’: ’yellow’
’yelow’: ’yellow’
’yeno’: ’yes no’
’yes’: ’yes’
’yesno’: ’yes no’
’yesno0’: ’yes no’
’yesor’: ’yes or’
’yhe’: ’the’

’yn’: ’yes no’
’yno’: ’yes no’
’yo’: ’you’
’yor’: ’your’
’you’: ’you’
’youlooking’: ’you
looking’
’your’: ’your’
’youre’: ’youre’
’yourself’: ’yourself’
’youself’: ’yourself’
’ypu’: ’you’
’ytellow’: ’yellow’
’ywllow’: ’yellow’
’{yes’: ’yes’
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