LEARNING GRAPHICAL STATE TRANSITIONS

Daniel D. Johnson
25 April 2017

Harvey Mudd College



MOTIVATION



GRAPH-STRUCTURED DATA

Many interesting forms of data consist of relationships
between entities.



GRAPH-STRUCTURED DATA

Many interesting forms of data consist of relationships
between entities.

This naturally maps to a graphical representation, with edges
between nodes.



GRAPH-STRUCTURED DATA: EXAMPLES

|00
H—<|:—<|:—<|:—<|:—H [12] +f->{o0] & F-»{37[ >
H H H H



PREVIOUS WORK

. Graph Neural Network (Gori et al., 2005; Scarselli et al., 2009)



PREVIOUS WORK

. Graph Neural Network (Gori et al., 2005; Scarselli et al., 2009)

 Each node has a state vector, representing its
neighborhood



PREVIOUS WORK

. Graph Neural Network (Gori et al., 2005; Scarselli et al., 2009)
 Each node has a state vector, representing its
neighborhood
 Updates states of nodes based on states of adjacent
nodes, until convergence



PREVIOUS WORK

. Graph Neural Network (Gori et al., 2005; Scarselli et al., 2009)
 Each node has a state vector, representing its
neighborhood
 Updates states of nodes based on states of adjacent
nodes, until convergence
* Use states to produce output



PREVIOUS WORK

. Graph Neural Network (Gori et al., 2005; Scarselli et al., 2009)
 Each node has a state vector, representing its
neighborhood
 Updates states of nodes based on states of adjacent
nodes, until convergence
* Use states to produce output

» Gated Graph Neural NetworR i et at, 201)



PREVIOUS WORK

. Graph Neural Network (Gori et al., 2005; Scarselli et al., 2009)
 Each node has a state vector, representing its
neighborhood
 Updates states of nodes based on states of adjacent
nodes, until convergence
* Use states to produce output

» Gated Graph Neural NetworR i et at, 201)

* Like GNN, but compute states using fixed number of
GRU-style updates, train with backpropagation



PREVIOUS WORK

. Graph Neural Network (Gori et al., 2005; Scarselli et al., 2009)
 Each node has a state vector, representing its
neighborhood
 Updates states of nodes based on states of adjacent
nodes, until convergence
* Use states to produce output

 Gated Graph Neural NetworR (i etat, 201)
* Like GNN, but compute states using fixed number of
GRU-style updates, train with backpropagation
 Gated Graph Sequence Neural Networks: extension to
produce output sequences



-
-



Previous work Current work

The bedroom is

south of the
yes/no office. D
The kitchen is
@

west of the
2 bedroom. ...
2
3
S =
O2 Mary went to the

garden. John

journeyed to the office

office. ... Where
D ({&i is John?



« Design a neural network architecture that can
manipulate graphical states

« Use this architecture to solve tasks with graphical
internal state and/or graphical output



« Design a neural network architecture that can
manipulate graphical states

« Use this architecture to solve tasks with graphical
internal state and/or graphical output

Why?

« Using graphs as an internal representation is natural to
some tasks, and can help interpret network behavior

« This provides a general framework for learning to output
structured data



MODEL



GRAPH REPRESENTATION

« Set of nodes v € V, each with:
+ astrength s, (with 0 < 5, < 1)
- an annotation x, € RV where 3" | 7, ; = 1
 a hidden state h, ¢ R
« Connectivity matrix C € RIVIxVIxY
* Cyv 4 strength of directed edge of type y from vto «/
(with0 <C, ., <1)

Nodes Connectivity

Annotation  Strength State Destination
"R n 1234567
, 1 DD HED
; 2 QB BBDED
3 g 3 MG
4 5 4 G EEGE
5 @ 5 BhhhhiEHh
: 6 WD
7 [T 7 DA




GRAPH TRANSFORMATION TYPES

Node addition:
create new nodes

Node state update:
update node states based on new input

Edge update:
add or remove edges based on node states

* Propagation:

update node states based on adjacent node states
Aggregation:

combine node states into a representation vector



Create new nodes conditioned on an input vector

‘ Input Data

New nodes

? 9 ’1"'

GRU — GRU — GRU




NODE STATE UPDATE

Update node states conditioned on an input vector.

Input Data




NODE STATE UPDATE: DIRECT REFERENCE

If there are different input vectors for each node type, update
each node type separately.

InputData [|---=-="%
InputData |---------—-___p

10



EDGE UPDATE

Add or remove edges conditioned on node states and an
input vector.

Input Data

m



PROPAGATION

Exchange information between nodes along edges based on
the node states and the edge types.

12



AGGREGATION

Compute a graph-level representation vector as a weighted
sum of outputs from each node.

13



GATED GRAPH TRANSFORMER NEURAL NETWORK (GGT-NN)

“Mary went to the office” “ ? “ ? “Where is Mary?”

N

Node State Update\ S

_>‘
1 v ‘ v Ny
i Direct Reference Update ‘ Direct Reference Update ‘/
‘ v v
Propagation Propagation ‘
v
Aggregation

Fully connected layer +
Softmax

!

“office”

14



* Provide correct graph state after each input sentence

15



* Provide correct graph state after each input sentence
* Train GGT-NN to

* reproduce these graph states
 answer query correctly using final graph state

15



* Provide correct graph state after each input sentence
* Train GGT-NN to

* reproduce these graph states
 answer query correctly using final graph state

« During training: substitute correct nodes and edges after
each sentence

15



* Provide correct graph state after each input sentence
* Train GGT-NN to

* reproduce these graph states
 answer query correctly using final graph state

« During training: substitute correct nodes and edges after
each sentence

After training: use unmodified network output

15



EXPERIMENTS




BABI TASKS

Dataset of 20 simple synthetic question-answering tasks

(Weston et al., 2016)

95% accuracy in 19 tasks using 1000 examples
100% accuracy in 11 tasks using 1000 examples
¢ Including "Basic Induction" and "Pathfinding" tasks

95% accuracy in 14 tasks using 500 examples

95% accuracy in 10 tasks using 250 examples

16



RULE DISCOVERY

Rule 30 Cellular Automaton wotfram, 2002)

Zero Value edges

Neighbor edges o
S S
L It

Initial cells,

One

L |

New cells (right)

New cells (left)

Arbitrary 2-symbol 4-state Turing machine

States and rules |
v :

«— Current state

Head / Current cell

Cells

Zero  One

17



RULE DISCOVERY: RESULTS

Accuracy

Original Task  Generalization: 20  Generalization: 30

Automaton 100.0% 87.0% 69.5%
Turing 99.9% 90.4% 80.4%

Automaton output at step 1:

1000 iterations 2000 iterations
[ ]
[
3000 iterations 7000 iterations
[ ] [ )

18



RULE DISCOVERY: RESULTS

Accuracy

Original Task  Generalization: 20  Generalization: 30

Automaton 100.0% 87.0% 69.5%
Turing 99.9% 90.4% 80.4%

Automaton output at step 2:

1000 iterations 2000 iterations
[ ]
t 4
[ ]
3000 iterations 7000 iterations
[ ) [ ]
+ -
[ ] [ ]

18



RULE DISCOVERY: RESULTS

Accuracy

Original Task  Generalization: 20  Generalization: 30

Automaton 100.0% 87.0% 69.5%
Turing 99.9% 90.4% 80.4%

Automaton output at step 3:

1000 iterations 2000 iterations
°
r s "
[ ]
3000 iterations 7000 iterations
° °
@ 49
[ ]

18



RULE DISCOVERY: RESULTS

Accuracy

Original Task  Generalization: 20  Generalization: 30

Automaton 100.0% 87.0% 69.5%
Turing 99.9% 90.4% 80.4%

Automaton output at step 4:

1000 iterations 2000 iterations
[ ]
: ¢ S
[ ]
3000 iterations 7000 iterations
[ ] [ )
o + o+« +
[} )

18



RULE DISCOVERY: RESULTS

Accuracy

Original Task  Generalization: 20  Generalization: 30

Automaton 100.0% 87.0% 69.5%
Turing 99.9% 90.4% 80.4%

Automaton output at step 5:

1000 iterations 2000 iterations
[ ]
’ C. 4000
[ ]
3000 iterations 7000 iterations
[ ] [ ]
3 5 5 LB SO otatet
| ] ]

18



RULE DISCOVERY: RESULTS

Accuracy

Original Task  Generalization: 20  Generalization: 30

Automaton 100.0% 87.0% 69.5%
Turing 99.9% 90.4% 80.4%

Automaton output at step 6:

1000 iterations 2000 iterations
[ ]
o oe? e 88
[ ]
3000 iterations 7000 iterations
[ ] [ )
oo — @O0 —
L ] L ]

18



RULE DISCOVERY: RESULTS

Accuracy

Original Task  Generalization: 20  Generalization: 30

Automaton 100.0% 87.0% 69.5%
Turing 99.9% 90.4% 80.4%

Automaton output at step 7:

1000 iterations 2000 iterations
°
LR 150000
[ ]
3000 iterations 7000 iterations
° °
o er oot ; COOO
. °

18



RULE DISCOVERY: RESULTS

Accuracy

Original Task  Generalization: 20  Generalization: 30

Automaton 100.0% 87.0% 69.5%
Turing 99.9% 90.4% 80.4%

Automaton output at step 8:

1000 iterations 2000 iterations

°
o0 gl 80 191900000

[

3000 iterations 7000 iterations
[ ] [

q;_.‘;.“*« - G OOOO bt

. °

18



RULE DISCOVERY: RESULTS

Accuracy

Original Task  Generalization: 20  Generalization: 30

Automaton 100.0% 87.0% 69.5%
Turing 99.9% 90.4% 80.4%

Automaton output at step 9:

1000 iterations 2000 iterations
°
[ ]
3000 iterations 7000 iterations
° °
%6 D oot 0-0-0 0-0-0-0-0-0-0FoFatarar
° °

18



RULE DISCOVERY: RESULTS

Accuracy

Original Task  Generalization: 20  Generalization: 30

Automaton 100.0% 87.0% 69.5%
Turing 99.9% 90.4% 80.4%

Automaton output at step 10:

1000 iterations 2000 iterations
[ ]
setegere? s00000000
[ ]
3000 iterations 7000 iterations
[ ] ®
q::: ‘—.‘;. PSS OGO OOO b
L J L

18



RULE DISCOVERY: RESULTS

Accuracy

Original Task  Generalization: 20  Generalization: 30

Automaton 100.0% 87.0% 69.5%
Turing 99.9% 90.4% 80.4%

Automaton output at step 11:

1000 iterations 2000 iterations
[ ]
L8 S aal 91960000000
[ ]
3000 iterations 7000 iterations
o °
(::.:_..“ 3 7. - SES= GO GG 090 0-0-0-0F 00 Do
® 'S

18



Future work will focus on

 Reducing model supervision
* Sparse connectivity optimizations
« Extending node types

19



« GGT-NN model can construct and manipulate graphical
state

« Modular graph transformations can be recombined in
different ways

* GGT-NN successfully solves textual bAbl tasks and
graphical rule discovery tasks, and is potentially useful
for a wide variety of structured data applications

20



THANK YOU!




	Motivation
	Model
	Experiments
	Thank you!
	Appendix

