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GRAPH-STRUCTURED DATA

Many interesting forms of data consist of relationships
between entities.

This naturally maps to a graphical representation, with edges
between nodes.



GRAPH-STRUCTURED DATA: EXAMPLES
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PREVIOUS WORK

. Graph Neural Network (Gori et al., 2005; Scarselli et al., 2009)
 Each node has a state vector, representing its
neighborhood
 Updates states of nodes based on states of adjacent
nodes, until convergence
* Use states to produce output

 Gated Graph Neural NetworR (i etat, 201)
* Like GNN, but compute states using fixed number of
GRU-style updates, train with backpropagation
 Gated Graph Sequence Neural Networks: extension to
produce output sequences
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« Design a neural network architecture that can
manipulate graphical states

« Use this architecture to solve tasks with graphical
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« Design a neural network architecture that can
manipulate graphical states

« Use this architecture to solve tasks with graphical
internal state and/or graphical output

Why?

« Using graphs as an internal representation is natural to
some tasks, and can help interpret network behavior

« This provides a general framework for learning to output
structured data



MODEL



GRAPH REPRESENTATION

« Set of nodes v € V, each with:
+ astrength s, (with 0 < 5, < 1)
- an annotation x, € RV where 3" | 7, ; = 1
 a hidden state h, ¢ R
« Connectivity matrix C € RIVIxVIxY
* Cyv 4 strength of directed edge of type y from vto «/
(with0 <C, ., <1)
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GRAPH TRANSFORMATION TYPES

Node addition:
create new nodes

Node state update:
update node states based on new input

Edge update:
add or remove edges based on node states

* Propagation:

update node states based on adjacent node states
Aggregation:

combine node states into a representation vector



Create new nodes conditioned on an input vector
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NODE STATE UPDATE

Update node states conditioned on an input vector.

Input Data




NODE STATE UPDATE: DIRECT REFERENCE

If there are different input vectors for each node type, update
each node type separately.
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EDGE UPDATE

Add or remove edges conditioned on node states and an
input vector.

Input Data
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PROPAGATION

Exchange information between nodes along edges based on
the node states and the edge types.
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AGGREGATION

Compute a graph-level representation vector as a weighted
sum of outputs from each node.
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GATED GRAPH TRANSFORMER NEURAL NETWORK (GGT-NN)

“Mary went to the office” “ ? “ ? “Where is Mary?”
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* Provide correct graph state after each input sentence
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* Provide correct graph state after each input sentence
* Train GGT-NN to

* reproduce these graph states
 answer query correctly using final graph state

« During training: substitute correct nodes and edges after
each sentence

After training: use unmodified network output
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EXPERIMENTS




BABI TASKS

Dataset of 20 simple synthetic question-answering tasks

(Weston et al., 2016)

95% accuracy in 19 tasks using 1000 examples
100% accuracy in 11 tasks using 1000 examples
¢ Including "Basic Induction" and "Pathfinding" tasks

95% accuracy in 14 tasks using 500 examples

95% accuracy in 10 tasks using 250 examples
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RULE DISCOVERY

Rule 30 Cellular Automaton wotfram, 2002)
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RULE DISCOVERY: RESULTS

Accuracy

Original Task  Generalization: 20  Generalization: 30

Automaton 100.0% 87.0% 69.5%
Turing 99.9% 90.4% 80.4%

Automaton output at step 1:

1000 iterations 2000 iterations
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Original Task  Generalization: 20  Generalization: 30

Automaton 100.0% 87.0% 69.5%
Turing 99.9% 90.4% 80.4%

Automaton output at step 9:

1000 iterations 2000 iterations
°
[ ]
3000 iterations 7000 iterations
° °
%6 D oot 0-0-0 0-0-0-0-0-0-0FoFatarar
° °

18



RULE DISCOVERY: RESULTS
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RULE DISCOVERY: RESULTS

Accuracy
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Future work will focus on

 Reducing model supervision
* Sparse connectivity optimizations
« Extending node types
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« GGT-NN model can construct and manipulate graphical
state

« Modular graph transformations can be recombined in
different ways

* GGT-NN successfully solves textual bAbl tasks and
graphical rule discovery tasks, and is potentially useful
for a wide variety of structured data applications
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