Model-based Knowledge Representations

Lucas Lehnert Michael L. Littman
Computer Science Department Computer Science Department
Brown University Brown University
Providence, RI 02912, USA Providence, RI 02912, USA
lucas_lehnert@brown.edu michael_littman@brown.edu

Michael J. Frank
Department of Cognitive, Linguistic & Psychological Sciences
Carney Institute for Brain Science
Brown University
Providence, RI 02912, USA
michael_frank@brown.edu

Abstract

One question central to reinforcement learning is which representations — including aspects of the state space, transition
function and reward function — can be generalized or re-used across different tasks. Humans are adept at such flexible
transfer but existing RL algorithms are much more limited. This paper presents model features, a latent representation
that compresses the state space of a control problem by exploiting which states are equivalent in terms of both transition
and reward functions. Because model features only extract these equivalences from the transition and reward functions,
but are not tied to the functions themselves, this latent state representation generalizes across tasks that change in both
their transition and reward functions.

While transferring successor features between different tasks has been shown to improve learning speed, this represen-
tation is overly specific and hence needs to be re-learned when the optimal policy or transition function change. Model
features link successor features to model reductions, facilitating the design of gradient-based optimization algorithms to
approximate model reductions directly from transition data. Learning model features is akin to model-based RL, because
from the learned model a linear action model can be extracted to predict future reward outcomes. This paper summa-
rizes theoretical results from our extended paper and presents empirical simulation results showing that model features
which minimize prediction errors on future reward outcomes serve as useful state abstractions that afford generalization
across tasks that differ in both transition and reward functions.

Because model features construct a latent state representation that supports predictions of future reward outcomes, the
presented results motivate further experiments to investigate if humans or animals learn such a representation, and
whether neural systems involved in state representation reflect the equivalence abstraction.

Keywords: Model-based Reinforcement Learning, Knowledge Representa-
tions, Latent Structure Learning, Successor Representation, Hu-
man and Animal Learning

1 Introduction

Reinforcement learning (RL) [19] studies the problem of computing optimal decision strategies from one-step interactions
sampled from an environment. Each interaction consists of the agent selecting an action to cause a change in the environ-
ment’s state. For each state transition the agent receives a reward, a single scalar number. The goal is to compute a policy
that maximizes rewards. One question central in RL is how to generalize knowledge across different environments. This
paper presents model features, a feature representation that compresses the state space into a lower dimensional space
by clustering states that produce identical future reward outcomes. By only exploiting such state equivalences, model
features generalize across tasks that differ in reward and transition functions.

A Markov decision processes (MDP) [19] consists of a 5-tuple M = (S, A, p,r,7), where S is a set of all possible states
and the agent is allowed to chose an action from a set of actions A to trigger a state transition according to the stochastic
transition function p. The reward function r specifies the rewards for each transition. The discount factor v € [0, 1) deter-
mines how strongly short term rewards are emphasized over long term rewards. One key property of model-based RL is
the ability to predict a sequence of reward outcomes (r1, 2, ...) given an arbitrary sequence of actions (a1, as, ...). Model
features compress the state space by assigning two different states (approximately) the same n-dimensional feature vector
if, given an arbitrary action sequence (a1, ag, ...), both states generate the same reward sequence (71, 72, ...) with equal (or
near-equal) probability. Such two states are also called behaviourally equivalent or stochastically bisimilar [9]. Knowing
which reward sequence a certain action sequence can generate is sufficient for evaluating any arbitrary policy and iden-
tifying the optimal policy. Model features encode model reductions [9] and provide a basis function [18, 11] specifically
trained to preserve all information relevant for predicting future reward outcomes.

This paper first summarizes results from our extended paper [12] and shows that model features, and by extension model
reductions and bisimulation relations, can be extracted by learning the successor features of a single arbitrary policy.
Model features construct a low dimensional representation of the state space by utilizing which states are equivalent
to the transition and reward function. We then show that a model feature representation learned for one MDP can be
re-used on another MDP with different transition and reward functions, assuming that state equivalences are preserved.
Such “deep transfer” across tasks, even the absence of prior experience with specific transition or reward functions,
is predicted by behavioral and neural signatures of human structure learning [3, 1, 8] but not afforded by alternative
algorithms that compress the transition function directly [17, 16]. As a lay example, an expert musician can immediately
transfer a song learned in one key to another, or on a guitar to a piano, despite the very different transition functions [7].

2 Successor Features encode Model Features

A basis function is a function ¢ mapping states s to a real valued vector ¢;. Basis functions perform transforms on the
state space and can be used to construct different feature-to-feature transition dynamics. Model features are designed
to preserve the dynamics of the underlying MDP. For example, a bijection between the state space S and R™ would
resemble a valid model feature. However, the aim is to construct model features that also compress the state space.
Suppose ¢ : S — {eq, ...,e, } is a model feature mapping states to one-hot bit vectors e; where the ith entry is set to one
and all other entries are zero. If ¢ preserves the transition dynamics, then for any action sequence and start state s

Pr{sl, S9, ...|80, ai, ag, } = Pr{eheg, ...‘61,(11,(12, }, (1)

where ¢ maps s to e;. Meaning any two states s and § mapped to the same e; have to generate identical feature trajecto-
ries (e1, eq, ...) with equal probability. If ¢ would not preserve the transition dynamics of the underlying MDP, then the
probability of observing e, ez, ... would depend on the actual start state s;. In this case, two states s and § mapped to
the same e, would not generate identical feature trajectories (eq, ez, ...) with equal probability. However, if ¢ is a model
feature, then the probability Pr{e,es,...|e1, a1, as, ...} is conditioned on e;, a state partition, and is not conditioned on a
single state s;. Figure 1(b) further explains the connection between state and feature transition probabilities. If ¢ is also
required to preserve information about rewards, then any two such states s and § mapped to the same vector e; also need
to have equal one-step rewards. Figure 1(a) shows an example of a 90 state grid world that can be compressed into 3
states, because only the column information is relevant for predicting when a reward of zero or one is observed.

Successor features (SFs) [5, 2, 16] predict the visitation frequencies over future state features and these visitation frequen-
cies implicitly encode the feature-to-feature transition probabilities. For a policy 7 : S — A, SFs are defined as

Z SAY

t=1

T
s,a_E

s:sl,a:al,wl, (2)

where the expectation in Eq. (2) ranges over all possible sequences that start with state s and action a and then follow
the policy 7. As discussed above, if ¢ is a model feature, the probability of a feature sequence (¢1,¢s, ...) can to be
conditioned on the first feature ¢, itself. Similarly, SFs can be conditioned on a particular feature vector by assuming

fa=0JF, €)

_ Pr {1 % 3 }

0 0 1 Feature
1)
z Probability Space
8 0 0 1 (b 0 0 1 Density
o .
o n Function p
ofol1 ' > S

Pr{s i> ¢3}

(a) Column Grid World. The 90 grid states can be (b) Relationship between transition probabilities. Eq. (1) holds if the probabil-
con}p.resged into 3 states, bgca.use only the column ity of transitioning between two feature vectors Pr{¢: — ¢3} equals the prob-
position is relevant for predicting rewards. ability of transitioning from one state into the state partition ¢3, Pr{s = ¢s}.

12.54

5 10.0 4 0.4

0.2
0.0
-0.2

7.54

Loss Value
Value Errol

5.0 1

,_.
<

2.51

* 6 Gradieié%pdate IOIOO 0.040 200 ﬁ?aggr? 800 1000 " _O’ZOAO 0.2 04 _0(?283%6
(c) Loss Objective Eq. (5) (d) Value Error (e) Initialization (f) Tteration 300 (g) Iteration 1000

Figure 1: Learning Model Features. Figure 1(a) shows the Column Grid World example. Figure 1(b) shows the connec-
tion between feature-to-feature and state-to-state transition probabilities. Figures 1(c) to 1(g) plot how the loss objective
evolves during optimization for the column world MDP. As the value of the loss objective decreases, the feature vectors
for equivalent state merge into the same cluster and the different cluster centers move apart. Figure 1(d) shows the error
for predicting the expected discounted return for different e-greedy policy. An e-greedy policy chooses with 1 — ¢ prob-
ability the optimal action and with ¢ probability actions uniformly at random. As the approximation of model features
improves, the same state representation can be used to predict the value of a range of different policies (Figure 1(d)).

meaning two states mapping to the same feature vector are mapped to the same SF vector. Hence the visitation frequen-
cies over future features is conditioned on a feature vector ¢, rather than a single state. Substituting Eq. (3) into Eq. (2)
results in the first identity in line (4). SFs obey a bellman fix-point equation similar to value functions.

Sox| elry =r(s,a) o)

The second identity in line (4) requires that two states mapped to the same feature have equal one-step rewards. A
theoretical analysis proving that line (4) is sufficient for encoding model reductions as defined by [9] can be found in our
extended paper [12]. Using line (4) a new objective function can be defined to learning model features':

L@ AF Yaca (riYaca) = B[(17— r(s.))" +a|[g] +16LF™ — 4] F*|[;].)

Figures 1(c) to 1(g) illustrate how minimizing Eq. (5) approximates model features. Such an approximation minimizes
the prediction errors of future reward outcomes and states that are only approximately bisimilar may be clustered. Fig-
ure 1(d) shows how the learned feature representation allows for generalization across a range of different policies in the
column grid world (see below for transfer to different MDPs). A linear action model [20] can be analytically extracted
from a solution to Eq. (5) to evaluate any arbitrary policy. Hence, learning model features is akin to model-based RL [12].

IF" = ¢] +9E [¢ F")

3 Model Features encode Task Knowledge

Model features construct a low dimensional representation of the state space by clustering states that are equivalent to
the transition and reward function. On three transfer examples, Figure 2 shows that a state abstraction’s ability to predict
future reward outcomes is indicative of the abstraction’s ability to be re-used in a previously unseen MDP, and moreover,
is more useful than abstractions that maximize total reward in the original MDP. If a state abstraction incorrectly clusters
states, the resulting compressed MDP does not resemble the original MDP and thus a policy optimal in the compressed
MDP is not necessarily optimal in the original MDP and cannot generate a high total reward. For each example, all
possible state abstractions were enumerated and scored on their reward sequence prediction error and the total reward

'The expectation in Eq. (5) ranges over transitions (s, a, 7, s’) from some fixed transition data set and « is a scalar hyper-parameter.

Distribution at transfer Distribution at transfer

3 variations of rewards » 400 | \O 100 variations of 250
s Total reward transitions and 5 Total reward
‘c‘; 300 Reward sequence error rewards § 200 Reward sequence error
01 % 200 Common % 150
19 5 8 state 5 100 4
| 5 abstraction @
2 .E 100 .g 50
5 E}
2 G Z ol— . . .
5 6 7 8 9 10 1.5 1.6 17 1.8
Total reward at transfer Total reward at transfer
(a) Transfer between different column worlds. (b) Transfer between random MDPs compressible to 3 states.

Distribution at transfer
36 different reward location combinations

N
o
o

Total reward

g 200 1 Reward sequence error p—Value
01 01 % 150 Fig 2(a) 3.29-107%°
14 14 % 100 Fig 2(b) 8.63-107176
2] 2] £ 5o Fig 2(c) 9.60-10"7
012 012 2

o

5 6 7 8 9
Total reward at transfer

(c) Transfer between grid worlds with different goal locations. (d) One sided Welch'’s t-test.

Figure 2: Low reward sequence prediction errors identify state abstractions amenable for “deep transfer”. For each
experiment all possible state abstractions were enumerated using Algorithm U [10]. State abstractions were scored by
compressing an MDP using the state abstraction of interest [14]. The total reward score was computed by solving for
the optimal policy using value iteration [19, Chapter 4.4] and running the computed policy 20 times for 10 time steps in
the MDP from a randomly selected start state. The reward sequence error was computed by selecting 20 random start
states and then performing a random walk for 10 time steps. The histograms report averages over all repeats and transfer
MDPs. Figure 2(d) lists the p-values of the difference in mean total reward being insignificant for each histogram.

generated by a policy optimal in the compressed MDP, using only one randomly selected MDP. The top 5% scoring
state abstractions were then re-evaluated on 99 other MDPs and the total reward generated by these state abstractions
is plotted as a histogram for each transfer example in Figure 2. In all cases a state abstraction that produces low reward
sequence prediction error generates a higher total reward at transfer than state abstractions that were selected based on
their ability to construct a well performing policy on any given original MDP. This result indicates that model features
which are designed to produce low reward sequence prediction errors, encode information about an MDP that can be
generalized across different MDPs.

Figure 2(b) presents a transfer example between 100 random MDPs that share the same state abstraction compressing a
9 state problem into a 3 “abstract” state problem. In this experiment, each MDP has a randomly generated transition and
reward function, but state equivalences are preserved across all MDPs. The histogram shows that state abstractions with
a low reward sequence prediction error perform on average significantly better on the remaining 99 MDPs, because these
state abstractions approximately capture the underlying state equivalences common to all 100 MDPs. State abstractions
selected based on the total reward generated on one MDP do not generalize as well, because they are tied to the optimal
policy and to one specific transition and reward function, which change when transferring the state representation to a
different MDP. This pattern repeats in Figure 2(a), but the difference in distribution is not as significant because the tran-
sition function remains fixed between different MDPs (only the reward function differs). Figure 2(c) shows an example
where no state compression is possible without incurring some reward sequence prediction error. Only the identity map
is optimal, because the location information in the grid is necessary to predict the +1 reward cells. However, the his-
togram in Figure 2(c) shows that abstractions selected based on minimizing reward sequence prediction error criterion
still perform better than selecting the abstraction by their total reward. Because grid worlds have a specific topology of
the state space, a state abstraction clustering only neighbouring states can produce relatively low reward sequence pre-
diction errors. Such a state abstraction would be expected to perform relatively well across all different reward locations.

4 Conclusion

In model-based RL, the agent has the ability to predict reward outcomes over multiple time steps into the future. Model
features approximate state abstractions that compress an MDP while preserving the ability to predict future reward out-
comes using only the compressed model. Such a feature representation exploits which states are equivalent for both the
reward and transition function and thus model features can be understood as a model-based knowledge representation.

Model-based basis functions have been studied previously [4, 6], but the presented connection to SFs allows us to design
an gradient-based optimization algorithm that can construct bisimulation relations directly from transition data.

Because model features only leverage state equivalences, these representations can generalize across environments that
differ in both reward and transition functions. Previous work on transfer with SFs has shown that re-using SFs on an
MDP with a different reward function can provide faster learning [2, 15, 16]. However, SFs are fragile to changes in the
optimal policy [13] and transition function, whereas latent state representations are more abstract and thus are not tied
to particular transitions [3, 7]. In related work, Stachenfeld et al. [17] compress the SR of an MDP using PCA and show
how this compressed representation can be used for transfer and is tied to place cells and grid cells in the hippocampus.
However, in that case model features construct a lower dimensional representation of the transition function itself, and
hence transfer is limited to environments that share the same transition function. In contrast to Stachenfeld et al., model
features separate the transition dynamics (and the SR) from the compression on the state space itself, and thus generate a
latent state representation of a task exploiting task equivalences. Collins and Frank [3] and Badre and Frank [1] show how
reward prediction errors and prediction errors on the structure of the state space identify latent state representations that
accelerate learning in humans when transferring knowledge across tasks. While this work considers contextual multi-
armed bandits, model features may allow these results can be extended to sequential decision making, motivating further
experiments to investigate if humans or animals learn such a feature representation.

References
[1] D.Badre and M. J. Frank. Mechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: Evidence
from fmri. Cerebral cortex, 22(3):527-536, 2011.

[2] A.Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. P. van Hasselt, and D. Silver. Successor features for transfer
in reinforcement learning. In Advances in neural information processing systems, pages 4055-4065, 2017.

[3] A.G.E. Collins and M. J. Frank. Neural signature of hierarchically structured expectations predicts clustering and
transfer of rule sets in reinforcement learning. Cognition, 152:160-169, 2016.

[4] G. Comanici, D. Precup, and P. Panangaden. Basis refinement strategies for linear value function approximation in
mdps. In Advances in Neural Information Processing Systems, pages 2899-2907, 2015.

[5] P. Dayan. Improving generalization for temporal difference learning: The successor representation. Neural Compu-
tation, 5(4):613-624, 1993.

[6] N.Ferns and D. Precup. Bisimulation metrics are optimal value functions. In UAI, pages 210-219. Citeseer, 2014.

[7] N. T. Franklin and M. J. Frank. Compositional clustering in task structure learning. PLoS computational biology, 14
(4):e1006116, 2018.

[8] N. T. Franklin and M. J. Frank. Generalizing to generalize: when (and when not) to be compositional in task
structure learning. bioRxiv, 2019. doi: 10.1101/547406.

[9] R. Givan, T. Dean, and M. Greig. Equivalence notions and model minimization in markov decision processes.
Artificial Intelligence, 147(1):163-223, 2003.

[10] D. E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 3: Generating All Combinations and Partitions.
Addison-Wesley, 2005.

[11] G.Konidaris, S. Osentoski, and P. Thomas. Value function approximation in reinforcement learning using the fourier
basis. Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, pages pages 380-385, August 2011.

[12] L. Lehnert and M. L. Littman. Successor features support model-based and model-free reinforcement learning.
arXiv preprint arXiv:1708.00102, 2019.

[13] L. Lehnert, S. Tellex, and M. L. Littman. Advantages and limitations of using successor features for transfer in
reinforcement learning. arXiv preprint arXiv:1708.00102, 2017.

[14] L.Li, T. J. Walsh, and M. L. Littman. Towards a unified theory of state abstraction for mdps. In ISAIM, 2006.

[15] I. Momennejad, E. M. Russek, J. H. Cheong, M. M. Botvinick, N. Daw, and S. J. Gershman. The successor represen-
tation in human reinforcement learning. Nature Human Behaviour, 1(9):680, 2017.

[16] E. M. Russek, I. Momennejad, M. M. Botvinick, S. J. Gershman, and N. D. Daw. Predictive representations can link
model-based reinforcement learning to model-free mechanisms. PLoS computational biology, 13(9):e1005768, 2017.

[17] K. L. Stachenfeld, M. M. Botvinick, and S. J. Gershman. The hippocampus as a predictive map. Nature Neuroscience,
20:1643 EP —, 10 2017. URL https://doi.org/10.1038/nn.4650.

[18] R.S. Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse coding. Advances
in neural information processing systems, pages 1038-1044, 1996.

[19] R.S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.
[20] H. Yao and C. Szepesvari. Approximate policy iteration with linear action models. In AAAI 2012.

