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Abstract. Sensory segmentation is an outstanding 
unsolved problem of theoretical, practical and techni- 
cal importance. The basic idea of a solution is 
described in the form of a model. The response of 
"neurons" within the sensory field is temporally un- 
stable. Segmentation is expressed by synchronization 
within segments and desynchronization between seg- 
ments. Correlations are generated by an autonomous 
pattern formation process. Neuronal coupling is the 
result both of peripheral evidence (similarity of local 
quality) and of central evidence (common membership 
in a stored pattern). The model is consistent with 
known anatomy and physiology. However, a new 
physiological function, synaptic modulation, has to be 
postulated. The present paper restricts explicit treat- 
ment to the peripheral evidence represented by ampli- 
tude modulations globally present in all components 
of a sound spectrum. Generalization to arbitrary 
sensory qualities will be the subject of a later paper. 
The model is an application and illustration of the 
Correlation Theory of brain function. 

1 Introduction 

The act of perception, in higher animals and in man, 
may be divided into three highly interdependent 
processes, segmentation, pattern recognition and in- 
tegration of patterns into a scene. Segmentation sepa- 
rates the field of sensory information into pieces which 
form patterns. There are two sources of evidence for 
segmentation, peripheral and central. Peripheral 
evidence is based on similarity of local quality within a 
pattern. Central evidence is based on knowledge about 
patterns, i.e., about such constellations of local features 

* This work has been supported by Grant 1/37-821 of the 
Stiftung Volkswagenwerk. 

which have proved of significance in the past. Whereas 
the sources of evidence are easily accessible to psycho- 
physical experiment, both the type of process by which 
sensory segmentation is achieved, and the format into 
which the result of this process is cast are still 
unknown. (For the neural mechanism of figure-ground 
discrimination by motion in the fly see Rei.chardt et al. 
1983.) 

In technological contexts, the dominating segmen- 
tation device is the pattern-pass filter. In artificial 
intelligence, segmentation is often expressed by attach- 
ing labels to the elements of a pattern, or by copying 
them into specially designated lists. A format often 
proposed, also in the neural context, is the creation of a 
boundary enclosing a pattern, thus separating it from 
the ground. All of these ideas either are too special to 
serve as an explanation of segmentation in human (or 
animal) perception, or they cannot be implemented 

�9 directly in neural architecture. 
The explanation for sensory segmentation pro- 

posed in this paper can be broadly classified as a 
selective attention mechanism, although there are 
significant deviations from that idea as usually ex- 
pressed (see, for instance, Treisman 1980 for psycho- 
physical aspects, Crick 1984 for the discussion of a 
hypothesis regarding specific neural processes and 
anatomical structures to be involved in the mecha- 
nism). According to the idea of selective attention, 
neural activity is, in a given moment, limited to the 
elements of one segment. Usually, selective attention is 
imagined as a "spot-light" of neural excitation (or 
enhancement) projected from a central command 
structure into the set of neurons making up the sensory 
field. In contrast, the theory proposed here assumes 
temporal structure to be pr0duced by instaNlity-and 
neural coupling within the field itself. 

The "cocktail-party effect" (Cherry 1953; Cherry 
and Taylor 1954) refers to our remarkable ability to 
attend to and follow one speaker in the noisy environ- 
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Fig. 1. Superposedspectra. S: Spectrum resulting from two simultaneous sound phenomena. It may be taken as a schematic rendering of 
the signal intensity distribution in a tonotopically organized area of the auditory system. A and B: Separated spectra. This separation has 
to be achieved by segmentation. Phonetic patterns can only be detected in the individual spectra A or B, not in the superposition S. The 
numbers underneath components refer to labels of E-cells in all subsequent figures. Tics are supposed to give an idea of the assumed 
cortical spectral resolution. Only those E-cells are modeled which are actually excited in a given stimulation 

ment of a cocktail-party. The difficulty is schematically 
illustrated in Fig. 1. Our inner ear can be roughly 
described as performing a short-term frequency de- 
composition of the sound phenomenon hitting the ear- 
drum. The cochlear nerve thus represents sounds by 
short-term frequency spectra. Each voice, taken by 
itself, consists of a series of discrete lines (forgetting, for 
a moment, the complication of insufficient spectral 
resolution at high frequencies). Phonetic information is 
encoded in the changing intensity distribution of the 
spectral components. Before this information can be 
evaluated, individual sound spectra must be recovered 
by segmentation, by a structure or device which may be 
called a "cocktail-party processor". The importance of 
auditory segmentation is not limited to cocktail- 
parties and human voices, to be shure. In any auditory 
environment there will be sound phenomena produced 
by independent sources, such that auditory recog- 
nition usually has to be preceded by segmentation. (In 
order to avoid misunderstandings it should be stressed 
at this point that the work described here does not 
attempt to deal with the problem of cutting the 
auditory stream into temporal segments, correspond- 
ing, for instance, to phonemes and words.) 

The individual frequency components of an audi- 
tory phenomenon are distinguished from those of 
other sound phenomena by being similar in local 
quality (McAdams 1982). Among the relevant local 
qualities of a spectral component may be amplitude 
modulation (Helmholtz 1885), interaural delay 
(Cherry 1953; Cherry and Taylor 1954; Mitchell et al. 
1971), frequency modulation, and local harmonic 

structure (McAdams 1982). Technical cocktail-party 
processors have been proposed on the basis of inter- 
aural delay (Strube 1981) and of harmonic structure 
(Parsons 1976). This paper is based on common 
amplitude modulation, or stimulus onset synchrony, 
as distinguishing mark of the components of one sound 
phenomenon (Helmholtz 1885, p 60; Bregman and 
Pinker 1978; Dannenbring and Bregman 1978; Rasch 
1978). 

This paper is meant to be a concise and simple 
introduction of the essential ideas of a general theory of 
sensory segmentation. This theory is independent of 
the peculiarities of the auditory modality, is based on 
the full range of local qualities, and provides for the 
integration of peripheral and of central evidence. The 
full theory will be the subject of a forthcoming paper 
(Schneider and yon der Malsburg, in preparation). It is 
itself an application and illustration of a more compre- 
hensive conceptual framework (yon der Malsburg 
1981). In order to be clear and simple, the specific 
model presented here leaves out complications such as 
overlap between the spectra to be separated, frequency 
modulation, and the restriction of temporal (and 
qualitative) correlations between partials to local 
neighborhoods. 

Section 2 describes an abstract model and contains 
all essential ideas. Section 3 fills in all technical and 
quantitative detail necessary to repeat the work. It is 
not necessary to read Sect. 3 in order to qualitatively 
understand the model. Section 4 describes a number of 
experiments performed with the model as simulated on 
a digital computer. 
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2 The Abstract Model 

The model, Fig. 2, consists of a set of excitatory cells 
("E-cells") and one inhibitory cell ("H-cell"). Each 
spectral component is thought to be represented by 
one E-cell. (In reality each unit of spectral resolution is 
represented in vertebrates by a large number of 
neurons on all stages of the auditory system. The 
inhibitory system consists of many cells, which are 
here, however, treated as one pool, represented by the 
H-cell.) Each E-cell is connected to all other E-cells by 
an excitatory synaptic connection. The H-cell receives 
an excitatory connection from and sends an inhibitory 
connection to each E-cell. 

Each E-cell receives a separate input from the 
auditory periphery. The inputs fluctuate between two 
levels, 0 and 1. If there are several sound phenomena, 
all inputs corresponding to one of them change their 
values at the same time. The inputs corresponding to 
different phenomena are uncorrelated with each other. 

Groups of E-cells respond to afferent tonic exci- 
tation with an unstable activity level. After stimulus 
onset, the activity rises up to a certain level, and then 
drops sharply. Such an activity excursion is called a 
burst. The tendency to burst may be an intrinsic 
property of cells or it may result of external feed-back. 
Bursts in different E-cells are synchronized by the 
excitatory links between them. They are desynchro- 
nized by the inhibition mediated by the H-cell which 
tends to limit the total activity in the network. The 
balance is set such that an inter-burst delay above a 
certain threshold is quickly increased in magnitude 
from burst to burst, until activity is completely out of 
phase between the cells. 

In consequence, those cells which are simulta- 
neously activated, presumably by the components of 
one sound phenomenon, have a tendency to synchro- 
nize their activity bursts with each other, and to 
desynchronize them from the rest of the cells. There- 
fore, all cells hit by the same sound phenomenon are 
synchronized to form one block of activity, different 
such blocks being desynchronized. All subsequent 
stages of neural processing can get an unobstructed 
view of a single sound phenomenon by oscillating in 
phase with the group of cells representing it. Central 
evidence is integrated into the segmentation process 
with the help of the indirect couplings introduced into 
the set of E-cells by pattern evaluating circuitry, see 
Fig. 3. 

Transients in the afferent activity appropriate to 
mark out membership of components in one spectrum 
may be relatively rare in the course of a sensory 
stimulation. Also, accidentally coinciding afferent 
transients may cause trouble. It therefore is important  
to have short-term memory. This is constituted by 

Fig. 2. The Model. Upper row of hexagons: E-cells. Lower 
hexagon: H-cell (pool of inhibitory ceils). ~ excitatory connec- 
tions, -q inhibitory connections. The H-cell limits the total 
activity of the E-cells. In the resting state all links between E-cells 
have equal strength. Successful segmentation expresses itself by 
synchronous bursts of activity within the sets of cells excited by 
one spectrum, and desynchronization between the sets. With the 
stimulus in Fig. I, cells 1 to 10 and cells 11 to 20 form blocks of 
synchronization. Synaptic modulation strengthens the connec- 
tions (thick arrows) between cells with synchronous bursts, and 
weakens the connections (thin arrows) between cells with asyfl- 
chronous bursts 

S R 

Fig. 3. Coupling to pattern-evaluating circuitry. Circuits are 
symbolically represented by circles (cells) and lines (connections 
and signal correlations). The segmentation network S, which is 
discussed in this paper, generates segmentation in the form of 
temporal correlations between cells belonging to one pattern and 
anticorrelations between cells belonging to different patterns, 
with the help of the positive feed-back loop between activation of 
synaptic connections and correlations (both represented by 
dashed line). Segmentation in S integrates influences from two 
sources: peripheral evidence, in the form of correlations (dotted 
line) between afferent signals A, and central evidence, in the form 
of correlations produced by connections in pattern circuits R 
(vertical solid line). R is supposed to represent patterns in a way 
similar to S, but with permanent connections within those sets of 
elements which form patterns. There is a positive feed-back loop 
between activation of connection patterns in S and in R 

synaptic modulation (yon der Malsburg 1981). Ac- 
cording to this, synaptic coupling strengths between 
E-cells vary on a rapid timescale, i.e., during a single 
sensory stimulation: in the resting state, cells are cou- 
pled with medium strength. When there is synchro- 
nous activity in the two E-cells, the synaptic strength 
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is increased, up to a maximum value which is charac- 
teristic for the synapse. When there is asynchronous 
activity in the two cells, the synaptic strength is 
decreased, ultimately down to zero. These changes can 
take place in fractions of a second. After activity ceases 
in the two cells, synaptic strength slowly relaxes back 
to the resting value, with a time-constant characteristic 
of short-term memory, about a minute. 

In the resting state, the matrix of connections 
between E-cells is homogeneous, all synaptic strengths 
being equal. This coupling strength should be such that 
blocks of synchronous activity are marginally stable. 
Two sound phenomena with a slight onset asynchrony 
should lead to a decay of the corresponding global 
block of cells into local blocks. On the other hand, cells 
which are excited in synchrony should stay synchro- 
nized with high probability. A few bursts of activity 
change the matrix by synaptic modulation. Connec- 
tions within a block grow stronger, connections be- 
tween blocks become weaker. The now more tightly 
coupled blocks should be stable against decay into 
sub-blocks, whereas super-blocks formed by an acci- 
dental synchrony should be unstable against sponta- 
neous decay into the segments formed earlier. (Seg- 
ments can be caused to accidentally coincide in time by 
synchronous stimulus onsets or by a stimulus onset 
which happens to coincide with one of the sponta- 
neously created bursts belonging to another segment.) 
In this way the original segmentation is stored in short- 
term memory. Even if synchronizing transients are 
absent from the afferent activity for a while,,synchron- 
icity relationships within and between the original 
blocks are stabilized by the differentiated synaptic 
couplings. Only a longer break (or some reset- 
command to the synapses) will allow the synapses to 
return to their resting state, so that the E-cells can be 
segmented in a new way. 

How is synchrony evaluated in the brain? We 
know that neurons are coincidence detectors. The 
signals in several fibers converging on one neural 
dendrite can summate (and help each other to tran- 
scend the neural threshold) only if their postsynaptic 
potentials overlap in time. Thus, the signals from all 
the synchronized cells in a segment can cooperate with 
each other in firing the neurons of the pattern evalu- 
ation machinery of the brain, whereas signals from 
cells belonging to different segments are desynchro- 
nized and temporally miss each other (for a more 
thorough discussion see yon der Malsburg 1985). The 
circuitry which is to evaluate the patterns in a given 
segment only has to synchronize its oscillating activity 
with that in the segment to get an unobstructed 
("stroboscopic") view of it through a temporal mask. 
Synaptic modulation binds a segment temporarily to 
the relevant evaluation circuitry. 

3 The Concrete Model 

In the simulations, on ly  those E-cells are actually 
represented which receive afferent excitation from a 
component in the spectra currently presented. There 
are two input stimuli, each having 10 spectral compo- 
nents. Thus there are 20 E-cells, whose activity is 
described by Ei(t ), i --- 1 .... ,20. There is one additional, 
inhibitory, cell, whose activity is designated H(t). The 
signals Ei(t ) and H(t) are meant to represent the 
momentary frequency of a statistical sequence of 
action potentials. They are modeled by smooth func- 
tions. Their underlying statistical nature is taken into 
account by a noise term zi(t) in the dynamical equa- 
tions. Time t proceeds in discrete steps of size ~, one of 
which may be roughly interpreted as a millisecond, to 
fix ideas. 

The dynamics of the model is described by the 
following difference equations (the numbers in square 
brackets being the parameter values used in the 
simulations discussed in the next section): 

Ei(t + z) = Ni(t)" 1 ~Ai(t ) + aEi(t ) -k Y', sij(t)Ej(t) 
( j . i  

--SheH(t)-'~zi(t)} , [a=0.89; She=0.22], 
(1) 

H(t + z)= l {flH(t)+ s~h~Ej(t)} , 

[fl = 0.63; Seh : 0.036], (2) 

with afferent input 

0.1, if E-cell i receives input 
Ai(t) = 0, else. (3) 

The output-nonlinearity l(x) consists in simple 
clipping: 

{! l (x)= for x > l  (4) 
else. 

(The upper threshold 1 is never reached during the 
simulations presented here.) The noise term zi(t) is 
modeled by independent sequences of pseudo-random 
numbers with identical flat distribution in the interval 
(0,0.01). Noise is important for the function of the 
model, to break the symmetry between accidentally 
synchronized but weakly coupled E-cells. 

The function Ni(t ) in (1) takes the values of 1 or 0. It 
is 1 during bursts and is 0 during the inter-burst 
("refractory") periods. When a gliding average Gi(t) of 
the signal Ei(t), defined by 

Gi(t + z) = (1 -- 6)Gi(t) + 6ei(t), [6 = 0.35], (5) 

reaches the threshold gu = 0.4, Ni, and correspondingly 
the cell's output Ei(0, is put to zero so that Gi(t) decays 
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Fig. 4. Interpolation of G,( O between temporal steps. Artificial 
synchronization due to discrete time is avoided by determination 
of to, a corrected point in time at which the gliding average G,(t) 
reaches the upper threshold #u, by linearly interpolating between 
G~tl), the last value of Gi(t) below threshold, and Gi(t2), the first 
value above threshold. E~ is then imagined to be switched offat to, 
and a new value Gc is calculated for G,~t) assuming an exponential 
decay with time-constant (1 -6), cf. (5). The interpolated break- 
off point t, is used in the argument of the coactivity function 
which, together with the control function q(s), regulates synaptic 
modulation, cf. (7) 

with time constant (1-6).  When G,(t) reaches the 
lower threshold 9t=0.01, N, is put back to 1, i.e., 

01 if Gi(t )>gu or ( N i ( t - z ) = 0  
Ni(t) = and Gi(t ) > gz) (6) 

else. 

In order to keep temporal discretization from artifi- 
dally synchronizing the cells, both start and end of the 
"refractory" period are interpolated between time- 
steps. This is done with the he, lp of a linear estimation 
of Gi(t) during the elemenatry interval, see Fig. 4. The 
values of E~(t) at the discrete times are then corrected 
accordingly by linear interpolation. 

The strength s,j(t) of the excitatory synapse be- 
tween "presynaptic" E-cellj and "postsynaptic" E-cell i 
evolves by synaptic modulation. Generally, the change 
of a given synapse is governed by the following rule: if 
one of the two cells is in a subliminal state (i.e., it has 
not produced bursts for the period T +  T~/2, where Tis 

. . . . . . . . . .  

Fig. 5. Control function of synaptic plasticity, formula (8), used in 
(7). A synapse which has been driven into saturation near s_ or s + 
by repeated antisynchronous or synchronous events is thereby 
rendered insensitive to occasional episodes of erroneous syn- 
chronization or antisynchronization, respectively 

the repetition period, and T~ is the length of bursts), no 
change will occur. If both cells are bursting, sij(t) is 
changed according to 

Asij(t)=q(sii(t)). Co( t , - t f i  T; T~), (7) 

with the control function 

q ( s )  = q 0(1 - -  ( ( S  - -  So)/(SoSd) } 2 ) ,  

[q0 = 0.01; So = 0.012; sa = 0.8]. (8) 

The latter keeps synaptic strengths within 80% of 
the resting value So, and is convex, i.e., small at high 
and low synaptic strength,.see Fig. 5, to render short- 
term memory insensitive to short episodes of erro- 
neous synchronization or desynchronization (such as 
for instance between about steps 660 to 700 in Fig. 8, or 
at the beginning of the periods displayed in Fig. 10). 
The "coactivity function" Co(.) estimates the correla- 
tion between cells i andj .  Its evaluation was simplified 
under the assumption of regular bursts of uniform 
shape. This shape is parameterized by the average 
burst repetition period, T, and the average length of the 
bursts, T~. Both T and T~ are computed as short-time 
ensemble averages, updated for each new burst. Co(.) 
then depends only on the delay A t = t , -  tj between the 
break-off times of the bursts in cell i and cellj. For the 
special case of T~ = T/2 the shape of Co( t / -  tj; T; T/2) 
was assumed to be a cosine with period T. In the 
general case of T~ #: T/2, the domains of definition for 
the positive and negative half-wave of the cosine are 
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Fig. 6. E v a l u a t i o n  o f  c o r r e l a t i o n s .  A standard shape of the activity burst is assumed. It is parameterized by the period T and the duration 
of the burst, T~, which are determined by a running ensemble average over all active cells. Co (-) is evaluated for (presynaptic) cell i at the 
first time-step after each burst break-off. For each postsynapticj =~ i the balance between synchronous firing, i.e., burst overlap (double- 
hatched region in the schematic burst patterns in the lower graph), and asynchronous firing is estimated with the help of a cosine-shaped 
function, upper graph. In order to allow for variable burst length, the positive and negative parts of the cosine are compressed and 
stretched, such that crossing-over is when bursts overlap for half of their duration. Bursts appear inverted in shape since earlier times are 
to the right. The second maximum at T takes into account bursts with a delay of T - A t ,  which are thus treated as advanced, i.e., 
corresponding to a "negative" delay - A t). In order to be insensitive to small variations in the burst period ofindividuai cells, the last 
burst in cellj  is taken into account up to the delay T +  T~/2 

C o ( A t ; T ; T ~ )  

linearly stretched and compressed, see Fig. 6. To 
economize computer-time, the sij(t) are updated for a 
given cell i only when the cell just entered the inter- 
burst period. The slow relaxation of synaptic strength 
back to the resting state has been neglected for the 
relatively short periods of simulation. 

The number of parameters in the model is too large 
for them to be determined by blind search. Some 
additional remarks may help to gain insight into the 
type of influence different parameters have. Some 
parameters simply fix the temporal scale. The inter- 
burst period is rigidly fixed by gu, gt and 6. During this 
period cells are silenced by Ni(t) = 0 and simply have to 
wait until G, has decayed, according to (5), down to g,. 
For the simplified case of a block of n precisely 
synchronized cells and homogeneous coupling 
strength, say s, the shape of the burst is determined by a 
two-dimensional (E and H) system of linear differential 
equations, which can be solved analytically (until a 
non-linearity occurs when a cell breaks off). The shape 
of the burst is then determined explicitely by  the 

constants a, t ,  s, the product Seh, She and n. The ratio 
Se~/She can be used to scale H(t) and keep it between its 
saturation levels 0 and 1, see (4). For the parameters 
chosen here and the synapses at resting level, the 
duration of bursts varies slowly with n, between 
T=6.971 for n = l  and T=5.838 for n=20. 

If two blocks of cells are nearly synchronized with 
each other it is important to know how the relative 
phase between them will evolve in time. At the moment 
at which the cells of the block leading in phase switch 
off (Gi(t) having reached the upper threshold, cf. (6)), 
the excitation reaching the cells of the trailing block 
suffers a sharp drop. H(t) is, however, still at the high 
value corresponding to the total excitation from both 
blocks, and relaxes with time constant t,  cf. (2). The 
rate of growth of Ei(t), and correspondingly of Gi(t), for 
the cells of the trailing block will be reduced and the 
phase-lag will be increased. This effect on the relative 
phase is counteracted by a decrease during the time 

�9 both blocks are active. Let the blocks comprise n cells, 
let the strength of synapses within and between the 
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blocks be sl and s2, respectively. Then one can easily 
derive an equation for AS(t) ,  the difference between the 
total excitation in the blocks: 

A S(t  + z) = ( ~ -  s l + n(s x - Sz))A S(t). (9) 

If sl  = s z = s o ,  AS(t)  geometrically decreases with 
the rate a -So .  The parameter So can be used to 
regulate the balance between this decrease in phase-lag 
between the two blocks and the increase in phase-lag 
produced after the leading block has switched off. This 
balance should be set such that on the one hand a small 
stimulus onset asynchrony between the two blocks 
suffices to let their phases drift apart completely after a 
few bursts, whereas, on the other hand, the relative 
phases within the blocks stay near to zero. Synaptic 
modulation will then increase sl and decrease s2. The 
parameter qo, which according to (7) and (8) regulates 
the sensitivity of synaptic modulation, should be made 
big enough so that after a few bursts the changes in s~ 
and s2 suffice, cf. (9), to stabilize the blocks against 
decay and to destabilize the phase between the blocks. 

Many of the details described in this section are 
unimportant for the realization of the abstract model 
described in Sect. 2 and could be replaced by others. 
Also, the function of the model is fairly insensitive to 
changes in the parameters employed, except where the 
marginal stability of blocks is involved. There is ample 
space for tuning the model to experimental data, once 
they become available. 

E,, 

E, 

1 

I t ime [ s t e p s ] ~  B2 

Fig. 7. Desynchronization. The spike rate is shown for three out of 
the 20 + 1 cells. The stimuli and the numbering of cells are as in 
Fig. 1. The stimulus activating E-cells 1 to 10 began at step 1 ; the 
other stimulus, activating E-cells 11 to 20, begins at step 2. Both 
stimuli last over the whole period of the diagram. The E-cells 
respond to this tonic input with bursts of spikes. The second 
group of cells (exemplified by E 10, having been stimulated 1 step 
later than the first group, reaches the switch-offpoint later and is 
delayed still further by the inhibition, cell H, stirred up together 
with the first group. The original delay between the two stimuli is 
thereby amplified gradually, until the two sequences of bursts 
are in complete antiphase. The last bit of temporal overlap can 
be observed near step 37 

4 Simulations 

Simulations were done under on-line control, with the 
help of a simple command language. All runs discussed 
in this paper are based on one set of parameters. Except 
when stated otherwise, stimuli consist of two "spectra" 
comprising ten components each, as exemplified in 
Fig. 1. The function of the system depends on a balance 
between synchronizing and desynchronizing effects. 
This balance is shifted by synaptic modulation (see end 
of Sect. 3). The system was tuned with the help of a few 
simplified noiseless test cases. In the first, only one 
block of 10 cells was activated. Synapses were all of the 
same strength. The stimulus to one of the cells led the 
others by 1 step. Synapses were made strong enough to 
keep the relative delay between the leading cell and the 
others low for at least a few bursts. A 60% increase in 
coupling strength between cells in the block (reached 
after 11 bursts) was then sufficient to "heal" even the 
worst case of a lead of 6 steps for the.test cell, 

The second test case involved the normal two 
stimuli to blocks of 10 cells each. The synaptic resting 
value just determined let a stimulus onset delay (and 
correspondingly a burst onset delay) of 1 step between 
the blocks increase to 2 steps at the end of the burst, see 

Fig. 7. The second burst starts with exactly this delay 
between the blocks, which is then further increased, 
until a stationary state is reached in which the bursts of 
the two blocks no longer overlap in time. The sensitiv- 
ity to stimulus onset delays is further enhanced by 
synaptic modulation decreasing the coupling between 
the blocks: 

Figure 8 shows the signals of all 21 cells in the 
model for a run 1000 steps long (which may correspond 
to 1 s). During this run synaptic strengths are modu- 
lated by the mechanism described in the last two 
sections. After a few bursts already, the coupling within 
the blocks is strengthened sufficiently to stabilize them 
against a decay which could be triggered by stimulus 
onset jitter within one of the stimuli. At the end of the 
run in Fig. 8 the matrix of synaptic connections 
between E-cells has the form shown in Fig. 9. Problems 
for the system are created when one stimulus is on and 
the onset of the other stimulus is synchrofious with the 
bursts in the first group of cells. If this happens with 
sufficient precision and when the synapses are in the 
resting state, a single coherent stimulus is simulated 
and the system cannot segment it, to be shure. After 
segments have been formed, however, and the matrix of 



36 

E~O 
E~9 

E6 
E~5 

E l 2  

E~o 
E9 
E~ 
E7 
E6 
Es 
E. 
Es 
E~ 
E~ 

" _ ~ A A A A A A A A A A ~ A A A A A A A  A A A A A A A A A A A A  A a a a A A A A A A A A A A A A A A A A A J  
. . . . . .  A A A A A A A A A A A ~ A A A A A A A ~ A A A A A A A A A A A A ~ A a A A A A A A A A A A ~ A A A A A A A A ~  
. . . .  ~ A A A A A A A A A A / ~ A A A A A A A ~ A A A ~ A A A A A A A A ~ A A A A A A A A A A A ~ A A A A A A A A "  
. . . .  A A A A A A A A A A A ~ A A A A A A A ~ A A A A A A A A A A ' A A ~ A ~ A A A A A A A A ~ A A A A A A A A ~  
. . . .  ~ A A A A A A A A A A ~ A A A A A A A ~ A A A A A A A A A A A A ~ A ~ A ~ A A A A A A A A ~ A A A A A A A A ~  
. . . . .  ~ A A A A A A A A A A ~ A A A A A A A ~ A A A A A A A A A A A A ~ a ~ A A A A A A A A ~ A A A A A A A A '  
,_ _ A A A A A A A A A A A ~ A A A A A A A ~ A A A A A A A A A A A A ~ a ~ A A A A A A A A A ~ A A A A A A A A '  
. . . .  ~ A A A A A A A A A A ~ A A A A A A A  
. . . . .  A A A A A A A A A A A ~ A 4 A A A A A  

- - A A A A A A A A A A A A  . ~ A A ~ A A A A A ~ A A A A A A A A ~  
- - A A ~ A A A A A A A A  A A A A A A A A A A A A ~ A A A A A A A A ~  

,_ _ ~ A A A A A A A A A A ~ A A A A A A A ~ A A A A A A A A A A A A ~ _  A A A ~ A A A A A A A A ~ A A A A A A A A ~  

~ A A A A A A A A A A A A  A A A A A A A A A A A ~ A A A A A A A A  AAAAAAAAAAAAAAAAAAAAAAi 
~ A A A A A A A A A A A A  ~AAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAA~AAAAAAA~ 
~ A A A A A A A A A A A A  AAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAA~AAAAAAA: 
~ A ~ A A ~ A A A A A A ~  AAAAAAAAAAA~AAAAAAA~ - AAAAAAAAAAAAAA~AAAAAAA~ 
~ A A A A A A A A A A A ~ - - A A A A A A A A A A A A A A A A A A A A  AAAAAAAAAAAAAA~AAAAAAA~ 
~ A A A A A A A A A A A A  A A A A A A A A A A A A A A A A A A A ~ - - - - A A A A A A A A A A A A A A A A A A A A A A ~  
~ A A A A A A A A A A A A  f l A A A A A A A A A A ~ A A A A A A A ~ - - ~ f l A A A A A A A A A A A A A ~ A A A A A A A )  
~ A ~ A A A A A A A A A A  A A A A A A A A A A A ~ A A A A A A A ~ - - ~ A A A A A A A A A A A A A A ~ A A A A A A A :  
~ A A A A A A A A A A A A  ~AAAAAf lAAAf l~AAAAAAf l~ - -~ f l f l f l f l f l f lAAAAAAAAAAAAAAf lA~  
~ A A A A A A A A A A A A  ' A A A A A A A A A A A A ~ A A A A A A ~ A A A A A A A A A A A A A A A A A A A A A A ~  
, i 

I I I I I I I I I I I 

1 100 200 300 400 500 600 700 800 900 1000 
t ime [steps] 

Fig. 8. The complete set of responses for one second of stimulation. The line underneath each trace indicates whether the stimulus is on or 
off. Ceils are grouped according to stimulus, and within groups according to spectral frequency, as shown in Fig. 1. The two stimuli 
switch on and offindependently of each other. At t = 0 the matrix of connections between E-cells is in its resting state. During the run it is 
gradually modulated. At t = 1000 it has the form shown in Fig. 9. In the beginning, group Eta to E20 receives no afferent stimulation but 
is weakly excited by the connections from cells Ea to E~0. Later, around steps 250 and 420, this cross-coupling can already be seen to be 
weaker. At step 653 the two stimuli "happen" to be switched on at the same time, so that the first few bursts are synchronous between the 
groups. This state is, however, unstable since, already, the synapses between groups are weaker and synapses within groups are stronger 
than in the resting state. After a few bursts, the desynchronized state is reached again. A good indicator o fdesynchronization is frequency 
doubling and amplitude reduction in the H-cell 
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Fig. 9. Synaptic matrix modified by modulation. Strength of 
synapses between E-cells at t=1000 in the run of Fig. 8 is 
indicated by the hight of filling in the small squares. The synapse 
in row i and column j connects E-cell j to E-cell i. The strong 
synaptic strenghts within the groups E 1 to Elo and E l l  to E2o 
reflect the synchronization within those groups in the recent past, 
the weak synaptic strengths between the groups reflect 
desynchronization 

synaptic couplings has been decomposed into the 
corresponding blocks, even an accidental precise coin- 
cidence of stimulus onset or of one stimulus onset with 
a burst in the other group is successfully dealt with. 
This is illustrated by the runs in Fig. 10. The precise 
symmetry between bursts must in this case be broken 
by random fluctuations in the cellular ~ignals. In most 
cases the period needed to break the symmetry is not 
longer than 80 to 100 steps. The influence of the noise 
level was tested by varying its amplitude from its usual 
value of 10 -2 up to 10-  t _ the maximum noise which 
led to a stably antisynchronised state - and down to 
10 -4  . In the latter case, the time to decay into blocks 
increased to 200 steps. Characteristically, cells stay 
synchronous within a block and phase-switching 
occurs for all cells simultaneously. 

The following stability tests were performed with 
fixed s}~)=So(1 +r)  within and s ~ = S o ( 1 - r )  between 
blocks. In one experiment, two groups of 10 cells each 
were activated with a relative delay corresponding to 
half a burst period. The ensuing pattern of alternate 
bursts in the two groups was stable over more than 
3000 steps for fixed values of r = 0.4 and r = 0. In a 
second experiment, there was only one group of 10 
cells. With r = 0  the group stayed approximately 
synchronous for at least 6 bursts (which would be 
sufficient for synaptic modulation to reach r = 0.32 if r 
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Fig. 10a, b. Spontaneous symmetry breaks. The two runs continue the one in Fig. 8 and are identical except for independent noise. 
Activities were reset to zero and both stimuli were switched on at t = 1001. Complete synchrony is unstable due to the blockstructure of 
the synaptic matrix, which is shown in Fig. 9. Both runs eventually reach desynchronization between the groups defined by the original 
stimulus onsets. Run a was chosen as the fastest, run b as the slowest to desynchronize among the more than 30 tests which were run. 
Transition in a is a collective wave, in b it starts with individual cells and is chaotic. Synaptic modulation continues during the runs 
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Fig. 11. A simulation with a variable pattern. Conventions are as in Fig. 8. All pairs of patterns in the range of cells 1 to 10 and in the range 
11 to 20 have been presented to the system previously long enough to allow for ~ synaptic modulation (not shown). Asynchronously 
appearing cells are resynchronized with the correct group. Without the background signal (E~ 1 --E2o) this is more difficult (e.g., for cell 
E 9 at time t~) than with the background signal (e.g., for cell Elo at time t2) 

were no t  fixed). The  b lock  then  decayed  in to  two 
b locks  of  5 cells each, the decay  being comple te  after 
a t  least  700 steps. W i t h  r =  =0 .2  there  a re  some 
excurs ions  of  ind iv idua l  cells, bu t  the b lock  of  10 stays 
toge the r  for several  h u n d r e d  steps. W i t h  r = 0.4 the  
b lock  is s table  for a t  least  10000 steps. All  experi-  
ments  were r epea ted  20 t imes with  i ndependen t  se- 
quences  of  r a n d o m  numbers .  

In  real  life, the  size of  s t imuli  in te rms of  number s  of  
ac t iva ted  cells will, of  course,  vary.  In  o r d e r  to  f ind ou t  
whe ther  the funct ion of  the  m o d e l  cr i t ical ly depends  on  
re la t ive  b lock  size, a n u m b e r  of  tests, c o m p a r a b l e  to  the 
one shown in Fig.  8, were run  with  b lock  sizes 11 to 9, 
12 to 8, 13 to  7 and  14 to  6. At  the la t te r  test  the  series 
s ta r ted  to be p r o b l e m a t i c  and  a s t imulus  onse t  asyn-  
chrony  of  2 steps was necessary to segment  the two 
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stimuli. Otherwise the function of the model was as 
smooth as in Fig. 8, except for an occasional escape of 
one or two cells from the bigger block to the smaller 
(depending on the random number sample). 

The envelope of a spectrum may change. New 
spectral lines may appear and old may disappear. In 
order to simulate such effects, we superposed two 
signals. Signal 1 consisted, as usual, of 10 partials, 
which were switched on and off in synchrony at 
irregular intervals. Signal 2 activated 8 consecutive 
cells, belonging at different times to the series of 
partials E 1 -E8 ,  E 2 - E 9 ,  or E 3 --Elo , see Fig. 11; thus 
simulating a vowel formant moving around in frequen- 
cy space. Each of the three modifications of signal 2 
was switched on and maintained in the presence of 
signal 1 sufficiently long to allow for full modulation 
(r = 0.8) of synapses. After this training (not shown) it 
was possible to shift signal 2 at arbitrary times by one 
or two cells without the newly activated cells being 
erroneously bound to the wrong signal (1), see Fig. 11. 

5 Discussion 
The model and the simulations described are only a 
caricature, intended to communicate an idea, not to 
represent reality. There are only two patterns, a figure 
and a ground. This is not a fundamental limitation, 
more patterns being possible. The model restricts itself 
to a single quality in the afferent field, which also is not 
a fundamental limitation. Stochastic nervous activity 
has been represented by smoothly varying curves and 
these curves are assumed to be quasi-periodic. Finally, 
a full, more complicated, model will have to represent 
arbitrary spaces of local quality. 

The model implies a general mechanism of sensory 
segmentation. This mechanism and its properties are 
to be seen in contrast to those proposed in the 
literature. Some authors insist, with respect to the 
visual modality, that a segment should be connected in 
terms of the topology of the sensory field (Gurari and 
Wechsler 1982), or that a closed boundary is of 
fundamental importance for segmentation. The mech- 
anism proposed here does not require any rigid 
property of patterns. It is not based on the existence of 
a closed boundary, and it requires only that a segment 
be connected in terms of nervous connections. This is 
in agreement with the fact that patterns to be separated 
from each other may overlap on the sensory surface and 
that one pattern may be divided by another pattern 
into disconnected regions. This is the normal case in 
the auditory modality, where the partials of two 
spectra interleave on the frequency axis, and it is also 
frequent in the visual modality, when, for instance, 
objects are seen through loose foliage. 

It is also a wide-spread idea that recognition of 
patterns (possibly by a single cell) is necessary before a 
scene can be segmented. There are indeed images the 

segmentation of which is dominated by central 
evidence, no peripheral evidence - no regularity pri- 
vate to a figure - being present. In that case segmen- 
tation is only possible after recognition, which is 
extremely slow because it has to start with sponta- 
neous hypotheses. This is a rare extreme case. There is 
also the opposite extreme, in which an as yet unknown 
pattern is defined exclusively on the basis of peripheral 
evidence. In all normal cases, central and peripheral 
evidence are integrated with each other, and segmen- 
tation is arrived at in a bootstrapping fashion. In- 
tegration of evidence from various sources into the 
segmentation process is natural to the model proposed 
here, simply by adding structured couplings between 
the cells involved, thereby increasing their tendency to 
synchronize, see Fig. 3. The way in which segmentation 
information is represented according to the model - 
differential tagging instead of suppression of the back- 
ground - allows for iterative corrections with the help 
of information on recognized patterns. In contrast, the 
overwhelming majority of theories of pattern recog- 
nition presuppose segmentation machinery in the form 
of a selective filter: the pattern recognition machinery 
can only digest a figure on a blank ground. 

It is instructive to discuss the present model as a 
mechanism of selective attention. Essential to that idea 
is the concentration of activity into one segment at a 
time. In one extreme formulation, selective attention is 
projected into the sensory field by a central command 
structure. The mechanism proposed here places the 
selective instability in the sensory field itself. This 
allows the definition of a segment to be based on all the 
information available in the sensory field. A hybrid 
theory, proposed by (Sejnowski and Hinton 1985), uses 
a relaxation mechanism within the sensory field to 
define the boundaries of a segment but lets a central 
command structure select the segment to be activated. 

The auditory case has been selected for the pilot 
study presented here for several reasons. Auditory 
patterns in tonotopic representation are not topologi- 
cally coherent, emphasizing the need for a more 
general mechanism than just enclosure within a 
boundary. A simplified version based on the presence 
of temporal markers already in the afferent signals is 
possible only in the auditory case. A sensory field of 
one-dimensional extension, convenient for first simu- 
lations, is natural in the auditory system but would be 
judged as too abstract and "theoretical" in the visual 
modality. Finally, a simulation study based exclusively 
on peripheral evidence might seem more acceptable for 
a modality in which central evidence is often of no 
avail (a fact which is often distressingly felt by elderly 
people in a cocktail-party). All of these considerations 
are superficial, and they are irrelevant for an applica- 
tion of the idea presented here to sensory segmenta- 
tion in general. A more complete model based on a 
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multi-dimensional space of local quality has already 
been simulated (Schneider 1986; Schneider and von 
der Malsburg, in preparation) and is able to segment in 
the absence of stimulus onset asynchrony. The in- 
tegration of central evidence in the process has been 
demonstrated (von der Malsburg and Bienenstock, 
1986). Extension of the simulations to two- 
dimensional sensory fields is limited only by computer- 
power. 

We are aware of several simplifications in the 
present simulation study as applied to auditory seg- 
mentation. In particular, no collisions between compo- 
nents of different spectra (and no combination tones) 
have been allowed in the stimuli. This complication 
has been dealt with and will be described in the more 
complete study (Schneider 1986; Schneider and von 
der Malsburg, in preparation). 

The auditory modality deals with temporal pat- 
terns. These must be represented centrally. Our mech- 
anism of segmentation is based on temporal patterns 
created spontaneously within the sensory field. The 
collision between the two types of temporal patterns 
must be resolved somehow. This is possible if peri- 
pheral circuits within the auditory system (cochlear 
nuclei, inferior olive, coUiculus inferior and possibly 
first stages of cortical processing) encode all temporal 
patterns which fall into the frequency range seques- 
tered by the segmentation machinery, and represent 
them with the help of slowly varying pattern-specific 
signals. The frequency range needed for segmentation 
is thus freed. Such encoding is probably required 
anyway for the temporal storgae of auditory stimuli. 

The model is consistent with the known anatomy 
and physiology of the brain. It has been known for a 
long time that central (thalamic, cortical) neurons 
respond to peripheral stimuli in an irregular way and 
that their signals must be averaged by post-stimulus- 
time-histograms before regular responses can be ex- 
tracted experimentally. This has often been taken as a 
sign of unreliability of neural machinery. Our model, 
and more generally Correlation Theory, assign an 
important function to temporal fluctuations. The 
existence of such fluctuations and the fact that 
neurons are coincidence detectors prove that theories 
in terms of cellular mean frequencies are unrealistic 
and that the processing of fluctuations and of correl- 
ations (Sejnowski 1981) must be an important aspect 
of brain function. The requirement of direct connec- 
tions between all E-cells is not critical. Sets of compo- 
nents which are to be classified as one segment only 
have to have sufficient connectivity to prevent block- 
instability. This, and the existence of an inhibitory 
system, are very natural requirements. The model is 
minimal in terms of anatomical structure. 

It is not possible to predict with certainty where in 
the auditory system sensory segmentation is 
performed. 

However, it should be central to the stages of peri- 
pheral encoding of rapid temporal patterns alluded to 
above, and it should be in a structure with a sufficient 
density of recursive connections. Likely candidates are 
collicuhis inferior and the first areae of the auditory 
thalamo-cortical complex. It should be stressed that a 
precise localization of the segmentation circuits is not 
possible or useful since all direct and indirect couplings 
between different parts of the sensory field contribute 
to segmentation decisions. Among these is all pattern 
evaluation circuitry, which certainly includes a large 
part of what is called auditory cortex. 

How are the components of the model to be 
interpreted in terms of nervous hardware? The "cells" 
of the model are to be identified with the large sets of 
neurons which respond to resolvable frequency com- 
ponents. These comprise thousands of neurons. Let us 
call those sets "units". The signals Ei(t) and H(t) are to 
be interpreted as the combined rate of all spikes 
produced by the neurons in a unit and by the 
population of inhibitory cells, respectively. The vari- 
ables Gi(t) correspond to a system of delayed inhibition 
within units, different in anatomy and physiology from 
the one realizing H(t). The synaptic couplings between 
cells are realized by the thousands of axons and 
synapses between each pair of units. The treatment of 
the activity of entire units by single variables is possible 
only under certain constraints regarding the structure of 
connectivity within and between units. These will not 
be discussed here. The envelope of the burst of activity 
on a block of units still leaves room for more finely 
structured correlations between subsets of neurons in 
different units. 

Experimental verification of the model is straight- 
forward in principle. According to the model, signals 
should be synchronized for those central neurons 
which are excited by spectral components belonging to 
one segment. The signals of neurons should be antisyn- 
chronized for components belonging to different seg- 
ments. It may be necessary to work with waking 
animals trained to pay attention to the required 
segmentation. The experiment may necessitate exten- 
sive temporal averaging in order to detect significant 
correlations in small sets of cells. With luck it may be 
possible to detect ensemble-average signals, either in 
the form of mass-potentials, to be recorded by low- 
resistance electrodes (such potentials may have been 
detected by (Freeman 1977) in the olfactory modality), 
or in the form of signals of particular single cells which 
happen to poll whole populations (as the inhibitory 
cells of the model do). The direct detection of high 
order correlations, which alone are important for the 
function of the brain, and which alone can be signifi- 
cant in one-shot experiments, may remain difficult or 
impossible for some time to come. 

There is no direct evidence in the literature for what 
is called here "synaptic modulation", i.e., for rapid 
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control of synaptic efficacy by pre- and postsynaptic 
signals. However,  there is a vast literature on fast 
synaptic modulat ion brought  about  by chemical sig- 
nals (for citations see Kandel  et al. 1983). I t  therefore 
seems more  than worthwhile to look for activity- 
controlled synaptic modulation,  e.g., in tissue-culture. 

Very little psychophysical work has been done on 
auditory figure-ground separation. The main obstacle 
may  have been technical difficulties in the past to 
produce appropr ia te  auditory stimuli and to develop 
appropr ia te  psychoacoustic criteria for successful seg- 
mentat ion by the subject. The situation may  change 
radically, now that fast digital signal processors are 
readily available. A promising type of stimuli would be 
pairs of spectra which together have a fiat envelope 
(M.R. Schroeder, personal communication),  and which 
each have a recognizable t imbre if separated. F rom the 
point of view of the  present model  it would be 
interesting to learn about  the temporal  characteristics 
of auditory segmentation: H o w  long is the "incubation 
period" necessary to create reliable segmentation; 
what is the temporal  resolution with which varying 
segmentation patterns can be perceived; what is the 
threshold on stimulus onset asynchrony (e.g., Dannen-  
bring and Bregman 1978; Grey and Moorer  1977) 
beyond which segmentation occurs. These and related 
questions could be used to tune parameters  of the 
model and, hopefully, to find critical tests for or against 
the applicability of the model. Also independently of 
the verification of the model presented here, more 
knowledge about  the physical basis of auditory seg- 
mentat ion and especially about  the factors re- 
sponsible for the reduction of this ability with 
age and under pathological conditions, would be of 
enormous practical importance. 
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