Collecting Aligned Activity & Connectomic Data
Example: Mouse Vibrissal Touch Barrel Cortex

Exploiting Coherence to Reduce Dimensionality
Example: C. elegans Motor Control Sequence

Spatially & Temporally Distributed Circuit Motifs
Example: Localized Persistent Homology

Modeling Cortical Layers with Deep Networks
Example: Primary Visual Cortex in Primates
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Christof Koch. Project MindScope. In Frontiers in Computational Neuroscience, 2012 Bernstein Conference, number 33. 2012.



Worms, Flies, Mice and Monkeys

Data Types: | EM structural; 2PE functional; IR behavioral; AT genomicl']
Annotations: | 3D microcircuit reconstruction; sparse, weighted adjacency matrix
boundary I/O: sensory / motor; afferent / efferent; axonal / dendritic
neuron morphological types; synaptic coordinates & connection types

dense GECI and GEVI fluorescence time series; neuron-indexed rasters!?!
directed clique-complex structure summarizing local circuit motifs

barcode summary representation of persistent-homography evolution

Organisms: || species name — common name — target task — target volume

Experiments: | C. elegans — nematode — forward / backward motions — whole organism

D. melanogaster — fruit fly — threat detection — medulla of optic lobe

M. musculus — house mouse — vibrissal touch — somatosensory (barrel) cortex
M. mutatta — rhesus macaque — various — whole retina, prefrontal cortex

[1] Biological microscopy technology: electron microscopy (EM), two-photon-excitation (2PE), infrared (IR), array tomography (AT)

[2] Fluorescent physiological probes: genetically-encoded voltage indicator (GEVI), genetically-encoded calcium indicator (GECI)



Recording from mm?® Mouse Somatosensory Cortex
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Tao Sun & Robert Hevner. Growth and folding of mammalian cerebral cortex: molecules to malformations. Nature Reviews Neuroscience, 15:217-232, 2014.



Brain state
phase plot
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C. elegans Motor Control

Saul Kato, ..., Manuel Zimmer. Global brain dynamics embed the motor command sequence of caenorhabditis elegans. Cell, 163:656-669, 2015.



Correlated Activity as a Computational Primitive

e ... variance in firing rates across neurons is correlated!"

e ... correlated synaptic input drives current fluctuations!?

e ... modulated coherence as core computational primitivel!
[1] S. Panzeri, S. R. Schultz, A. Treves, & E. T. Rolls. Correlations and encoding information in the
nervous system. Royal Society B: Biological Sciences, 266(1423):1001-1012, 1999.

[2] E. Salinas & T. Sejnowski. Impact of correlated synaptic input on output firing rate and variability
in simple neuronal models. The Journal of Neuroscience, 20(16):6193-6209, 2000.

[3] X. J. Wang. Neurophysiological and computational principles of the cortical rhythms in cognition.
Physiological Reviews, 90(3):1195-1268, 2010.

e ... lot of garbage in components and still it performs well*!

e ... first 2-3 principal components account for Ca?+ rastersl®

e ... system phase-portraits lie on low-dimensional manifolds(®!

[4] Carver Mead. Neural hardware for vision. Engineering & Science, 1:2-7, 1987.

[5] S. Kato, H. S. Kaplan, T. Schrddel, S. Skora, ..., E. Yemini, S. Lockery, M. Zimmer. Global brain
dynamics embed the motor command sequence of C. elegans. Cell, 163:656-669, 2015.

[6] V. Mante, D. Sussillo, K, V. Shenoy, and & W. T. Newsome. Context-dependent computation by
recurrent dynamics in prefrontal cortex. Nature, 503:78-84, 2013.




1. Single-cell-resolution Ca?* 2PE imaging of immobilized worms:

-0 el R

E#ﬁ“

ul-‘j---u

2. Refactor Ca?* rasters as the derivative AF/F0 and normalize:
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4. Temporal PCs as weighted sum of refactored time series:
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5. Cluster temporal PCs grouping highly correlated neurons:
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6. Ca?* imaging unconstrained worms with IR behavior tracking.
7. ldentify transitions and segment time-series vectors by hand.
8. Bundle repeated behavior traces and construct phase portrait:
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Functional Decomposition from Correlated Activity

Spatiotemporal Segmentation of Correlated Neural Activity:

e Compute the neuron distance matrix D from connectomic reconstruction;

e Compute the correlation matrix C for all neuron Ca2* time-series vectors;

e Cluster these vectors, creating M vertex subsets {V,, C V: 0 < m < M};

e Persistent homology identifies localized circuits of correlated neurons;




Mammalian Neocortex has Complex Structure

Henry Markram, ..., Sean L. Hill, Idan Segeyv, Felix Schirmann. Reconstruction and simulation of neocortical microcircuitry. Cell, 163:456-492, 2015.



Deep Multiple Layer Recurrent Neural Networks

O

000

David Sussillo & Omri Barak. Low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Computation, 25(3):626-649, 2013.
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Deep Multiple Layer Recurrent Neural Networks
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David Sussillo & Omri Barak. Low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Computation, 25(3):626-649, 2013.



Defining Morphological and Functional Boundaries

Dynamical System Modeling with Artificial Neural Networks:
e Partition tissue into blocks by cutting planes or morphological homogeneity;
e Clean the block interfaces by reassigning block-boundary-spanning neurons;
e Train a multi-layer artificial neural network one block / layer at a time;

e Substitute layer functional types: max pooling, divisive normalization, etc;




Deeper Still: Modeling Distinctive Network Motifs

(a) g (b)
[\ ./. I/‘ E\ Brain Network ID Real Random
2 3

Human Cortex 13 N/A N/A
I> [\ I> E> Macaque Visual Cortex 9 410 121.55 (21.03) z=13.79
5 6 7 8
E\ [ E E Macaque Cortex 9 1833 223.66 (34.99) z = 46.22
i ‘° " - Cat Cortex 9 1217  472.33 (52.85) z = 14.16
@ C. elegans 4 2999 1067.03 (121.52) z = 15.98

6 3415 1164.31 (134.71) z=16.79

Milo, R., Shen-Orr, S., ltzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U. Network Motifs: Building Blocks of Complex Networks. Science 298, 824-827, 2002.

Marcus Kaiser. A tutorial in connectome analysis: Topological and spatial features of brain networks. Columbia Research Repository, arXiv:1105.4705, 2011.



A simplicial complex is built from points, edges, triangular faces, etc.

O-simplex 1-simplex 2-simplex 3-simplex example of a
(solid) simplicial complex

Homology counts components, holes, voids, etc.

Homology of a simplicial
complex is computable via

void (contains faces linear algebra.

hole but empty interior)

Matthew Wright, Introduction to Persistent Homology. 2015.



The Ordered n-simplices of a Directed Graph

-simplices {1, 2, 3,4, 5, 6} 6

-simplices {12, 13, 23, ..., 56}
-simplices {123}
-simplices {}

60
81
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03

| 2 4

Alessandro E. P. Villa Paolo Masulli. The topology of the directed clique complex as a network invariant. CoRR, arXiv:1510.00660, 2015.



Directed Cliqgue Complex of a Microcircuit
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Pawel Dlotko, ..., Henry Markram. Topological analysis of the connectome of digital reconstructions of neural microcircuits. CoRR, arXiv:1601.01580, 2016.



Example:

Record the barcode:

Persistent Homology

d: 0 1

Matthew Wright, Introduction to Persistent Homology. 2015.
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Matthew Wright, Introduction to Persistent Homology. 2015.




Persistent Homology

Matthew Wright,

Example:

Short bars
represent y
noise. |

Introduction to Persistent Homology. 2015.



Persistent Homology: Microcircuit Dynamics
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Pawel Dlotko, ..., Henry Markram. Topological analysis of the connectome of digital reconstructions of neural microcircuits. CoRR, arXiv:1601.01580, 2016.




Circuit Motifs: Spatial and Temporal Locality

Multi-Scale Spatial and Temporal Circuit-Motif Dynamics:
e For 0 <t < T, construct a transmission-response! adjacency matrix A(f);
e Compute directed-clique? complex K(¢) for each graph: {A(f): 0<t< T};
e For each 1 compute subgraphs/complexes restricted to V,,, for 0 <m < M;

e Compute toplogical invariants, e.g., {p1, B>, ... } for all T x M complexes;

[1]1[2] See the supplementary material at the end of this document for a formal definition.



Mining Neural Recordings for Computational Motifs

Distinctive Signatures for Recognizing Ongoing Computations:

o Activity Motifs — highly-correlated variance in neural spiking activity;

e Circuit Motifs — persistent task-relevant patterns of neural connectivity;
Temporal and Spatial Locality Across a Wide Range of Scales:

e fMRI hemodynamics, electroencephalography, diffusion anisotropy;
e Cortical rhythms: 8: 0.5-4 Hz, 1: 4-7 Hz, a: 8-13 Hz, 3: 13-30 Hz;

e Diffuse neuromodulation, dopaminergic bursting and tonic modes, etc;




Supplementary Material



1 Here is the definition of a transmission-response matrix given in Dlotko et al [3]: After a systematic analysis to
determine the appropriate time bin size and conditions for probable spike transmission from one neuron to
another, we divided the activity of the microcircuit into 5 ms time bins for 1 second after the initial stimulation
and recorded for each 0 < ¢ < T a functional connectivity matrix A(¢) for the times between 5¢ ms and 5(¢ + 1) ms.
The (j, k)-coefficient of the binary matrix A(¢) is 1 if and only if the following three conditions are satisfied, where

sj; denotes the time of the i-th spike of neuron j:

1. The (j, k)-coefficient of the structural matrix is 1, i.e., there is connection from the jth neuron to the kth neuron.
2. There is some i such that 5¢ ms < s;; < 5(¢ + 1) ms, i.e., the jth neuron spikes in the n-th time bin.

3. There is some [ such that 0 ms < s3; — 5j; < 7.5 ms, i.e., the kth neuron spikes within 7.5 ms after the jth neuron.

We call the matrices A(#) transmission-response matrices, as it is reasonable to assume that the spiking of neuron
k is influenced by the spiking of neuron j under conditions (1)—(3) above.

[3] Pawel Dlotko, ..., Henry Markram. Topological analysis of the connectome of digital reconstructions of neural microcircuits. CoRR, arXiv:1601.01580, 2016.



2 Borrowing the definition from [6], an abstract simplicial complex K is defined as a set K of vertices and sets K,
of lists 0 = (xp,...,x;,,) of elements of Ky (called n-simplices), for n = 1, with the property that, if 0 = (xp,....x;;)
belongs to K, then any sublist (x;,.....x; ) of 0 belongs to K. The sublists of o are called faces.

We consider a finite directed weighted graph G = (V,E) with vertex set V and edge set E with no self-loops and no
double edges, and denote with N the cardinality of V. Associated to G, we can construct its (directed) cligue
complex K(G), which is the simplicial complex given by K(G)g = V and

K(G)y = {(vp,...vp): (viy) EEforalli<j} fornz1.

In other words, an n-simplex contained in K(G),, is a directed (n + 1)-clique or a completely connected directed

sub-graph with n + 1 vertices. Notice that an n-simplex is thought of as an object of dimension » and consists of n
+ 1 vertices. By definition, a directed clique (or a simplex in our complex) is a fully-connected directed sub-
network: this means that the nodes are ordered and there is one source and one sink in the sub-network, and the
presence of the directed clique in the network means that the former is connected to the latter in all the possible
ways within the sub-network.

[6] Alessandro E. P. Villa Paolo Masulli. The topology of the directed clique complex as a network invariant. CoRR, arXiv:1510.00660, 2015.



