
Expansion Circuits
Brain Tissue as a Computational Substrate



BrainMaker†
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[†] Codename chosen for its allusion to rainmaker and the maker movement. In business speak, a rainmaker is a person or product 
     that generates substantial new business or additional cash flow from sources that are outside the established business channels.
[‡] Mark Ellisman was particularly generous with his time, sharing relevant data, and considerable expertise in electron microscopy.
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[1] Lattice = expansion network (superabsorbent) polymer.       [2] Mesh = membrane covering (conductive) polymer. 

Prepare Tissue
[Permeabilization]

Fluorescent Tags
[Conjugation]

Protein Hydrolysis
[Homogenization]

Synthesize Lattice[1]

[Polymerization]
Aqueous Dialysis  
[Polymer Expansion]
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Anchor Tags
[Lattice Stabilization]

Functionalize Mesh 
[Metallization]

Dissolve Spacers
[Selective Digestion]

Dense Lipid Tags
[Conjugation]

Synthesize Mesh[2]

[Polymerization]
Install Electronics
[Circuit Fabrication]

E F KJD

Integrate Power Grid
[Power Distribution]
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Expansion Microscopy Protocol

A. Halt reactions, enhance structure, permeabilize cell membranes
B. Tag molecules by selectively binding molecular attachment sites
C. Diffuse monomer1 solute, induce polymerization and crosslinking

G. Anchor the tag molecules and co-register with the polymer lattice
H. Extract lipids, hydrolyze proteins reducing simple peptide chains
I. Infuse with inert aqueous solution, expand, repeat until plateaus

[1] Here we use a polyacrylamide superabsorbent polymer or hydrogel as the expandable basis for a polymer-mesh lattice anchoring all tagged molecules.
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D. Tag the phospholipid polar head groups with four-way crosslinker
E. Diffuse monomer2 solute, induce polymerization and crosslinking

[2] In this case, we could use either a conducting polymer like poly(3,4-ethylenedioxythiophene) (PEDOT) or a suitable non-conducting polymer and later metallize it.
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Expansion Circuitry Protocol



Expansion Circuitry Protocol
D. Tag phospholipid polar head groups with a four-way crosslinker
E. Diffuse monomer2 solute, induce polymerization and crosslinking

[2] In this case, we could use either a conducting polymer like poly(3,4-ethylenedioxythiophene) (PEDOT) or a suitable non-conducting polymer and later metallize it.



Expansion Circuitry Protocol
D. Tag phospholipid polar head groups with a four-way crosslinker
E. Diffuse monomer2 solute, induce polymerization and crosslinking

F. Remove spacers with appropriate solvent or cleavage enzyme

[2] In this case, we could use either a conducting polymer like poly(3,4-ethylenedioxythiophene) (PEDOT) or a suitable non-conducting polymer and later metalize it.







How many [antibodies] can dance on the [polar head group] of a [lipid]?
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Expansion Circuitry Protocol
J. If polymer mesh coating is not conductive, metallize surface
K. Install active electronic components:

➢ Tag pre- and post-synaptic neurons with connectors
➢ Attach low-power memristor3 devices to connectors 

[3] A memristor regulates the flow of electrical current in a circuit and remembers the amount of charge that has previously flowed through it.

L. Install power distribution network:
➢ Third-rail, single multiplexed or two separate meshes
➢ Ultrasound, piezoelectric harvester, capacitor storage
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Expansion Circuitry Protocol
J. If the polymer mesh coating is not conductive, metallize surface
K. Install active electronic components:

1. Identify protein classes to differentiate inputs and outputs
2. Tag pre- and post-synaptic neurons with I/O connectors
3. Fabricate synthetic synapses with antibody-keyed leads 
4. Expand tissue to facilitate diffusion of synthetic synapses
5. Conjugate synthetic-synapse leads with I/O connectors
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HODGKIN-HUXLEY MODEL [GOLD STANDARD]

ION CHANNELS: #1 EXCITATORY & 2 INHIBITORY

LEAKY INTEGRATE AND FIRE MODEL
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ULTRASONIC POWER HARVESTER  SOLUTION
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TWO-DIMENSIONAL CROSSBAR

THREE-DIMENSIONAL CROSSBAR
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IBM TRUE NORTH NEUROMORPHIC COMPUTING [DARPA SYNAPSE PROGRAM]



[†] Tentative expansion-circuit modeling, design and scalable emulation objectives for year-one of the BrainMaker project.

I. Scalable Expansion Circuit Emulation — See Appendix A for relevant research papers. 
1. Build Basic Emulator — SPICE equivalent circuits, replicate STDP & BP results. 
2. Add FEA Capabilities — crosstalk, substrate leakage, conductance properties. 
3. Scalable Emulation — parallel SPICE, LUT, train DNN reaction diffusion for FEA. 
4. Power Distribution — one- and two-wire third-rail, ultrasonic wireless solutions. 

II. Low-Power Analog Circuit Design — See Appendix B for relevant research papers. 
1. Incumbent Technologies — CMOS, MOSFET, TFET in the subthreshold regime.
2. Memristor Technologies — TiO2, NbO2 thermal, polymeric and spintronic devices.

III. Reaction Diffusion Simulation — See Appendix C for relevant research papers.
1. Incumbent Technologies — Blue Brain, GENESIS, MCell, NEST, NEURON. 
2. Models — FitzHugh-Nagumo, Hodgkin-Huxley, Leaky Integrate and Fire.
3. Parallelism — SIMD (GPU), MIMD (HYPERCUBE), Monte-Carlo Sampling.

Expansion Circuitry: Modeling and Emulation†



Supplements



[†] Cordwainer — an anglicized variant of the Anglo-Norman "cordewaner", from Old French cordovan (“(leather) of Cordova”). Cordwainer Smith was the pen-name used by 
American author Paul Myron Anthony Linebarger for his science fiction works. Linebarger was a noted East Asia scholar and an expert in psychological warfare. The eponymous 
CordWainer Project refers to a disturbing science fiction story by Smith with the title “Think Blue, Count Two” in which the brain of a mouse is plasticized, rendered essentially 
immortal and integrated into the automated pilot of an interstellar spaceship scheduled to make a journey of hundreds of lightyears with no company other than a cargo of 
cryogenically-preserved hibernating colonists.

Applications of expansion circuits listed in increasingly fanciful order:

● Walgreen’s $19.95 DIY Countertop Connectomic Continuity Kit 

● Ultrasonic Interrogation of Expansion Circuits for Connectomics

● Expansion-Circuit Software Development & Hardware Emulator

● Sub Milliwatt Powered Fly Brain Expansion-Circuit Drone Pilots 

● Cordwainer† Project — 3D Deposition Expansion-Circuit Printer

Expansion Circuitry: Flights of Fancy



Biological Brains & Building Artificial Brains

● Suppose our objective is to build an artificial brain
● We are already pretty good at building computers
● What can we learn from studying biological brains

➢ von Neumann architecture serial execution
➢ versus associative, highly-parallel, in-place 

● What have we already learned from neuroscience
● Macroscale: +1 — Microscale: +1 — Molecular: ?
● What is it specifically about the wiring of the brain

➢ rich collection of network computing motifs
➢ new parallel algorithms, proof-of-feasibility



@article{GokmenandVlasovCoRR-16,
       author = {Tayfun Gokmen and Yurii Vlasov},
        title = {Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices},
      journal = {CoRR},
       volume = {arXiv:1603.07341},
         year = {2016},
     abstract = {In recent years, deep neural networks (DNN) have demonstrated significant business 
impact in large scale analysis and classification tasks such as speech recognition, visual object 
detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as 
time consuming and computationally intensive task that demands datacenter-scale computational 
resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) 
devices that can potentially accelerate DNN training by orders of magnitude while using much less 
power. The proposed RPU device can store and update the weight values locally thus minimizing data 
movement during training and allowing to fully exploit the locality and the parallelism of the 
training algorithm. We identify the RPU device and system specifications for implementation of an 
accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with 
about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 
30,000X compared to state-of-the-art microprocessors while providing power efficiency of 84,000 
GigaOps/s/W. Problems that currently require days of training on a datacenter-size cluster with 
thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting 
of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of 
parameters that is impossible to address today like, for example, natural speech recognition and 
translation between all world languages, real-time analytics on large streams of business and 
scientific data, integration and analysis of multimodal flows from massive numbers of sensors.}
}

Killer Application for Resistive Cross-Point Devices: Training Deep Neural Networks?



@inproceedings{BojnordiandIpekHPCA-16,
    author = {M.N. Bojnordi and E. Ipek},
     title = {Memristive Boltzmann Machine: Hardware Acceleration for Optimization & Deep Learning},
 booktitle = {Proceedings of the International Symposium on High Performance Computer Architecture},
      year = {2016},
  abstract = {The Boltzmann machine is a massively parallel computational model capable of solving a 
broad class of combinatorial optimization problems. In recent years, it has been successfully 
applied to training deep machine learning models on massive datasets. High performance 
implementations of the Boltzmann machine using GPUs, MPI-based HPC clusters, and FPGAs have been 
proposed in the literature. Regrettably, the required all-to-all communication among the processing 
units limits the performance of these efforts. This paper examines a new class of hardware 
accelerators for large-scale combinatorial optimization and deep learning based on memristive 
Boltzmann machines. A massively parallel, memory-centric hardware accelerator is proposed based on 
recently developed resistive RAM (RRAM) technology. The proposed accelerator exploits the electrical 
properties of RRAM to realize in situ, fine-grained parallel computation within memory arrays, 
thereby eliminating the need for exchanging data between the memory cells and the computational 
units. Two classical optimization problems, graph partitioning and boolean satisfiability, and a 
deep belief network application are mapped onto the proposed hardware. As compared to a multicore 
system, the proposed accelerator achieves 57× higher performance and 25× lower energy with virtually 
no loss in the quality of the solution to the optimization problems. The memristive accelerator is 
also compared against an RRAM based processing-in-memory (PIM) system, with respective performance 
and energy improvements of 6.89× and 5.2×.},
}

Killer Application for Resistive Cross-Point Devices: Training Deep Neural Networks?



@article{EsseretalCoRR-16,
       author = {Steven K. Esser and Paul A. Merolla and John V. Arthur and Andrew S. Cassidy and 
Rathinakumar Appuswamy and Alexander Andreopoulos and David J. Berg and Jeffrey L. McKinstry and 
Timothy Melano and Davis R. Barch and Carmelo di Nolfo and Pallab Datta and Arnon Amir and Brian 
Taba and Myron D. Flickner and Dharmendra S. Modha},
        title = {Convolutional Networks for Fast, Energy-Efficient Neuromorphic Computing},
      journal = {CoRR},
       volume = {arXiv:1603.08270},
         year = {2016},
     abstract = {Deep networks are now able to achieve human-level performance on a broad spectrum 
of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented 
energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, 
and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its 
novel architectural primitives, can implement deep convolution networks that (i) approach state-of-
the-art classification accuracy across 8 standard datasets, encompassing vision and speech, (ii) 
perform inference while preserving the hardware's underlying energy-efficiency and high throughput, 
running on the aforementioned datasets at between 1100 and 2300 frames per second and using between 
25 and 325 mW (effectively > 5000 frames / sec / W) and (iii) can be specified and trained using 
backpropagation with the same ease-of-use as contemporary deep learning. For the first time, the 
algorithmic power of deep learning can be merged with the efficiency of neuromorphic processors, 
bringing the promise of embedded, intelligent, brain-inspired computing one step closer.}
}

Killer Application for Resistive Cross-Point Devices: Training Deep Neural Networks?


