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Abstract

Dendrites are the main recipients of synaptic inputs and are important
sites that determine neurons’ input-output functions. This review fo-
cuses on thin neocortical dendrites, which receive the vast majority of
synaptic inputs in cortex but also have specialized electrogenic prop-
erties. We present a simplified working-model biophysical scheme of
pyramidal neurons that attempts to capture the essence of their dendritic
function, including the ability to behave under plausible conditions as
dynamic computational subunits. We emphasize the electrogenic ca-
pabilities of NMDA receptors (NMDARs) because these transmitter-
gated channels seem to provide the major nonlinear depolarizing drive
in thin dendrites, even allowing full-blown NMDA spikes. We show
how apparent discrepancies in experimental findings can be reconciled
and discuss the current status of dendritic spikes in vivo; a dominant
NMDAR contribution would indicate that the input-output relations
of thin dendrites are dynamically set by network activity and cannot be
fully predicted by purely reductionist approaches.
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CURRENT OVERALL
UNDERSTANDING OF THE
NEOCORTICAL PYRAMIDAL
NEURON

The layer 5 pyramidal neuron is the largest
neuron of the cerebral cortex, extending
its dendrites for more than 1 mm across
the cortical layers. This review assesses our
knowledge of this important cell type and of
other neocortical pyramidal neurons, in terms
of the electrical properties and information-
processing capabilities of their dendrites
(first and second sections). We also provide
a framework for understanding the role of
dendrites in the cortical network (third and
fourth sections). The complex and strikingly
beautiful shape of a pyramidal neuron is a
fundamental determinant of signal flow within
it (Larkman et al. 1992, Rapp et al. 1996,
Rhodes & Llinas 2001, Spruston et al. 1994,
Stafstrom et al. 1984), as well as the pattern and
types of synaptic input it can receive (Cauller
& Connors 1994, Dantzker & Callaway
2000, Larkman 1991, Petreanu et al. 2009).
However, the active properties of dendrites
also have a profound influence ( Johnston et al.
1996, Mel 1993, Migliore & Shepherd 2002,
Rhodes 1999, Spruston 2008). Understanding
the transformation of synaptic inputs to output
action potentials (APs) is therefore an incred-
ibly complex task involving the combination of
input patterning, dendritic architecture, signal
transformation, and regenerative properties.

Dendrites Under the Linear Regime

EPSP size: location-dependent somatic
impact of single synaptic inputs. The first
major question concerns the impact of the
passive dendritic architecture on the size
and spread of electrical signals impinging on
different portions of the basal, oblique, and tuft
trees (Agmon-Snir & Segev 1993, Gulledge
et al. 2005, Larkman et al. 1992, Magee 2000,
Major et al. 1994, Mel 1994, Stuart & Spruston
1998, Williams & Stuart 2003). Direct patch
pipette recordings of miniature excitatory
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postsynaptic potentials (EPSPs) in basal, apical
trunk, and tuft dendrites reveal that distal basal,
apical, and tuft EPSP peak voltages attenuate
similarly, by ∼30-fold or more, as they spread
from the synapse to the closest downstream
(more proximal) intrinsic spike initiation zone
(Figure 1), either at the soma/axon initial
segment or around the main apical bifurcation
point (Larkum et al. 2009, Nevian et al. 2007,
Williams & Stuart 2002). In contrast to the
strong attenuation of peak voltage, the loss
of current along the input dendrite itself is
comparatively minor (Agmon-Snir & Segev
1993, Williams 2004), reflecting the fact that
its membrane resistance is around an order of
magnitude higher than its axial resistance over
much of the likely biological parameter range.1

In the case of basal and oblique branches,
whatever the synapse site, most of the charge
injected flows rapidly via the soma to the rest of
the cell’s membrane capacitance before more
slowly leaking out through the membrane
resistance; over the distal ∼80% of these trees,
input location per se makes only a relatively
minor contribution to variations in postsyn-
aptic potential (PSP) amplitude at the soma
(Hardingham et al. 2010, Stratford et al. 1989).

Dendritic integration. Dendritic integration
(how dendritic inputs combine to influence the
membrane potential) has been extensively re-
viewed (Rall 1977, Stuart et al. 1999). One
school of thought is that passive/linear or sub-
linear summation is the dominant mode of neo-
cortical dendritic integration (Cash & Yuste
1999, Priebe & Ferster 2010). This would be
more likely if inputs are activated in a dis-
tributed and sparse manner onto the dendritic
tree ( Jia et al. 2010, Varga et al. 2011) (see third
section, below). The result is an “every input for
itself,” non-cooperative type of integration; the
final input-output transformation is dominated
by the passive properties of the dendritic tree

1During the awake state or network upstates, however, mem-
brane conductance and hence current loss may increase
several-fold.

(although linear summation is not synonymous
with passive behavior).

Passive summation is far from boring or
trivial. For example, PSP rise times at the
soma differ as they spread from different lo-
cations in the dendritic tree (Agmon-Snir &
Segev 1993, Major et al. 1994, Rinzel & Rall
1974). This could be exploited for comput-
ing the direction of input sequences lasting
within the proximal-to-distal range of EPSP
rise times (Rall 1964). Because their peaks co-
incide, distal-to-proximal sequences of synap-
tic inputs will result in a larger voltage surge at
the soma than would the same inputs in reverse
order. Ih (hyperpolarization-activated conduc-
tance) in the distal apical trunk and tuft may
selectively reduce the duration of PSPs origi-
nating from these branches, while having much
less effect on basal dendritic PSPs (Berger et al.
2001, Berger & Lüscher 2003, Kole et al. 2006,
Williams & Stuart 2000).

Regenerative Mechanisms and Spikes
in Dendrites

Both in vitro recordings and modeling studies
have shown that dendrites can switch to a
highly supralinear regime, which in principle
can lead to so-called dendritic spikes (Ariav
et al. 2003, Häusser et al. 2000, Judkewitz et al.
2006, Larkum & Nevian 2008, Losonczy &
Magee 2006, Mel 1993, Polsky et al. 2004,
Rhodes 2006, Schiller et al. 1997, Schiller &
Schiller 2001, Spruston 2008). Do pyramidal
cell dendrites actually fire spikes? Are voltage-
sensitive channels in dendrites activated in
an all-or-none manner during normal brain
function, or do they simply boost synaptic
inputs in a graded fashion? What does all-or-
none actually mean (see sidebar, Terms)? This
topic remains contentious despite decades of
evidence suggesting the existence of all-or-
none dendritic events under certain conditions
(Amitai et al. 1993, Llinás et al. 1968, Schiller
et al. 1997, Schwindt & Crill 1997, Stuart &
Sakmann 1994, Wong et al. 1979, Yuste et al.
1994, Xu et al. 2012). The question is perhaps
better restated as whether we should expect
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Figure 1
Attenuation of miniature excitatory postsynaptic potentials (mEPSPs) across the dendritic tree. (a) Sucrose-evoked mEPSPs at different
locations in the L5 pyramidal neuron. Whether evoked in the distal tuft and recorded (b), or evoked near the apical bifurcation and
recorded at the soma (c), or evoked in the basal dendrites and recorded at the soma (d ), most individual propagated mEPSPs were
barely detectable: in terms of attenuation, the two spike trigger zones (both the calcium initiation zone near the apical bifurcation and
the sodium initiation zone near the soma) appear electrically remote from the sites distal to them providing the bulk of their synaptic
input. (e) Attenuation of EPSPs across different regions of the dendritic tree (peak V near synapse/peak V near next downstream spike
trigger zone). ( f ) Distances normalized to average total length of the respective dendrites.
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dendrites to spike under relevant physiological
conditions. We argue here that this question
can be approached in principle in terms of
the net current-voltage (I-V) relationships
of dendritic compartments. In this context,
many of the currently confusing and disparate
results can easily be reconciled into a unified
framework. We do not attempt to archive
exhaustively all the details of active dendritic
properties in neocortical pyramidal neurons,
which have been addressed in several other
reviews (London & Häusser 2005, Migliore &
Shepherd 2002, Spruston 2008).

One dominant ion? Not necessarily. The
word spike has been a convenient term for most
of the history of neuroscience, typically being
used to denote the firing of a sodium AP, usually
recorded at the soma but actually arising in the
axon (Kole & Stuart 2008, Stuart et al. 1997).
The discovery that dendrites are capable of
electrogenesis (Amitai et al. 1993, Llinás et al.
1968, Wong et al. 1979) undermined this once
simply understood terminology. Although all
dendritic spikes are somewhat mixed in nature,
one can differentiate between three major
types of spikes—Na+, Ca2+, and N-methyl-
D-aspartate (NMDA)—according to the main
underlying class of conductance. The wide
range of electrical properties, channel types,
and densities gives rise to regenerative events
in dendrites whose rise times and durations
differ by orders of magnitude. Nonetheless,
dendritic spikes do conform to the classical
description of APs in as much as they have a
threshold, and some types have a refractory
period and propagate actively for some distance
(Larkum & Zhu 2002, Schiller et al. 1997).

All-or-none? Yes. Stereotyped? No. The
term all-or-none is also a source of much
confusion: Even classical Na+ APs are far from
stereotyped in threshold, amplitude, and time
course. No feature is sacred: All three change
during the relative refractory period, with
strength-duration and strength-length trade-
offs, and all three depend on the rate of rise of
the stimulus (Azouz & Gray 2000, de Polavieja

TERMS

These only partially overlap and are not synonymous.

Regenerative event: a self-driven event (waveform) involving
a positive feedback loop, e.g., between voltage and current (or
calcium and voltage, or calcium-induced calcium release).

Spike: a voltage transient; in the wider world, many shapes
and sizes; generally agreed it must go up then down (or vice
versa, i.e. be self-terminating). In neuroscience, by convention,
a spike usually has a threshold of some kind across which the
response jumps qualitatively/substantially in size/shape, in a bio-
logically/computationally significant manner. Threshold can be
voltage or an input variable such as glutamate, or indeed it can
be multidimensional. Threshold does not need to be fixed (e.g.,
strength-duration trade-offs, relative refractory periods) and may
need to be teased out: It may not be apparent in all input-output
(I-O) relations, even though the voltage waveform is spike-like
and very similar to a supra-threshold waveform from another
I-O relation that does exhibit a clear threshold (see section on
Sharpness of Threshold and Spike-Sigmoid Duality below).

Action potential (AP): a membrane-voltage transient that nor-
mally results in some distinct biological action (e.g., a muscle
contraction or release of neurotransmitter); usually, but not nec-
essarily, all-or-none. The term action potential has a broader
meaning than many neuroscientists may assume: for example,
cardiac action potential = slow spike + plateau; Nitella (algae)
chloride-mediated action potential; negative-going action poten-
tials in Ascaris (roundworm) pharyngeal muscle (Byerly & Masuda
1979).

All-or-none: an event that, once started (i.e., by some thresh-
old being exceeded), proceeds by itself to completion; if not
started (i.e., threshold not reached), a substantially different
(smaller/briefer) event results. However, all-or-none does not
mean completely stereotyped in size and shape (or threshold).

Electrogenic: causing an electrical change. Includes positive
feedback, negative feedback (such as sag, undershoot, after-
hyperpolarizations), and delayed combinations of the two (e.g.,
oscillations, pacemaking).

et al. 2005, McCormick et al. 2007, Platkiewicz
& Brette 2011, Shu et al. 2006, Tateno et al.
2004, Wilent & Contreras 2005, Yu et al.
2008). Typically, during an AP train, amplitude
decreases, duration increases, and threshold
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rises (Spruston et al. 1995b). This progression
is very marked during high-frequency bursts:
Changes in amplitude or duration can be as
much as twofold, owing to Na+ channel inacti-
vation, Ca2+ accumulation, and the opening of
calcium-activated potassium channels (gKCas)
(Storm 1990). Neuromodulation and inhibi-
tion can produce additional changes. So, the
term all-or-none does not imply a completely
stereotyped waveform; it implies only the ex-
istence of some instantaneous threshold below
which the response is small and above which
the response is clearly bigger, or substantially
different (see sidebar, Terms). A similar con-
tention arises over whether dendritic spikes are
actually sharply spike-like in shape. In partic-
ular, Ca2+ spikes and NMDA spikes are often
plateau-shaped and are referred to as such (An-
tic et al. 2010, Milojkovic et al. 2007, Schwindt
& Crill 1999, Suzuki et al. 2008, Wei et al.
2001). Considering the biological literature as
a whole, APs do not have to be fast: cardiac
APs can be hundreds of milliseconds long.

The NMDA spike as a hallmark of elec-
trogenesis in thin dendrites. A consensus is
emerging that in neocortical excitatory neurons
the dominant depolarization-activated con-
ductance in thin (usually submicron-diameter)
dendrites is the NMDA receptor (NMDAR)
channel (Antic et al. 2010, Branco & Häusser
2011, Larkum et al. 2009, Lavzin et al. 2012,
Major et al. 2008, Mel 1993, Nevian et al. 2007,
Schiller et al. 2000). NMDA spikes represent
an important conceptual leap because they are
inherently ligand dependent, i.e. dependent on
glutamate and D-serine binding, and therefore
subject not just to local membrane potential but
also to the spatial distribution of these trans-
mitters along the dendrite. The clear existence
of NMDA spikes in vitro, with an order-of-
magnitude safety factor, demonstrates that the
input-output relations of thin dendrites are
neither fully predictable nor constrainable in a
purely bottom-up, reductionist manner.

In vitro, NMDA spikes (or plateau poten-
tials) have been found in all classes of thin den-
drite of neocortical excitatory neurons (basals,

apical obliques, apical tufts) and in all neocorti-
cal areas and layers examined to date (Branco &
Häusser 2011, Gordon et al. 2006, Lavzin et al.
2012, Milojkovic et al. 2004, Nevian et al. 2007,
Schiller et al. 2000). They also probably occur
in hippocampal apical tufts (Wei et al. 2001).
Sodium spikelets, however, are much more dif-
ficult to initiate in neocortical pyramidal neu-
ron thin dendrites in brain slices, and are weak
and variable in size, if they can be triggered at
all (Larkum et al. 2009, Milojkovic et al. 2005b,
Nevian et al. 2007). In vitro, calcium spikes are
not evoked in basal dendrites either by direct
current injection or by glutamate stimulation
(Major et al. 2008, Nevian et al. 2007, Schiller
et al. 2000); Ca2+ spikes are rarely initiated by
current injection into single distal (thin) tuft
dendrites (Larkum et al. 2009), although most
of the depolarization from Ca2+ spikes initiated
in the distal trunk/bifurcation zone does propa-
gate into the distal tuft, which also then exhibits
a Ca2+ transient (but see Xu et al. 2012).

NMDA spikes evoked focally by glutamate
iontophoresis or 1-photon uncaging are asso-
ciated with a local high calcium zone within
∼10 μm of the input site, mirroring the dis-
tribution of activated NMDA channels (Major
et al. 2008). This is accompanied by a lower
(but above resting) calcium zone all the way to
the dendritic tip, resulting most likely from cal-
cium channels opening as the entire dendrite
distal to the input site is depolarized: It is dif-
ficult for charge to escape from this segment.
Simulations suggest that ∼20% of the charge
flow during an NMDA spike is via calcium con-
ductances. The peak calcium in both zones in-
creases with the spike/plateau duration (Major
et al. 2008). Preliminary data suggest that brief
NMDA spikes that result from distributed stim-
ulation have correspondingly smaller, spread-
out calcium transients, lacking a single obvious
“hot zone” (Lavzin et al. 2012).

A key point is that at many dendritic
locations it takes only a small number of
synaptic inputs to evoke an NMDA spike: As
few as ∼10 clustered single spine inputs may
suffice (Figure 2). This is a small fraction of
the synapses on a single thin dendrite, typically

6 Major · Larkum · Schiller
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100–400 dendritic spines, depending on the
species (Chen et al. 2011, Larkman et al.
1992). An equally crucial point is that NMDA
spikes can also be elicited by distributed inputs
(Figure 2): Clustering is not a prerequisite for a
clear threshold. A third important point is that
both depolarization and glutamate prebinding
from previous activation reduce the glutamate
threshold, allowing cooperativity between
NMDA spikes [Figure 2a,e; Supplemental
Figure 1 (follow the Supplemental Material
link from the Annual Reviews home page
at http://www.annualreviews.org)] (Major
et al. 2008, Polsky et al. 2009).

BIOPHYSICAL MECHANISMS
OF NMDA SPIKES

A detailed discussion of the biophysical mecha-
nisms of NMDA spikes is warranted because of
their importance and prevalence in thin den-
drites, which, as mentioned, receive the vast
majority of inputs to pyramidal neurons.

NMDAR Channels

The properties of NMDAR channels have been
reviewed extensively elsewhere (Paoletti 2011,
Yuan et al. 2008). Here, we highlight impor-
tant aspects relating to their regenerative na-
ture. NMDARs are strongly electrogenic. Why
would this characteristic have evolved if the
sole function of NMDARs was synaptic plas-
ticity? If their role was purely to detect and
signal presynaptic-postsynaptic firing coinci-
dences, using calcium influx to initiate a plastic-
ity cascade, NMDARs could have been much
smaller pure calcium conductances. As it is,
however, typically ∼90% of the charge through
NMDAR channels is actually carried by Na+

and K+ ions (Garaschuk et al. 1996, Jahr &
Stevens 1993, Schneggenburger et al. 1993).
Why? The calcium permeability of NMDAR
channels can also be reduced drastically by ac-
tivation of metabotropic γ-aminobutyric acid B
(GABAB) receptors (Chalifoux & Carter 2010)
and by other kinds of plasticity (Sobczyk &
Svoboda 2007), without appreciably altering
the total current flow.

I-V Curve Families for a Unified
Understanding of NMDAR
Regenerative Events: Graded
versus Thresholded

A helpful approach for understanding dendritic
integration and spiking is to generalize the
well-known idea of current-voltage relations
(I-V curves). NMDA-dependent dendritic
electrogenesis has both thresholded and
graded aspects, both of which can be predicted
from the basic I-V curve of the NMDAR
conductance and can be unified under the
same conceptual framework. From this per-
spective, the fundamental question for any
given dendritic compartment is whether its
instantaneous net I-V curve is N-shaped with
three zero-current crossings (Figure 3a). If
so, the membrane is bistable and is capable of
firing a spike (of some kind) if kicked over the
threshold. Following a pulse of glutamate onto
a single electrical compartment of a dendrite,
as the openable NMDAR conductance (gmax)
rises, peaks, then falls, the instantaneous I-V
relation progresses through a succession of
different curves: an I-V movie (Figure 3b)
(Supplemental Videos 1–4). The I-V curve
starts downstable (blue). The right-hand
trough progressively deepens, enhancing the
N-shape. Eventually, if there is sufficient
NMDA conductance, and other parameters
allow, the I-V curve can morph into the bistable
regime (green). If the voltage is then driven (or
is already) above threshold, the membrane goes
into the up state, and a spike/plateau results.
This switches off by itself once the NMDA
conductance falls back down below the mini-
mum required for the I-V trough to dip below
the zero-current axis, and the up state ceases
to exist (Figure 3b: uppermost green curve →
lowest blue curve; see below). A dendritic I-V
relation is complex because it generally evolves
over time. This is due in large part to synaptic
conductances, which are major contributors
and themselves rise and fall over time.

A spike is only all-or-none in the sense
that it has some threshold below which it
fails and above which it runs to completion.

www.annualreviews.org • Neocortical Pyramidal Neuron Dendrites 7
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←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2
NMDA spikes can be elicited by stimulating a relatively small number of clustered or distributed synapses. (a, e) Neuron simulations;
due to NMDAR priming, the second pulse of a paired-pulse stimulus produces an NMDA spike. Other panels: brain slice 2-photon
glutamate uncaging experiments (layer 5). (b, f ) Positions of uncaging spots (red ) next to dendritic spines. (c, g) Corresponding
single-spot uncaging EPSPs; similar to single synapse quantal EPSPs. (d, h) The same stimuli in quicker succession produce either a
subthreshold response or an NMDA spike. (d ) Blue traces = first 7 spots, red = all 8 spots stimulated, demonstrating glutamate
threshold. (h) NMDA spike fails below a distinct voltage threshold.

All-or-none implies nothing about the con-
stancy of that threshold, the stereotypy of
the ensuing suprathreshold response, or the
size or shape of that response relative to the
biggest just-subthreshold response. This is, of
course, not to mention further confusion caused
by waveform changes as potentials propagate
along a dendritic tree.

In large layer 5 pyramidal neuron basal den-
drites, the NMDA spike glutamate threshold
increases ∼5-fold from distal to proximal in-
put sites, and the amplitude (reaching the soma)
increases ∼7-fold (as does the maximal just-
subthreshold response). These spatial gradients
mirror the local input conductance (Major et al.
2008). If the stimulus is focal, once the response
is suprathreshold, further increases in the stim-
ulus produce relatively minor increases in the
amplitude of the spike/plateau; however, the
duration of the spike/plateau grows almost lin-
early with the stimulus and may reach hundreds
of milliseconds (Major et al. 2008, Milojkovic
et al. 2005a). This may serve as a prolonged
time window for integration.

Investigators have shown experimentally
that both features of NMDA regenerativ-
ity (graded and spike/plateau) exist, often
simultaneously (Branco & Häusser 2011,
Major et al. 2008, Schiller et al. 2000). Sharp
thresholds for NMDA spikes have been found
using focal synaptic stimulation (Gordon
et al. 2006, Larkum et al. 2009, Nevian et al.
2007, Polsky et al. 2004, Schiller et al. 2000),
glutamate UV-laser uncaging (Gordon et al.
2006, Major et al. 2008, Polsky et al. 2004,
Schiller et al. 2000), and multispot two-photon
uncaging (G. Major, unpublished observations;
Figure 2b–d ). In addition, it seems plausible,
a priori, that whereas focal stimulation can

lead to sharp thresholds, highly distributed
stimulation might be expected to lead to a
blurring of thresholds and more sigmoidal
input-output relations. In fact, perhaps coun-
terintuitively, both experimental data and
models show that distributed stimulation is
still perfectly compatible with sharp thresholds
(Figure 2e–h; Supplemental Figure 3f–g,
discussed below).

Different experimental setups have found a
range of NMDA regenerative behavior, from
graded boosting to full-blown spikes. This
range may reflect various laboratories explor-
ing different regions within the space of pos-
sible dendritic NMDAR-dependent I-V curves
(e.g., Figure 3b). Experimental differences may
be responsible, including, for example, the de-
gree of input clustering/synchrony and effective
AMPA/NMDA ratios. Covert spikes may also
play a role (see below).

Partially Overlapping Time Courses
of AMPAR and NMDAR Channels

Dendrites contain electrical mechanisms that
operate over a range of time scales. At the fast
end of the spectrum are AMPA receptor con-
ductances, with decay time constants as short
as ∼0.5 ms (or faster) at body temperature
(Gardner et al. 2001, Postlethwaite et al. 2007,
Zhang & Trussell 1994). These conductances
are similar in time scale to those underlying
the partially active backpropagation of APs, du-
ration also ∼0.5 ms (Stuart et al. 1997), the
fast voltage switching of NMDAR conduc-
tances [dominant time constants submillisec-
ond (Kampa et al. 2004, Spruston et al. 1995a)],
and the fast inward rectifier conductance
(Yamada et al. 1998).
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Figure 3
Understanding threshold and spike size: instantaneous current-voltage (I-V) relations and bistability. (a) Three types of instantaneous
I-V relation. Arrows indicate system flow; open circles indicate stable states. Details in Supplemental Figure 4 (follow the
Supplemental Material link from the Annual Reviews home page at http://www.annualreviews.org). (b) I-V curve shape changes
smoothly as maximum openable NMDAR conductance increases, but curve type switches suddenly from downstable to bistable at a
critical level of NMDAR conductance (and again from bistable to upstable if NMDA conductance rises enough). Thick dark green: just
bistable I-V curve with a high threshold, and a small jump from threshold to upstate (Supplemental Figure 4c). A large enough AMPA
(2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid) component could kick the dendrite over the threshold, resulting in a
small spike riding on a large PSP and a sigmoid input-output relation (I-O). Thick light green: bistable I-V curve with more NMDA
conductance, a low threshold, and a big jump (Supplemental Figure 4e). An input with a low AMPA fraction may reach this threshold,
yielding a big spike on a small PSP, and a step-like I-O. See Supplemental Videos 1–4. (c–d ) Experiments: somatic voltage transients
from basal dendritic stimulation. (c) NMDA spike, step-like I-O. (d) More graded response, sigmoidal I-O. In both cases, nonlinearity
was abolished by NMDAR block.

Substantially slower is the activation time
course of the NMDAR upon binding glu-
tamate: on the order of a few milliseconds
(D’Angelo et al. 1994, Dalby & Mody 2003,
Dzubay & Jahr 1996, Korinek et al. 2010,
Popescu et al. 2004, Spruston et al. 1995a).
An absolutely key point is that following
a brief synaptic pulse of glutamate, from a

single presynaptic release event, most of the
AMPAR conductance has died away before the
NMDAR conductance is half primed or
activatable, that is, capable of conducting, if
depolarized (Stern et al. 1992). NMDARs must
bind glutamate (and D-serine) and undergo
internal conformational/state changes to
become capable of magnesium unblock and

10 Major · Larkum · Schiller
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conducting (Kampa et al. 2004, Popescu et al.
2004), and these state changes take longer than
their counterparts in AMPARs. The NMDAR
decay time constant is even longer, probably
∼40–60 ms. The range may be as broad as 10
to ∼100 ms at body temperature, even if one
restricts discussion to the faster NR2A subtype
of the receptor more prevalent in adults. There
is much uncertainty about Q10 values, which
could be in the range of 1.7 to 2.4 (Dalby &
Mody 2003, Korinek et al. 2010).

The observation that the AMPA current has
largely decayed by the time the NMDA conduc-
tance has half primed is absolutely crucial to un-
derstanding what dendrites might be able to do
and how they might do it: specifically whether
they exhibit thresholds (details in next section).
Note that when one considers NMDA spikes
and plateaus, which are relatively slow events
(half-width or duration at half amplitude ranges
from ∼20 ms to several hundred milliseconds
or longer), the dendrites behave in a more
electrically compact fashion than they would,
say, for a backpropagating AP with a half-width
of only 0.5 ms.

Sharpness of Threshold and
Spike-Sigmoid Duality

Experiments (Figure 3c,d ) and simulations
suggest that thin dendrites can produce both
sigmoid and step-like input-output (I-O) re-
lations, depending on the input parame-
ters. In full compartmental model simulations,
sigmoidal I-O relations result from higher
AMPA/NMDA ratios, slower AMPAR de-
cay kinetics, more synchronous inputs, and
more spatial spread of the inputs (Supple-
mental Figures 2 and 3). Conversely, lower
AMPA/NMDA ratios, faster AMPAR decay,
and more temporal but less spatial dispersion
of inputs all conspire to produce more step-like
I-O relations.

The simplest way to understand this process
is from I-V curve movies. A large AMPA com-
ponent produces a large voltage kick, which can
cross the threshold at a relatively low NMDA
conductance gmax (openable conductance), i.e.,

when the I-V curve is only just bistable and is
still downskewed with a high barrier (downstate
→ threshold) and a small jump (threshold →
upstate; Figure 3b, Supplemental Figure 4c).
As a result, we see a small spike riding on a large
subthreshold response (Supplemental Videos
1 and 2). If the input is increased further, the
maximum response (upstate) grows in a graded
manner. The net result is a sigmoidal I-O.

Conversely, a small AMPA component pro-
duces a small voltage kick; therefore, with a
low AMPA/NMDA ratio, the NMDAR gmax

can increase to a value at which the I-V curve
is upskewed bistable before the AMPA kick is
enough to cross the threshold (low barrier, big
jump; Figure 3b, Supplemental Figure 4e).
When it does cross the threshold, there is a big
jump in response amplitude: a large spike rid-
ing on a small subthreshold response. The I-O
relation is dominated by a sharp step. This is
also true for intermediate cases in which the
threshold is crossed when the I-V curve is sym-
metrically bistable (Figure 3a, Supplemental
Figure 4d, Supplemental Videos 3 and 4).

Similar logic applies to the other input
parameters. Slowing down the AMPAR decay
allows the threshold to be crossed at a lower
NMDAR conductance, producing a smaller
spike riding on a bigger subthreshold response
(Figure 3, Supplemental Figures 2 and 4).
Desynchronizing the inputs is roughly equiva-
lent to reducing the AMPA component: Time
jitter has far less effect on the much slower
NMDA component.

There is a further plot twist. Simulations
suggest that essentially the same spike wave-
form can participate in both sigmoidal and
stepped I-O relations (compare thick with
thick, medium with medium, and dashed with
dashed waveforms across panels in Supple-
mental Figures 2 and 3: Each of these is just
above a clear glutamate threshold in at least
one plot but is hidden within a sigmoid in at
least one other plot). Thus, there is a degree of
spike-sigmoid duality.

It is important that even spatially distributed
inputs can produce stepped input-output re-
lations with clear thresholds over a wide range
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of biologically plausible parameters (Figure 2,
Supplemental Figure 3). What actually
happens in real life must now be settled with
experiments in awake, behaving animals: The
necessary technology is gradually becoming
available.

Cooperativity

Depolarization reduces the NMDA spike
glutamate threshold (Major et al. 2008, Polsky
et al. 2009); this depolarization can be provided
by another NMDA spike/plateau, including
at a more distal location in the same dendrite
(Supplemental Figure 1), leading to a number
of interesting computational capabilities such
as directionally biased responses, proximal-
distal synapse interplay, and classical receptive
field–contextual interactions (Behabadi et al.
2012, Branco et al. 2010, Major et al. 2008).
Depolarizing drive (i.e., positive current), from
whatever source, shifts the I-V curve vertically
downward, which makes the bistable regime
start at a lower glutamate-bound NMDAR
conductance gmax (just a small shift converts
the lower blue curve in Figure 3b to bistable).
Within the bistable regime, this downward
shift in the I-V curve has three effects at a given
NMDAR gmax: The downstate moves more
positive, the threshold more negative, and the
upstate more positive (Supplemental Figure
5). This lowers the barrier to threshold but
increases the jump above threshold [and the
net spike amplitude (Supplemental Figures
4 and 5)], allowing the threshold to be crossed
by a smaller AMPAR conductance; for a
given AMPA/NMDA ratio, the I-O relation is
shifted to the left (lower glutamate threshold)
and becomes more stepped, with a bigger spike
riding on a smaller PSP.

Inward Rectification

Bistability of instantaneous I-V curves can be
made more robust (extended over a wider range
of parameters) by several other conductances
also conveniently found in dendrites, such as
GABAA and fast inward rectifier potassium
(KIR) channels (Sanders et al. 2013).

All neocortical pyramidal neurons inves-
tigated to date exhibit substantial inward
rectification (their input resistance and time
constants can decrease up to ∼4-fold as the
membrane potential is varied from around
−50 mV to −90 mV (Major 1992, p. 72;
Waters & Helmchen 2006). KIR channels are
major players and are, in many ways, mirror
images of NMDAR channels (Kashiwagi et al.
2002, Yamada et al. 1998). They have similar
structures but are inverted in the membrane.
KIR channels are blocked by intracellular (as
opposed to extracellular) Mg2+; they open
rapidly with hyperpolarization: the opposite
polarity to NMDARs. The symmetry between
NMDA and KIR goes further still: Some types
of KIR channel are even gated by transmitters,
albeit more slowly via GABAB metabotropic
receptors and G proteins (Yamada et al. 1998).

The left-hand part of an N-shaped I-V
curve is selectively enhanced by adding inward
rectifier conductance, which makes the over-
all N more symmetrical, strengthening the
stability of the otherwise fragile downstate by
providing more corrective current on either
side (Sanders et al. 2013). This in turn expands
the range of baseline voltages (DC current
offsets) and inputs (e.g., NMDA conductances)
compatible with instantaneous bistability
and, more exactingly, a sharp dendritic spike
threshold. Compared with a non-voltage-
dependent K+ conductance, by closing with
depolarization, inward rectifier conductance
moves the unstable threshold point to the left
to more hyperpolarized voltages, while moving
the upstate to the right. These shifts lower
the barrier to threshold and increase the jump
above threshold, leading to a more pronounced
step in the I-O relation. Inward rectification
could thus both increase the robustness and
sharpen the threshold of dendritic spikes.

Inhibition

GABAA inhibition can similarly increase the
robustness and extent (in parameter space) of
the bistable regime, stabilizing the downstate
not only by moving the I-V curve vertically

12 Major · Larkum · Schiller

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
13

.3
6:

1-
24

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
B

ro
w

n 
U

ni
ve

rs
ity

 o
n 

04
/1

5/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



NE36CH01-Schiller ARI 7 June 2013 14:39

upward, but also by steepening it (Lisman et al.
1998). The price is a higher threshold (and an
increase in the number of synapses required for
an NMDA spike).

If negative current is injected within the
same dendritic compartment, the I-V curve
family shifts vertically upward ( Jadi et al.
2012) (Supplemental Figure 5). For some
parameter combinations this can destroy the
bistability of weakly bistable curves, pushing
the trough above the zero-current axis and
rendering them downstable (Figure 3). In the
case of more deeply bistable curves, negative
current moves the threshold to the right and
both down- and upstates to the left, raising the
barrier but reducing the jump. If we start with
a glutamate stimulus that elicits an NMDA
spike and progressively hyperpolarize the cell,
eventually a baseline voltage will be reached
(prevention threshold), below which the same
glutamate stimulus cannot push the dendrite
across the threshold; thus the NMDA spike
fails (Figure 2h) ( Jadi et al. 2012, Major et al.
2008). If, however, an N-shaped I-V curve is
initially upstable (Figure 3a,b) (e.g., relatively
small leak/inward rectifier + large NMDA
conductance), sufficient negative current can
make it bistable by pushing the left-hand peak
above the zero current axis.

Spike/Plateau Termination
and Calcium-Activated
Potassium Channels

However it gets there, once the dendrite is
in an upstate, eventually the NMDA compo-
nent starts to decay, and the level of the up-
state (plateau top) declines slowly (this can
be seen in experimental NMDA spike/plateau
waveforms lasting more than ∼40 ms, i.e., a
couple of membrane time constants). After a
time delay that may be several NMDAR decay
time constants long, depending on the origi-
nal safety factor,2 the NMDA conductance falls

2How many times more NMDA gmax (openable conduc-
tance) is present, at its peak, than required for bistability.

to the point where the right-hand local mini-
mum of the N-shaped I-V curve slips just above
the zero-current axis, and the upstate sud-
denly ceases to exist. A relatively rapid down-
stroke ensues, and the membrane ends up back
in the downstate (now the only stable state).
This decay of the plateau top (upstate) can
be accelerated by calcium accumulation open-
ing gKCas, in particular the apamin-sensitive
SK (small conductance) channel, which colo-
calizes with NMDARs in spines (Cai et al. 2004,
Ngo-Anh et al. 2005, Wei et al. 2001). On
the other hand, in other brain areas, calcium-
activated nonspecific cation conductances can
be activated, causing the reverse effect and
leading to a much longer plateau (reviewed in
Major & Tank 2004). At any time during the
slow decline of the upstate, providing the I-V
curve is bistable (not upstable), a sufficiently
strong brief hyperpolarizing pulse, for exam-
ple a GABA IPSP (inhibitory postsynaptic po-
tential), could flip the dendrite prematurely
into the downstate and curtail the NMDA
spike/plateau.

CONCEPTUAL FRAMEWORK
FOR UNDERSTANDING THE
PYRAMIDAL NEURON:
COMPARTMENTS,
COMPUTATIONAL UNITS,
CANONICAL DESCRIPTIONS

Canonical Abstractions

Taken together, the observations outlined
above provide powerful constraints on models
of neocortical pyramidal neurons. Actually un-
derstanding any given neuron requires the right
level of abstraction (Branco & Häusser 2010,
Häusser & Mel 2003, Herz et al. 2006, Koch
et al. 1983, Koch & Segev 2000, Larkum et al.
2001, Mel 1994, Poirazi et al. 2003, Spruston
2008). The goal is to encapsulate the salient in-
put/output properties of the neuron within a
minimal description (Mirsky et al. 1998, Sprus-
ton 2008). Investigators have suggested several
canonical abstractions for pyramidal cells (e.g.,
Figure 4).
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In the three-compartment (three-
computational subunit) model (Figure 4a,b),
the pyramidal neuron bauplan is split into
three major dendritic arbors: basals, apical
trunk/obliques, and distal trunk/tuft (Larkum
et al. 2001); dendrites within each arbor are

lumped together into a single functional com-
partment. This model also takes into account
the location of the two major spike initiation
zones, the axo-somatic sodium initiation zone
and the distal apical calcium initiation zone,
separated by the apical trunk (Amitai et al. 1993,
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Figure 4
Encapsulating the properties of pyramidal neurons. (a, b) Three-compartment model of a layer 5 pyramidal neuron designed to include
the influence of the three major dendritic arborizations: tuft + distal trunk (A), apical trunk/obliques (B), and basal dendrites (C). Each
functional compartment incorporates/abstracts distinct electrical properties/channel distributions. Compartments A and C can initiate
Ca2+ and Na+ spikes, respectively; f(. . .) and g(. . .) represent their input-output functions. Excitatory and inhibitory influences act
together on individual compartments. The tuft integrates prominent long-range top-down feedback with local and other inputs, but
the threshold for generating output is modulated by backpropagating action potentials (bAPs, i.e., output spikes of the cell). The basal
compartment integrates bottom-up, local, and other inputs but is influenced heavily by Ca2+ spikes in the tuft. The trunk modulates the
coupling between the other two compartments. (c) 2-layer neuron; each dendrite behaves as a neural network neuron-like unit, sending
weighted output to the soma. (d ) 3-layer neuron; similar, but two major spike initiation zones integrate input from different subtrees
and interact nonlinearly. (e) Compartmentalization based on cortical layer. Synaptic inputs from different sources arrive on dendrites in
different layers, which may lead to functional domains within the dendritic tree. ( f ) Electrogenesis based on dendrite thickness. Most
synaptic inputs are onto thin dendrites, dynamically changing segments or regions of which may produce local NMDA spikes; these
interact bidirectionally with one another and with other inputs to influence the nearest of the two intrinsic conductance-based spike
initiation zones, which also interact via bidirectional signals along the thick apical trunk (as in the three-compartment model).

Schiller et al. 1997, Yuste et al. 1994). Distal
Ca2+ spikes greatly enhance the influence of the
tuft; inputs that may otherwise have had a neg-
ligible effect on output firing can even come to
dominate it: In large layer 5 pyramidal neurons,
the Ca2+ spike generally contributes to a burst
of somatic APs (Larkum & Zhu 2002, Williams
& Stuart 1999, Zhu 2000). Basals and proximal
obliques can be further collapsed together
functionally, depending on the layer specificity
of inputs (Briggs & Callaway 2005, Lübke &
Feldmeyer 2007, Petreanu et al. 2009, Schubert
et al. 2001). However, the apical trunk clearly
has a special layer-spanning role that signals
the output of each dendritic compartment to
the others (Larkum et al. 1999, Larkum 2013).

The formalization of the cell in three
compartments ignores the possibility of local
computations performed in thin basal, oblique,
and tuft dendrites, for instance with local
NMDA and sodium spikes (Larkum et al.
2009, Losonczy & Magee 2006, Mel 1993,
Polsky et al. 2004, Schiller et al. 2000). These
local computations are partially captured by
2- and 3-layered feedforward network models
(Figure 4c,d ) (Häusser & Mel 2003, Mel 1993,
Poirazi et al. 2003). Within this framework,
local inputs are summed nonlinearly (e.g.,
sigmoidally) within fine dendritic branches
and then integrated again at one or more
main intrinsic spike initiation zones. However,
these abstractions allow only unidirectional
signaling, ignoring backpropagating APs and

cross talk or cooperativity between different
dendrites or segments of dendrites (Major et al.
2008) (Supplemental Figure 1). Bidirectional
signaling allows more complex processing
capabilities (Behabadi et al. 2012, Branco et al.
2010, London et al. 2008). For instance, a
∼30-ms time window exists for the detection
of coincident tuft and basal inputs (Larkum
et al. 1999, Polsky et al. 2004), which can be
modified by the location/activity of the apical
oblique dendrites (Schaefer et al. 2003).

Pyramidal neurons are embedded in a lay-
ered structure (the cortex); the distribution of
synaptic input is constrained, e.g., tuft dendrites
are likely to receive long-range inputs (Binzeg-
ger et al. 2004). Inputs from different sources
are not randomly distributed but tend to
terminate in a layer-specific manner (Briggs &
Callaway 2005, Lübke & Feldmeyer 2007, Pe-
treanu et al. 2009, Schubert et al. 2001). Such
targeting may result in different functional
compartmentalization in different neurons
(Figure 4e). In the logical extreme, each
individual thin dendrite could function as a
multicompartmental unit with local NMDA-
dependent computations (Figure 4f ). This
abstraction is, in effect, an extension of the
three-compartment model, with dynamic
bunches of extra NMDAR-dependent com-
partments, depending on the input pattern.
Each functional compartment can be under-
stood in terms of the I-V analysis presented
above; interactions between compartments
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can be understood via multidimensional I-V
analysis (see Supplemental Discussion).

Functional Compartmentalization
of Inputs in Thin Dendrites

Inclusion of the distribution of synaptic input as
a key parameter complicates the issue of deter-
mining the most appropriate dendritic compu-
tational subunit (Häusser & Mel 2003, Polsky
et al. 2004). The extent of functional compart-
mentalization becomes strongly dependent on
the uniformity versus nonuniformity of both
the intrinsic conductances and the pattern of
inputs (extrinsic conductances). Leaving aside
spatiotemporal sequences (Branco & Häusser
2011), one can start by differentiating between
the case of fairly uniform versus clustered inputs
(Larkum & Nevian 2008, Mel 1993). In the case
of uniform input activation, it may be helpful
to treat a terminal dendritic branch as a single
computational unit (Poirazi et al. 2003). One
can also lump several similar dendrites within a
subtree into a single equivalent dendrite if they
all receive comparable inputs. With very sparse
activation, integration takes place in the lin-
ear/sublinear regime of input summation (see
above). However, because of cooperativity be-
tween thin dendrites, we predict that increasing
the density of activated inputs (<5%, see below)
should be sufficient to initiate distributed re-
generative boosting (Branco & Häusser 2011)
or a distributed spike spread out over that group
of branches (Lavzin et al. 2012).

In contrast with a random distribution of
synapses, one of the leading hypotheses is
that small clusters of synapses onto dendritic
branchlets perform nonlinear local integration
(Häusser & Mel 2003, Poirazi et al. 2003). In
this framework, dendrites perform local com-
putations such as calculating binocular rivalry
(Archie & Mel 2000) and the direction of move-
ment (Borst & Egelhaaf 1992, Branco et al.
2010, Major et al. 2008). Both modeling and
experiments suggest that dendritic subunits are
not fixed. They are dynamic and can change in
size and location according to the input pat-
tern (Larkum et al. 2009, Major et al. 2008,

Polsky et al. 2004). Even if neocortical con-
nectivity were totally random and firing were
sparse, random inputs may still be surprisingly
clustered. Thus, the arrival of ∼10 inputs onto
the same dendritic branch could occur reason-
ably often. In fact, a number of studies sug-
gest that synaptic input is not entirely random,
which would accentuate clustering (Kleindienst
et al. 2011, Takahashi et al. 2012).

Finally, inhibition targeted to certain por-
tions of the dendritic tree could play a role in
compartmentalizing the neuron (Palmer et al.
2012). In vivo, GABA inhibition is an impor-
tant player that would be expected to keep
NMDA spikes in check (Gentet et al. 2012, Jadi
et al. 2012, Liu 2004, Rhodes 2006). Neighbor-
ing branches could be decoupled by inhibitory
conductances, either synaptic or intrinsic (e.g.,
potassium conductances; see above).

Minimum Number of Synapses
Required to Initiate an NMDA Spike

How many synapses are needed to evoke
an NMDA spike, and what is the spatial
distribution of these synapses? The effec-
tive AMPA/NMDA ratio is crucial because
it influences both the likelihood of a lo-
cal NMDA spike and the sharpness of its
threshold. Numerous studies have investigated
AMPA/NMDA ratios at excitatory synapses in
different neocortical areas, and the maximal
(openable) conductances are generally compa-
rable: If anything, there may be more available
NMDAR conductance than AMPAR conduc-
tance (Myme et al. 2003, Nimchinsky et al.
2004). In addition, NMDARs have ∼100-fold
higher glutamate affinity than do AMPARs
(Patneau & Mayer 1990, Trussell & Fischbach
1989) and are far less prone to desensitiza-
tion (Korinek et al. 2010, Trussell & Fischbach
1989, Vyklicky et al. 1990). Any desynchroniza-
tion between inputs will tend to favor NMDA
over AMPA components (see below). Thus un-
der many stimulus/activity patterns in vivo,
NMDAR conductances may dominate AMPAR
conductances, particularly if firing rates or am-
bient glutamate is high. Even moderate levels of
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glutamate are likely to desensitize AMPARs and
prebind NMDARs, priming the latter to behave
as purely depolarization-activated channels.

Modeling and two-photon spine uncaging
data suggest that NMDA spikes in distal den-
drites can be evoked by as few as ∼10 clustered
single spine inputs (Figure 2a–d ) or by ∼20
inputs distributed randomly along much of the
dendrite’s length (Figure 2e–h) (Major et al.
2008, Polsky et al. 2009; G. Major, unpublished
observations). Using the two-photon uncaging
method, a wide range of uncaging EPSP
sizes can be dialed up at a particular dendritic
spine, from zero to several times larger than
the typical miniature (single synapse?) EPSP,
simply by varying the intensity or location of
the uncaging laser pulses (and/or the concen-
tration of caged glutamate). Uncertainty over
the correct average miniature EPSP size (and
the “correct” AMPA/NMDA ratio) therefore
complicates the interpretation of the number
of synapses needed. Nevertheless, a typical
terminal dendritic branch bears hundreds of
dendritic spines (Larkman 1991), which rep-
resents a massive safety margin: Only a small
fraction of the total synapses onto a branch
may need to be activated, maybe as few as 5%.

The threshold number is only a rough esti-
mate and will change as a function of baseline
membrane potential. Depolarization reduces
the glutamate threshold, allowing cooperativity
between NMDA spikes from different locations
(see above). The threshold number of synapses
will also change with the NMDA/AMPA ratio,
depending on the recent history of glutamate
and coagonist exposure. In addition, any con-
ductances with broadly similar I-V relations to
NMDARs, e.g., depolarization-activated Na+

or Ca2+ channels, will reduce the amount of
NMDA conductance required to achieve a cer-
tain sharpness of threshold (Major et al. 2008,
Schiller et al. 2000)—an effect similar to boost-
ing the NMDA/AMPA ratio.

NMDA SPIKES IN VIVO

Dendritic NMDA spikes were discovered in
brain slices, and their fundamental properties

have been extensively characterized in vitro.
NMDA spikes are very robust in thin dendrites
of excitatory neurons in all neocortical layers
and areas so far tested, with a large safety factor
(Branco & Häusser 2011, Gordon et al. 2006,
Larkum et al. 2009, Lavzin et al. 2012, Major
et al. 2008, Nevian et al. 2007, Schiller et al.
2000).3

In vivo, investigators may already have made
tantalizing preliminary sightings of events in-
volving NMDA spike/plateaus, supporting the
participation of NMDAR regenerativity across
the board, from receptive fields to working
memory and beyond (Coyle et al. 2003, Daw
et al. 1993, de Kock et al. 2007, Major & Tank
2004, Self et al. 2012). A recent in vivo whole-
cell patch recording study found a substan-
tial NMDAR component in the angular tun-
ing and artificial whisking responses of layer-4
barrel cortex neurons, which was blocked by
an intracellular NMDAR blocker (MK801) or
by membrane hyperpolarization, both of which
have minimal effects on the rest of the circuit
(Lavzin et al. 2012). Modeling suggests that
the most likely explanation for the size and
duration of the NMDAR-dependent compo-
nent is dendritic NMDAR-dependent regen-
erative responses, potentially including multi-
branch/globally scattered NMDA spikes.

Large, distributed Ca2+ transients have been
observed in the apical tufts of layer 5 neu-
rons in the somatosensory cortex during sen-
sorimotor behaviors involving active touch (Xu
et al. 2012). A plausible explanation is that these
Ca2+ transients are caused by distal plateau po-
tentials, which are greatly enhanced by top-
town excitatory inputs into the tuft. This is
what would be expected for distributed tuft
NMDA spike/plateaus triggering and cooper-
atively interacting with Ca2+ spike/plateaus in
the distal apical trunk/proximal tuft Ca2+ zone.
Equally intriguingly, voltage-dependent place
fields have recently been observed in CA1 pyra-
midal cells, recorded whole-cell during active

3Diameter less than ∼1.5 μm, with the possible exception of
thin apical trunks (and very proximal basal segments).
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maze exploration (Lee et al. 2012). Depolariz-
ing events underlying place field firing appear
above a distinct (somatic) voltage threshold in
each cell and vanish into noise at more hyperpo-
larized membrane potentials. Again, this is ex-
actly what one might expect if an important role
was played by NMDAR-dependent dendritic
regenerative excitation, conditional on the net-
work firing pattern.

Some studies appear to indicate that, at
least under some conditions in vivo (e.g., visual
gratings, anesthesia), summation of inputs
can be essentially linear ( Jagadeesh et al.
1993). Recent reports combining two-photon
imaging with whole-cell recordings in vivo
from layer 2/3 pyramidal neurons in mouse
visual, somatosensory, and auditory cortices
also noted a lack of participation of dendritic
regenerative mechanisms (Chen et al. 2011, Jia
et al. 2010, Varga et al. 2011). However, these
experiments were performed in unfavorable
conditions for dendritic spike generation,
including using anesthetized animals and keep-
ing the resting membrane potential below AP
threshold, which generally requires negative
current injection [for examples of NMDAR
regenerativity being blocked by hyperpolariza-
tion, see Lavzin et al. (2012)]. Despite these
experimental conditions, sensory stimulation
evoked scattered dendritic calcium hot spots
with transients similar in size to those from
several backpropagating APs. Hot spots and
spine transients were substantially reduced by
NMDAR blockers (including intracellular
MK801), pointing to a possible role for
regenerative NMDAR activation. Moreover,
the number of activated spines per dendrite
in vivo (up to ∼30 per 100 μm) reported in
these studies may well be in the appropriate
range for triggering NMDA spikes, given
that not all spines were visible (Chen et al.

2011, Varga et al. 2011). It is crucial to
emphasize that an NMDA spike does not
require neighboring spines to have the same
receptive fields/stimulus preferences, nor does
it require coactivation of neighboring spines
(clustering), nor (if brief and distributed) will it
necessarily produce large dendritic shaft Ca2+

transients [especially if the NMDAR Ca2+

permeability is reduced (Chalifoux & Carter
2010)]. The slow Ca2+ transients observed
in vivo (Chen et al. 2011, Jia et al. 2010) are
consistent with the time courses of NMDA
spike/plateaus but appear far slower than what
one might expect from single quantal synaptic
events.

The functional consequences of NMDA
spike/plateaus for cortical processing are po-
tentially versatile and may depend on the cor-
tical region. NMDA plateaus could help sus-
tain network upstates and the persistent firing
needed for working memory in the prefrontal
cortex and other areas (Antic et al. 2010, Major
& Tank 2004, Milojkovic et al. 2005a, Sanders
et al. 2013). NMDA spikes could also create and
sharpen receptive field selectivity in primary
cortices and contribute to top-down/bottom-
up interactions (Self et al. 2012), perhaps even
within individual dendrites. Combined in vivo
dendritic voltage and calcium recording is still
in its infancy, but in the not-too-distant future,
this method should begin to reveal whether
regenerative events or spikes do indeed occur
in thin dendrites (and if so, which type). Re-
searchers have barely begun to explore the vast
parameter space of possible brain states, neu-
ronal types, dendritic recording sites, and stim-
uli: Dogma is premature, particularly in light
of brain slice experiments suggesting that the
biophysical machinery is present in abundance,
with a massive safety factor, to support highly
nonlinear input summation.
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Vyklický L Jr, Benveniste M, Mayer ML. 1990. Modulation of N-methyl-D-aspartic acid receptor desensiti-
zation by glycine in mouse cultured hippocampal neurones. J. Physiol. 428:313–31

Waters J, Helmchen F. 2006. Background synaptic activity is sparse in neocortex. J. Neurosci. 26:8267–77
Wei DS, Mei YA, Bagal A, Kao JP, Thompson SM, Tang CM. 2001. Compartmentalized and binary behavior

of terminal dendrites in hippocampal pyramidal neurons. Science 293:2272–75
Wilent WB, Contreras D. 2005. Stimulus-dependent changes in spike threshold enhance feature selectivity

in rat barrel cortex neurons. J. Neurosci. 25:2983–91
Williams SR. 2004. Spatial compartmentalization and functional impact of conductance in pyramidal neurons.

Nat. Neurosci. 7:961–67
Williams SR, Stuart GJ. 1999. Mechanisms and consequences of action potential burst firing in rat neocortical

pyramidal neurons. J. Physiol. 521:467–82
Williams SR, Stuart GJ. 2000. Site independence of EPSP time course is mediated by dendritic I-h in neo-

cortical pyramidal neurons. J. Neurophysiol. 83:3177–82
Williams SR, Stuart GJ. 2002. Dependence of EPSP efficacy on synapse location in neocortical pyramidal

neurons. Science 295:1907–10
Williams SR, Stuart GJ. 2003. Role of dendritic synapse location in the control of action potential output.

Trends Neurosci. 26:147–54
Wong RKS, Prince DA, Basbaum AI. 1979. Intra-dendritic recordings from hippocampal neurons. Proc. Natl.

Acad. Sci. USA 76:986–90
Xu NL, Harnett MT, Huber D, O’Connor DH, Svoboda K, Magee JC. 2012. Nonlinear dendritic integration

of sensory and motor input during an active sensing task. Nature 492:247–51
Yamada M, Inanobe A, Kurachi Y. 1998. G protein regulation of potassium ion channels. Pharmacol. Rev.

50:723–60
Yu Y, Shu Y, McCormick DA. 2008. Cortical action potential backpropagation explains spike threshold

variability and rapid-onset kinetics. J. Neurosci. 28:7260–72
Yuan H, Geballe MT, Hansen KB, Traynelis SF. 2008. Structure and function of the NMDA receptor. In

Structural and Functional Organization of the Synapse, ed. JW Hell, MD Ehlers, pp. 289–316. New York:
Springer Sci.+Bus. Media

Yuste R, Gutnick MJ, Saar D, Delaney KR, Tank DW. 1994. Ca2+ accumulations in dendrites of neocor-
tical pyramidal neurons: an apical band and evidence for two functional compartments. Neuron 13:23–
43

Zhang S, Trussell LO. 1994. Voltage clamp analysis of excitatory synaptic transmission in the avian nucleus
magnocellularis. J. Physiol. 480(Pt. 1):123–36

Zhu JJ. 2000. Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs
by Ca2+ action potentials in adult rat tuft dendrites. J. Physiol. 526(Pt. 3):571–87

24 Major · Larkum · Schiller

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
13

.3
6:

1-
24

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
B

ro
w

n 
U

ni
ve

rs
ity

 o
n 

04
/1

5/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



NE36-FrontMatter ARI 12 June 2013 11:33

Annual Review of
Neuroscience

Volume 36, 2013
Contents

Active Properties of Neocortical Pyramidal Neuron Dendrites
Guy Major, Matthew E. Larkum, and Jackie Schiller � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1

Episodic Neurologic Disorders: Syndromes, Genes, and Mechanisms
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