Fluorescence Resonance Energy Transfer (FRET)

Förster Radius

The distance at which energy transfer is 50% efficient (i.e. 50% of excited donors are deactivated by FRET) is defined by the Förster Radius (R0).

Survey of FRET-Based Assays

- Protease activity
- Calcium Ion measurements
- cAMP
- Protein tyrosine kinase activity
- Phospholipase C activity
- Protein kinase C activity
- Membrane potential

FRET probes conformational changes

Different conformation gives Different FRET signature

When FRET Occurs

Number of FRET Publications since 1989

Fig. 1. The growth of PubMed (http://www.pubmedcentral. nih.gov/) citations containing the keyword "FRET" in the title or abstract over the past 16 years. Dates of important technological developments relevant to FRET are indicated with arrows.

$$R_{O} = [8.8 \times 10^{23} \cdot \kappa^{2} \cdot n^{-4} \cdot QY_{D} \cdot J(\lambda)]^{1/6} \text{ Å}$$

- where κ^2 = dipole orientation factor (range 0 to 4, κ^2 = 2/3 for randomly oriented donors and acceptors)
 - QY_D= fluorescence quantum yield of the donor in the absence of the acceptor
 - n = refractive index
 - $J(\lambda) = \text{spectral overlap integral (see figure)} \\= \int \epsilon_{A}(\lambda) \cdot F_{D}(\lambda) \cdot \lambda^{4} d\lambda \text{ cm}^{3} \text{M}^{-1}$
- where $\epsilon_A = \text{extinction coefficient of acceptor}$ $F_D = \text{fluorescence emission intensity of donor}$

as a fraction of the total integrated intensity

Typical Values of R_o

red

	Donor	Acceptor	R ₀ (Å)
green	Fluorescein	Tetramethylrhodamine	55
	IAEDANS	Fluorescein	46
	EDANS	DABCYL	33
	Fluorescein	Fluorescein	44
	BODIPY FL	BODIPY FL	57
	Fluorescein	QSY 7 dye	61
	Cy3	Cy5	53
	CFP	YFP	50

GFPs and other colored "FPs have transformed FRET microscopy

FRET Considerations:

1. Spectral overlap

2. Chromophore orientations

3. Distance dependence (Eff. $\sim 1/R^6$)

4. How to quantify?

$$E = \frac{f_{acceptor}}{f_{donor}}$$

$$E = \frac{f_{acceptor} - f_{baseline} - f_{A-spillover}}{f_{donor} - f_{D-spillover}}$$

Practical Challenges to FRET Quantitation

- Emission from A contaminates D channel (filters)
- Emission from D contaminates A channel
- Unknown labeling levels for D and A
- Signal variation due to bleaching
 - Complicates kinetic studies
 - Bleaching rate of D can actually be slowed by FRET

Solutions:

- Separately labeled D and A controls to define bleedthrough
- Acceptor destruction by photobleaching to establish F_D^0
- Dual wavelength ratio imaging to normalize away variations in label levels and bleaching effects