System Comparisons

CS315B
Lecture 14

Prof. Aitken CS 315B Lecture 14

Recap

* We've looked at a variety of parallel/distributed system designs

* SPMD
* MPI, Charm++

* Tasking
* Regent, StarPU

 Thread-based
* Chapel, X10

* There are also data analytics systems such as Spark and TensorFlow

How Do We Compare Systems

Benchmarks!

Implement program X on systems A and B
* Compare performance!

Major pitfall: Making the comparison fair
* Isit really apples to apples?

Practical problem:
* Expensive to write many X’s
* For many A’s and B’s

Is there a better way?

Prof. Aiken CS 315B Lecture 14

The Focus

* We want to
 Compare the programming systems
* Not the applications themselves

Benchmarking Programming Systems

* Benchmarks are expensive to implement
* For N benchmarks and M programming systems, O(NM) effort
* Must be tuned for performance

* Could try proxy apps

 Cut down benchmarks

* Or microbenchmarks
 But not benchmarks
* Consequence: few papers evaluate many systems

Task Bench

Benchmark 1, Benchmark 2, ..., Benchmark N-1, Benchmark N

Task Bench reduces the effort to O(N + M)

Model Space of Application Behaviors

* Model application as a task graph

* Task: units of code with no communication

* Parameterize the task graph to explore a space of

modeled behaviors
Set of tasks

Dependencies between tasks
Kernels executed by each task

Data produced by each task

(and communicated by dependencies) \/

Task Graphs

* Task graph is product
of:

* [teration space | 1%?% M

* Dependence relation

Trivial No Comm Stencil

@ Core m)
Random
* An extensible set % @
Tree

iy b

Task = Kernel

* Executed at every point in a task graph.

* Examples

* Empty

* Compute-bound (achieves peak compute)
Memory-bound (achieves peak memory BW)
Load-imbalanced (randomly varying duration)
Also extensible

* Implemented once for all systems
* exposed by the core API

Implementations

. 15 parallel and distributed systemes:
Traditional HPC: MPI and MPI+OpenMP, MPI+CUDA
* PGAS/Actor: Chapel, Charm++ and X10
* Task-based: OmpSs, OpenMP 4, PaRSEC, Realm, Regent, and
StarPU
e Data analytics, machine learning, workflows: Dask, Spark,
Swift/T, and TensorFlow

* Implementations are tuned
* With help from the system developers

Tasks in MP17?!

* A “task” is a communication-free section of
application code

RECEIVE(...) -- Dependence
for(...) {

... application code ... -- Task
}

SEND(...) -- Dependence

12

Metrics

* Task Bench makes it easy to gather data
* Lots of data

* But how do we compare systems?
* What is the metric(s)?

|dea #1: Tasks/Second

* Problem: How big are the tasks?

* Most common choice: Empty tasks

* Intuition: Measures only runtime overhead
* Problem: All resources can be devoted to the runtime system

e Other extreme: Huge tasks
e But that minimizes runtime costs
* Any amount of overhead can be hidden by some task size

|dea #2: Weak Scaling

* Keep problem size the same per processor
* Double number of processors, double problem size

* Problem
* Runtime system performance sensitive to choice of problem
Size
* Double problem size => halve runtime overhead

|[dea #3: Strong Scaling

* Problem size stays fixed as processor numbers scale
* Double parallel resources
* Problem size per processor is halved

* Plus: Strong scaling limit captures when overheads
become dominant

* Minus: But overheads are not just from the
programming system
 Communication costs increase with strong scaling

Discussion

* We want a metric that measures the cost of a runtime system

* Must constrain efficiency
* Minimum amount of application work must be getting done
* Avoids problems of TPS w/empty tasks, weak scaling

* Want point at which efficiency goal is just met

* Least application work that achieves the efficiency metric
* Avoids problems of TPS w/huge tasks, weak scaling

Minimum Effective Task Granularity
(METG)

* METG(50%) is the smallest task granularity where an
application achieves 50% efficiency

* Parameterized on the efficiency metric:
e E.g.: machine’s peak performance is 1.2 TFLOP/s,
so 50% is 0.6 TFLOP/s

* E.g.: application’s peak is 1x10° mesh cells/s,
so 50% is 0.5x10°
* Efficiency constrained: useful work is performed

* Exposes overhead: the limit of a system under load

Calculating METG(50%)

* Step 1: measure * Step 2: convert to

granularity and intersect

decreasing problem size With 50%

100% <&

1.0 75% |

5O% | o e e

TFLOP/s
Efficiency

25% 1

0% |12

102 10! 100
Problem Size Task Granularitv (

0.0

Intersection with 50%
efficiency (METG(50%) is 4.6 ps)

Performance drops with
problem size

Understanding METG(50%)

* METG is a minimum

* Two systems with METG of 1 ms and 5 ms

* Application has an average task granularity of
* 100 ms: doesn’t matter
* 10 ms: matters a little
* 1 ms: huge difference
* METG imposes a floor on task granularity that is efficient

Evaluation

* 15 programming systems
* On up to 256 nodes

* Cori Supercomputer
* Cray XC40
* 2x Intel Xeon E5-2698 v3 processors (32 physical cores/node)
« 128 GB RAM
* Cray Aries interconnect
e GCC7.3.0,Cray MPICH 7.7.3

Frottt

I

StarPU expl
SwifT

- Tensorflow

f

Chapel
Charm++

WPl
MPI+OpentP.

Fhedtt

2
E

Efficiency

7

20%

TTte

t+

10 [ERNTE

it
Task Granularity (ms)

SwiftT
TensorFlow
x10

—— Chapel

—+— Charm++

—e— Dask

- MPI

~o~ MPI+OpenMP.

—+— Ompss.
OpenMP task.

—— PaRSEC DTD

25 o0 BN > P =
Problem Size

Minimum Effective Task Granularity (ms)

Minimum Effective Task Granularity (ms)

Minimurm Effective Task Granularity (ms)

2

13

2

g

e

16
Nodes

StarPU
- StarPU expl
= swi
—— TensorFlow
- x10

—o— Ml
o~ MPI+OpenMP
— Ompss
OpenMP task
—— PaRSEC DTD

- StarPU expl
Switt/T

wi
< TensorFlow

—+— Chapel

—— Charm++

—e— Dask

—o— MpI

—=— MPI+OpenMP

—<— Ompss
OpenMP task

—— PaRSEC DTD

—e— PaRSEC PTG
PaRSEC shard

—— Realm

—e— Regent

-+ StarPu
StarPU expl

o SwiftT

—— TensorFlow

Efficiency

Minimum Effective Task Granularity (ms)

v

v

b3

100%

80%

60%

0%

20%

= Chapel

—— Charm++

—e— Dask

o= MRl

~&— MPI+OpenMP

—4— OmpSs
OpenMP task

—— PaRSEC DTD

—e— PaRSEC PTG
PaRSEC shard

—&— Realm

— StarPU

i~ StarPU expl

-~ TensorFlow

1 2 a 8 16 32 64
Nodes

128 256

—— Chapel
—#— Charm++

—e— Dask
—— mPI
—&— MPI+OpenMP

—+— Ompss
OpenMP task

—— PaRSEC DTD

=

—— TensorFlow
—+— X10

—+— Chapel

+~ Chapel distrib
—&— Charm++
—o— MPI

~o— MPI+OpenMP

~o— Realm
v StarPU
starPU expl

100%

80%

60%

Efficiency

40%

20%

Chapel

MPL+OpenMP
PaRSEC DTD
PaRSEC PTG
PaRSEC shard
Realm
StarPU
StarPU expl

Feibtteett

107

60%

0%

20%

Chapel
Chapel distrib
Charm++
Dask

MPI
MPI+OpenMP

IRXXEEE

OmpSs
OpenMP task

tarPU
TensorFlow

PhEdtd

107 10" 10° 107" 102
Task Granularity (ms)

J T

—=— MP|
—#— MPI+CUDA wl

AN
AN

—e— MPI+CUDA w4

\ A
TR

0 1
Task Granularity (ms)

27 2 22 218 215 212 22
Normalized Problem Size

22

Overhead and Scalability

Minimum Effective Task Granularity (ms)

METG(50%) vs node count, stencil pattern

100§.”,
10—1§.”.

10—2§.”

——
. — —A—
103§.””.””.. B] | —e—
: _
102;.””.”...”._.”.””.”._._._.”.m”.””.”.._.”.””.”._.“._.”.”..
% +
101§.””.””.”.._.”.””.””.”.._.”.””.””.”.._.”.””.””.”.._.”.”..
] _
——
—0—
——
_
—=—
1 2 4 8 16 32 64 128 256
Nodes

Chapel
Charm++
Dask

MPI
MPI+OpenMP
OmpSs
OpenMP task
PaRSEC DTD
PaRSEC PTG
PaRSEC shard
Realm
Regent
Spark

StarPU
StarPU expl
Swift/T
TensorFlow
X10

Lower is better

Data analysis,
machine learning,
workflows

Task-based
(implicit)

Explicitly parallel
(message, actor,
PGAS, etc.)

23

More Complicated Dependencies

METG(50%) vs node count, 4 nearest neighbors, 4 task graphs

- 103 - —#— Chapel
£ —— Charm++
Py —e— Dask
& 1073 —&— MPI
= —6— MPI+OpenMP
©
(3 10?1 - —<— OmpSs
x OpenMP task
- —— PaRSECDTD Gap shrinks or
v 100 —e— PaRSEC PTG :
g PaRSEC shard| €ven closes with
5 101 | pa— Realm more complicated
€ —%— StarPU
£ StarPU expl dependence
£ 1072 4 TensorFlow
S ; ; ; ; ; ; ; ; | %10 pattern

1 2 4 8 16 32 64 128 256

Nodes

Lower is better

24

METG vs Dependencies/Task

Minimum Effective Task Granularity (ms)

—
—

Dependencies per Task

AEEEE

SESRRES

Chapel
Charm++
Dask

MPI
MPI+OpenMP
OmpSs
OpenMP task
PaRSEC DTD
Realm

Regent

Spark

StarPU
Swift/T
TensorFlow
X10

25

METG vs Bytes/Dependence

Efficiency

tteettt

¢

Chapel

Chapel distrib
Charm++

MPI
MPI+OpenMP
PaRSEC DTD
PaRSEC PTG
PaRSEC shard
Realm

StarPU
StarPU expl

10! 10°
Task Granularity (ms)

(a) 16 bytes per task dependency.

Efficiency

100%

20%

Chapel

Chapel distrib
Charm++

MPI
MPI+OpenMP
PaRSEC DTD
PaRSEC PTG
PaRSEC shard
Realm

StarPU
StarPU expl

Task Granularity (ms)

(b) 65536 bytes per task dependency.

26

Badwidth Bound

Kernels

Chapel
Charm++
Dask

MPI
MPI+OpenMP
OmpSs
OpenMP task
PaRSEC DTD
Realm

Regent
StarPU
Swift/T
TensorFlow
X10

2;1 1 2iS
Problem Size

27

Task-Based Systems

Minimum Effective Task Granularity (ms)

10° 1

10—1 4

METG(50%) vs node count, stencil pattern

1 2 4 8 16 32 64 128 256

Lower is better

Scaling gap
/ between
PaRSEC, StarPU

—e— StarPU expl
TensorFlow

implicit and
explicit
programming
models

N

Regent has flat

scaling using
control
replication

28

Overlap Communication and Computation

Efficiency vs task granularity, 4 distant neighbors, 4 task graphs

Efficiency

B
T e N A

ol LN

U R SN - S U o\ N
0% R R | S Y % [W

O v e

+

RARAERE

Chapel
Chapel distrib
Charm++
MPI
MPI+OpenMP
PaRSEC DTD
PaRSEC PTG
PaRSEC shard
Realm

StarPU
StarPU expl

1

102

10!
Task Granularity (ms)

Lower is better

Asynchronous
systems gain
advantage when
computation
and
communication
are balanced...

... as long as
METG(50%) is
lower than
about 100 pus

29

Impact

* Task Bench has already made some of these systems
better

* Intensive effort to find and fix performance issues

* Should provide a new “microscope” for future work

Limitations

* Only compare on the intersection of features
* CPU-only workloads
* Dense problems

* Performance only
* Not productivity

* Kernels
 Single kernel is good, but also hides differences in writing
kernels for specific systems

Summary

* Lowest overhead systems get METG(50%) of about
100us at >= 100 nodes

* Asynchronous systems:
* Better overlap between computation and communication

» Better for complex task graphs
* Aslong as they’re not too slow! (METG about 100us)

* Task-based systems:
* Scaling bottlenecks not entirely resolved by task pruning
* Regent’s control replication does solve the scaling bottleneck

