
Prof. Aiken CS 315B Lecture 14

System Comparisons
CS315B

Lecture 14

1

Recap

• We’ve looked at a variety of parallel/distributed system designs

• SPMD
• MPI, Charm++

• Tasking
• Regent, StarPU

• Thread-based
• Chapel, X10

• There are also data analytics systems such as Spark and TensorFlow

Prof. Aiken CS 315B Lecture 14 2

How Do We Compare Systems

• Benchmarks!

• Implement program X on systems A and B
• Compare performance!

• Major pitfall: Making the comparison fair
• Is it really apples to apples?

• Practical problem:
• Expensive to write many X’s
• For many A’s and B’s

Prof. Aiken CS 315B Lecture 14 3

Is there a better way?

Prof. Aiken CS 315B Lecture 14 4

The Focus

• We want to
• Compare the programming systems
• Not the applications themselves

Prof. Aiken CS 315B Lecture 14 5

6

Benchmarking Programming Systems

• Benchmarks are expensive to implement
• For N benchmarks and M programming systems, O(NM) effort
• Must be tuned for performance

• Could try proxy apps
• Cut down benchmarks

• Or microbenchmarks
• But not benchmarks
• Consequence: few papers evaluate many systems

Task Bench

Task Bench reduces the effort to O(N + M)

7

Benchmark 1, Benchmark 2, …, Benchmark N-1, Benchmark N

System 1, System 2, …, System M-1, System M

Task Bench core API

8

Model Space of Application Behaviors

• Model application as a task graph
• Task: units of code with no communication

• Parameterize the task graph to explore a space of
modeled behaviors
• Set of tasks
• Dependencies between tasks
• Kernels executed by each task
• Data produced by each task

(and communicated by dependencies)

9

Task Graphs
• Task graph is product

of:
• Iteration space
• Dependence relation

• An extensible set

Trivial No Comm Stencil

FFT Random

TreeDOM

Core

Time

10

Task = Kernel
• Executed at every point in a task graph.

• Examples
• Empty
• Compute-bound (achieves peak compute)
• Memory-bound (achieves peak memory BW)
• Load-imbalanced (randomly varying duration)
• Also extensible

• Implemented once for all systems
• exposed by the core API

11

Implementations

• 15 parallel and distributed systems:
• Traditional HPC: MPI and MPI+OpenMP, MPI+CUDA
• PGAS/Actor: Chapel, Charm++ and X10
• Task-based: OmpSs, OpenMP 4, PaRSEC, Realm, Regent, and

StarPU
• Data analytics, machine learning, workflows: Dask, Spark,

Swift/T, and TensorFlow

• Implementations are tuned
• With help from the system developers

12

Tasks in MPI?!
• A “task” is a communication-free section of

application code

RECEIVE(...) -- Dependence
for(...) {

... application code ... -- Task
}
SEND(...) -- Dependence

13

Metrics
• Task Bench makes it easy to gather data

• Lots of data

• But how do we compare systems?
• What is the metric(s)?

14

Idea #1: Tasks/Second
• Problem: How big are the tasks?

• Most common choice: Empty tasks
• Intuition: Measures only runtime overhead
• Problem: All resources can be devoted to the runtime system

• Other extreme: Huge tasks
• But that minimizes runtime costs
• Any amount of overhead can be hidden by some task size

15

Idea #2: Weak Scaling
• Keep problem size the same per processor

• Double number of processors, double problem size

• Problem
• Runtime system performance sensitive to choice of problem

size
• Double problem size => halve runtime overhead

16

Idea #3: Strong Scaling
• Problem size stays fixed as processor numbers scale

• Double parallel resources
• Problem size per processor is halved

• Plus: Strong scaling limit captures when overheads
become dominant

• Minus: But overheads are not just from the
programming system
• Communication costs increase with strong scaling

17

Discussion
• We want a metric that measures the cost of a runtime system

• Must constrain efficiency
• Minimum amount of application work must be getting done
• Avoids problems of TPS w/empty tasks, weak scaling

• Want point at which efficiency goal is just met
• Least application work that achieves the efficiency metric
• Avoids problems of TPS w/huge tasks, weak scaling

18

Minimum Effective Task Granularity
(METG)
• METG(50%) is the smallest task granularity where an

application achieves 50% efficiency

• Parameterized on the efficiency metric:
• E.g.: machine’s peak performance is 1.2 TFLOP/s,

so 50% is 0.6 TFLOP/s
• E.g.: application’s peak is 1×109 mesh cells/s,

so 50% is 0.5×109

• Efficiency constrained: useful work is performed
• Exposes overhead: the limit of a system under load

19

Calculating METG(50%)

• Step 1: measure
performance with
decreasing problem size

• Step 2: convert to
efficiency vs. task
granularity and intersect
with 50%

Intersection with 50%
efficiency (METG(50%) is 4.6 μs)

Performance drops with
problem size

20

Understanding METG(50%)

• METG is a minimum

• Two systems with METG of 1 ms and 5 ms

• Application has an average task granularity of
• 100 ms: doesn’t matter
• 10 ms: matters a little
• 1 ms: huge difference
• METG imposes a floor on task granularity that is efficient

21

Evaluation
• 15 programming systems

• On up to 256 nodes

• Cori Supercomputer
• Cray XC40
• 2× Intel Xeon E5-2698 v3 processors (32 physical cores/node)
• 128 GB RAM
• Cray Aries interconnect
• GCC 7.3.0, Cray MPICH 7.7.3

22

Results

23

Overhead and Scalability

METG(50%) vs node count, stencil pattern Data analysis,
machine learning,

workflows

Lower is better

Task-based
(implicit)

Explicitly parallel
(message, actor,

PGAS, etc.)

24

More Complicated Dependencies

METG(50%) vs node count, 4 nearest neighbors, 4 task graphs

Gap shrinks or
even closes with

more complicated
dependence

pattern

Lower is better

25

METG vs Dependencies/Task

26

METG vs Bytes/Dependence

Badwidth Bound Kernels

27

28

Task-Based Systems

METG(50%) vs node count, stencil pattern Scaling gap
between
PaRSEC, StarPU
implicit and
explicit
programming
models

Regent has flat
scaling using
control
replication

Lower is better

29

Overlap Communication and Computation

Efficiency vs task granularity, 4 distant neighbors, 4 task graphs

Lower is better

Asynchronous
systems gain
advantage when
computation
and
communication
are balanced…

… as long as
METG(50%) is
lower than
about 100 μs

30

Impact
• Task Bench has already made some of these systems

better
• Intensive effort to find and fix performance issues

• Should provide a new “microscope” for future work

31

Limitations
• Only compare on the intersection of features
• CPU-only workloads
• Dense problems

• Performance only
• Not productivity

• Kernels
• Single kernel is good, but also hides differences in writing

kernels for specific systems

32

Summary
• Lowest overhead systems get METG(50%) of about

100μs at >= 100 nodes

• Asynchronous systems:
• Better overlap between computation and communication
• Better for complex task graphs
• As long as they’re not too slow! (METG about 100μs)

• Task-based systems:
• Scaling bottlenecks not entirely resolved by task pruning
• Regent’s control replication does solve the scaling bottleneck

