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Recap

• We’ve looked at a variety of parallel/distributed system designs

• SPMD
• MPI, Charm++

• Tasking
• Regent, StarPU

• Thread-based
• Chapel, X10

• There are also data analytics systems such as Spark and TensorFlow
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How Do We Compare Systems

• Benchmarks!

• Implement program X on systems A and B
• Compare performance!

• Major pitfall: Making the comparison fair
• Is it really apples to apples?

• Practical problem: 
• Expensive to write many X’s
• For many A’s and B’s
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Is there a better way?
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The Focus

• We want to
• Compare the programming systems
• Not the applications themselves
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Benchmarking Programming Systems

• Benchmarks are expensive to implement
• For N benchmarks and M programming systems, O(NM) effort
• Must be tuned for performance

• Could try proxy apps
• Cut down benchmarks

• Or microbenchmarks
• But not benchmarks
• Consequence: few papers evaluate many systems



Task Bench

Task Bench reduces the effort to O(N + M)
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Benchmark 1, Benchmark 2, …, Benchmark N-1, Benchmark N

System 1, System 2, …, System M-1, System M

Task Bench core API
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Model Space of Application Behaviors

• Model application as a task graph
• Task: units of code with no communication

• Parameterize the task graph to explore a space of 
modeled behaviors
• Set of tasks
• Dependencies between tasks
• Kernels executed by each task
• Data produced by each task

(and communicated by dependencies)
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Task Graphs
• Task graph is product 

of:
• Iteration space
• Dependence relation

• An extensible set

Trivial No Comm Stencil

FFT Random

TreeDOM

Core

Time
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Task = Kernel
• Executed at every point in a task graph.

• Examples
• Empty
• Compute-bound (achieves peak compute)
• Memory-bound (achieves peak memory BW)
• Load-imbalanced (randomly varying duration)
• Also extensible

• Implemented once for all systems
• exposed by the core API
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Implementations

• 15 parallel and distributed systems:
• Traditional HPC: MPI and MPI+OpenMP, MPI+CUDA
• PGAS/Actor: Chapel, Charm++ and X10
• Task-based: OmpSs, OpenMP 4, PaRSEC, Realm, Regent, and 

StarPU
• Data analytics, machine learning, workflows: Dask, Spark, 

Swift/T, and TensorFlow

• Implementations are tuned
• With help from the system developers



12

Tasks in MPI?!
• A “task” is a communication-free section of 

application code

RECEIVE(...)                   -- Dependence
for(...) {

... application code ...   -- Task
}
SEND(...)                        -- Dependence
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Metrics
• Task Bench makes it easy to gather data

• Lots of data

• But how do we compare systems?
• What is the metric(s)?
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Idea #1: Tasks/Second
• Problem: How big are the tasks?

• Most common choice: Empty tasks
• Intuition: Measures only runtime overhead
• Problem: All resources can be devoted to the runtime system

• Other extreme: Huge tasks
• But that minimizes runtime costs
• Any amount of overhead can be hidden by some task size
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Idea #2: Weak Scaling
• Keep problem size the same per processor

• Double number of processors, double problem size

• Problem
• Runtime system performance sensitive to choice of problem 

size
• Double problem size => halve runtime overhead
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Idea #3: Strong Scaling
• Problem size stays fixed as processor numbers scale

• Double parallel resources
• Problem size per processor is halved

• Plus: Strong scaling limit captures when overheads 
become dominant

• Minus: But overheads are not just from the 
programming system
• Communication costs increase with strong scaling
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Discussion
• We want a metric that measures the cost of a runtime system

• Must constrain efficiency
• Minimum amount of application work must be getting done
• Avoids problems of TPS w/empty tasks, weak scaling

• Want point at which efficiency goal is just met
• Least application work that achieves the efficiency metric
• Avoids problems of TPS w/huge tasks, weak scaling
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Minimum Effective Task Granularity 
(METG)
• METG(50%) is the smallest task granularity where an 

application achieves 50% efficiency

• Parameterized on the efficiency metric:
• E.g.: machine’s peak performance is 1.2 TFLOP/s,

so 50% is 0.6 TFLOP/s
• E.g.: application’s peak is 1×109 mesh cells/s,

so 50% is 0.5×109

• Efficiency constrained: useful work is performed
• Exposes overhead: the limit of a system under load
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Calculating METG(50%)

• Step 1: measure 
performance with 
decreasing problem size

• Step 2: convert to 
efficiency vs. task 
granularity and intersect 
with 50%

Intersection with 50%
efficiency (METG(50%) is 4.6 μs)

Performance drops with 
problem size
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Understanding METG(50%)

• METG is a minimum

• Two systems with METG of 1 ms and 5 ms

• Application has an average task granularity of
• 100 ms: doesn’t matter
• 10 ms: matters a little
• 1 ms: huge difference
• METG imposes a floor on task granularity that is efficient
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Evaluation
• 15 programming systems 

• On up to 256 nodes

• Cori Supercomputer
• Cray XC40
• 2× Intel Xeon E5-2698 v3 processors (32 physical cores/node)
• 128 GB RAM
• Cray Aries interconnect
• GCC 7.3.0, Cray MPICH 7.7.3
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Results
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Overhead and Scalability

METG(50%) vs node count,  stencil pattern Data analysis, 
machine learning, 

workflows

Lower is better

Task-based 
(implicit)

Explicitly parallel 
(message, actor, 

PGAS, etc.)
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More Complicated Dependencies

METG(50%) vs node count, 4 nearest neighbors, 4 task graphs

Gap shrinks or 
even closes with 

more complicated 
dependence 

pattern

Lower is better
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METG vs Dependencies/Task
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METG vs Bytes/Dependence



Badwidth Bound Kernels
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Task-Based Systems

METG(50%) vs node count,  stencil pattern Scaling gap 
between 
PaRSEC, StarPU
implicit and 
explicit 
programming 
models

Regent has flat 
scaling using 
control 
replication

Lower is better
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Overlap Communication and Computation

Efficiency vs task granularity, 4 distant neighbors, 4 task graphs

Lower is better

Asynchronous 
systems gain 
advantage when 
computation 
and 
communication 
are balanced…

… as long as
METG(50%) is 
lower than 
about 100 μs
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Impact
• Task Bench has already made some of these systems 

better
• Intensive effort to find and fix performance issues

• Should provide a new “microscope” for future work
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Limitations
• Only compare on the intersection of features
• CPU-only workloads
• Dense problems

• Performance only
• Not productivity

• Kernels
• Single kernel is good, but also hides differences in writing 

kernels for specific systems
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Summary
• Lowest overhead systems get METG(50%) of about 

100μs at >= 100 nodes

• Asynchronous systems:
• Better overlap between computation and communication
• Better for complex task graphs
• As long as they’re not too slow! (METG about 100μs)

• Task-based systems:
• Scaling bottlenecks not entirely resolved by task pruning
• Regent’s control replication does solve the scaling bottleneck


