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Recap

* We've looked at a variety of parallel/distributed system designs

* SPMD
* MPI, Charm++

* Tasking
* Regent, StarPU

 Thread-based
* Chapel, X10

* There are also data analytics systems such as Spark and TensorFlow



How Do We Compare Systems

Benchmarks!

Implement program X on systems A and B
* Compare performance!

Major pitfall: Making the comparison fair
* Isit really apples to apples?

Practical problem:
* Expensive to write many X’s
* For many A’s and B’s



Is there a better way?
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The Focus

* We want to
 Compare the programming systems
* Not the applications themselves



Benchmarking Programming Systems

* Benchmarks are expensive to implement
* For N benchmarks and M programming systems, O(NM) effort
* Must be tuned for performance

* Could try proxy apps

 Cut down benchmarks

* Or microbenchmarks
 But not benchmarks
* Consequence: few papers evaluate many systems



Task Bench

Benchmark 1, Benchmark 2, ..., Benchmark N-1, Benchmark N

Task Bench reduces the effort to O(N + M)



Model Space of Application Behaviors

* Model application as a task graph

* Task: units of code with no communication

* Parameterize the task graph to explore a space of

modeled behaviors
Set of tasks

Dependencies between tasks
Kernels executed by each task

Data produced by each task

(and communicated by dependencies) \/




Task Graphs

* Task graph is product
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Task = Kernel

* Executed at every point in a task graph.

* Examples

* Empty

* Compute-bound (achieves peak compute)
Memory-bound (achieves peak memory BW)
Load-imbalanced (randomly varying duration)
Also extensible

* Implemented once for all systems
* exposed by the core API



Implementations

. 15 parallel and distributed systemes:
Traditional HPC: MPI and MPI+OpenMP, MPI+CUDA
* PGAS/Actor: Chapel, Charm++ and X10
* Task-based: OmpSs, OpenMP 4, PaRSEC, Realm, Regent, and
StarPU
e Data analytics, machine learning, workflows: Dask, Spark,
Swift/T, and TensorFlow

* Implementations are tuned
* With help from the system developers



Tasks in MP17?!

* A “task” is a communication-free section of
application code

RECEIVE(...) -- Dependence
for(...) {

... application code ... -- Task
}

SEND(...) -- Dependence
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Metrics

* Task Bench makes it easy to gather data
* Lots of data

* But how do we compare systems?
* What is the metric(s)?



|dea #1: Tasks/Second

* Problem: How big are the tasks?

* Most common choice: Empty tasks

* Intuition: Measures only runtime overhead
* Problem: All resources can be devoted to the runtime system

e Other extreme: Huge tasks
e But that minimizes runtime costs
* Any amount of overhead can be hidden by some task size



|dea #2: Weak Scaling

* Keep problem size the same per processor
* Double number of processors, double problem size

* Problem
* Runtime system performance sensitive to choice of problem
Size
* Double problem size => halve runtime overhead



|[dea #3: Strong Scaling

* Problem size stays fixed as processor numbers scale
* Double parallel resources
* Problem size per processor is halved

* Plus: Strong scaling limit captures when overheads
become dominant

* Minus: But overheads are not just from the
programming system
 Communication costs increase with strong scaling



Discussion

* We want a metric that measures the cost of a runtime system

* Must constrain efficiency
* Minimum amount of application work must be getting done
* Avoids problems of TPS w/empty tasks, weak scaling

* Want point at which efficiency goal is just met

* Least application work that achieves the efficiency metric
* Avoids problems of TPS w/huge tasks, weak scaling



Minimum Effective Task Granularity
(METG)

* METG(50%) is the smallest task granularity where an
application achieves 50% efficiency

* Parameterized on the efficiency metric:
e E.g.: machine’s peak performance is 1.2 TFLOP/s,
so 50% is 0.6 TFLOP/s

* E.g.: application’s peak is 1x10° mesh cells/s,
so 50% is 0.5x10°
* Efficiency constrained: useful work is performed

* Exposes overhead: the limit of a system under load



Calculating METG(50%)

* Step 1: measure * Step 2: convert to

granularity and intersect

decreasing problem size With 50%

100% <&

1.0 75% |

5O% | o e e

TFLOP/s
Efficiency

25% 1

0% |12

102 10! 100
Problem Size Task Granularitv (

0.0

Intersection with 50%
efficiency (METG(50%) is 4.6 ps)

Performance drops with
problem size



Understanding METG(50%)

* METG is a minimum

* Two systems with METG of 1 ms and 5 ms

* Application has an average task granularity of
* 100 ms: doesn’t matter
* 10 ms: matters a little
* 1 ms: huge difference
* METG imposes a floor on task granularity that is efficient



Evaluation

* 15 programming systems
* On up to 256 nodes

* Cori Supercomputer
* Cray XC40
* 2x Intel Xeon E5-2698 v3 processors (32 physical cores/node)
« 128 GB RAM
* Cray Aries interconnect
e GCC7.3.0,Cray MPICH 7.7.3
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Overhead and Scalability

Minimum Effective Task Granularity (ms)

METG(50%) vs node count, stencil pattern
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More Complicated Dependencies

METG(50%) vs node count, 4 nearest neighbors, 4 task graphs
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METG vs Dependencies/Task
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METG vs Bytes/Dependence

Efficiency
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Badwidth Bound

Kernels
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Task-Based Systems

Minimum Effective Task Granularity (ms)
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Overlap Communication and Computation

Efficiency vs task granularity, 4 distant neighbors, 4 task graphs
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Impact

* Task Bench has already made some of these systems
better

* Intensive effort to find and fix performance issues

* Should provide a new “microscope” for future work



Limitations

* Only compare on the intersection of features
* CPU-only workloads
* Dense problems

* Performance only
* Not productivity

* Kernels
 Single kernel is good, but also hides differences in writing
kernels for specific systems



Summary

* Lowest overhead systems get METG(50%) of about
100us at >= 100 nodes

* Asynchronous systems:
* Better overlap between computation and communication

» Better for complex task graphs
* Aslong as they’re not too slow! (METG about 100us)

* Task-based systems:
* Scaling bottlenecks not entirely resolved by task pruning
* Regent’s control replication does solve the scaling bottleneck



