Energy functions and their relationship to molecular conformation

CS/BioE/Biophys/BMI/CME 279
Oct. 1 and 8, 2024
Ron Dror

Outline

- Overview
 - The big questions
 - Demo
- Energy functions for biomolecular systems
 - Definition and properties
 - Molecular mechanics force fields
- What does the energy function tell us about biomolecular structure/conformation?
 - The Boltzmann distribution
 - Conformations and conformational states
 - Free energy

Overview

A biomolecule adopts many shapes

- The atoms in biomolecules are constantly jiggling around
 - "Everything that living things do can be understood in terms of the jigglings and wigglings of atoms." — Richard Feynman, 1963 (Nobel Prize, 1965)
- A biomolecule adopts many geometries/shapes!
- We refer to each geometry of a molecule (i.e., precise arrangement of atoms, specified by 3D coordinates) as a conformation
 - "Conformation" is similar to "structure," except that "structure" is often used to describe an average structure, which is what one typically gets when determining a structure experimentally

The big questions

- Given a biomolecule (e.g., protein), which conformations will it adopt? How frequently will it adopt each conformation?
 - Note that this depends on the other molecules surrounding it, so we typically consider a "molecular system" consisting of multiple molecules
 - It also depends on temperature
 - We can ask these questions either for individual conformations or for sets of similar conformations (referred to as "conformational states")

Demo

- Take-aways:
 - The system adopts many conformations
 - It adopts low-energy conformations more frequently than high-energy conformations
 - If we can define the energy associated with each conformation, we can determine how often the system will adopt each conformation
- We'll thus discuss how to calculate energies for conformations of biomolecules (and biomolecular systems)

Key difference between demo and molecular systems

- To specify the "conformation" (horizontal position) of the cheerio or ball, I need only two numbers
- To specify the conformation of a molecular system (or a single biomolecule), I need to specify the x, y, and z coordinates of each atom.
 - For N atoms, that's 3N coordinates.
 - Energy depends on all of these coordinates!
- All the take-aways still apply to molecular systems!

Energy functions for biomolecular systems

Energy functions for biomolecular systems

Definition and properties

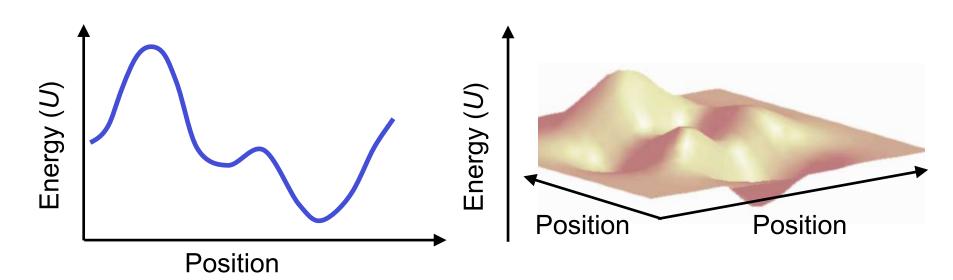
Specifying atom positions

- For a molecular system with N atoms, we can specify the position of all atoms by a single vector x of length 3N
 - This vector contains the x, y, and z coordinates of every atom

$$\mathbf{x} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ x_2 \\ y_2 \\ z_2 \\ \vdots \\ x_N \\ y_N \\ z_N \end{pmatrix}$$

Energy function

- A potential energy function U(x) specifies the total potential energy of a system of atoms as a function of all their positions (x)
 - In the general case, include not only atoms in the protein but also surrounding atoms (e.g., water)
- The potential energy function U is also called a force field, because one can use it to compute forces on atoms



Types of force fields (energy functions)

- A wide variety of force fields are used in atomiclevel modeling of macromolecules
- Physics-based vs. knowledge-based
 - Physics-based force fields attempt to model actual physical forces
 - Knowledge-based force fields are based on statistics about, for example, known protein structures
 - Most real force fields are somewhere in between
- Atoms represented
 - Most realistic choice is to model all atoms
 - Some force fields omit waters and other surrounding molecules. Some omit certain atoms within the protein.

Energy functions for biomolecular systems

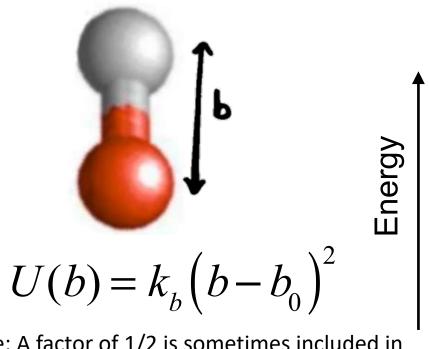
Molecular mechanics force fields

Molecular mechanics force fields

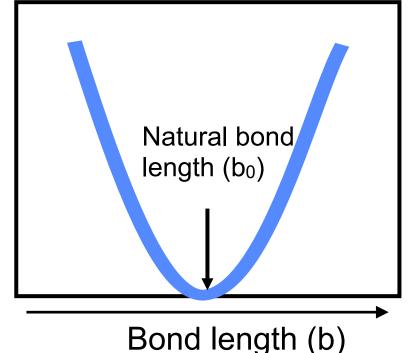
- Today, we'll focus on molecular mechanics force fields, which are often used for molecular simulations
- These are more toward the physics-based, allatom end (i.e., the more "realistic" force fields)
 - Represent physical forces explicitly
 - Typically represent solvent molecules (e.g., water) explicitly
- We'll revisit the forces acting between atoms and write down the functional forms typically used to approximate them

Bond length stretching

 A bonded pair of atoms is effectively connected by a spring with some preferred (natural) length.
 Stretching or compressing it requires energy.

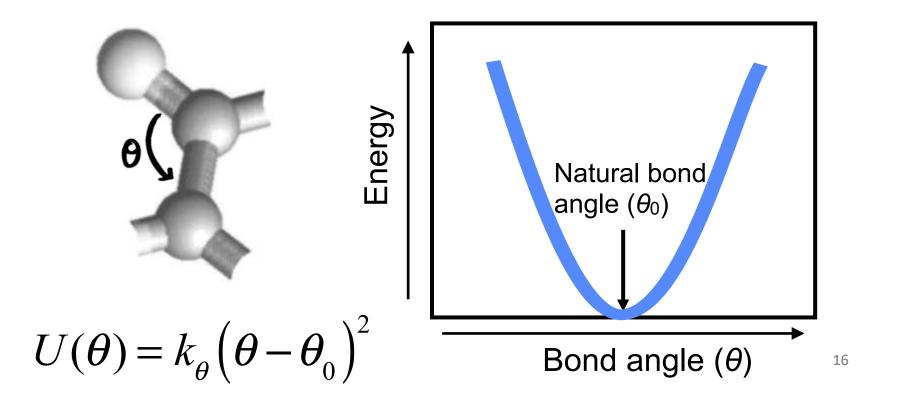


Note: A factor of 1/2 is sometimes included in this equation. I'm ignoring such constant factors (they can be folded into k_b or the units).



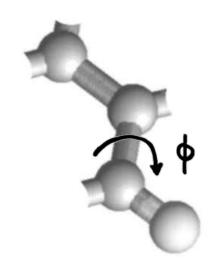
Bond angle bending

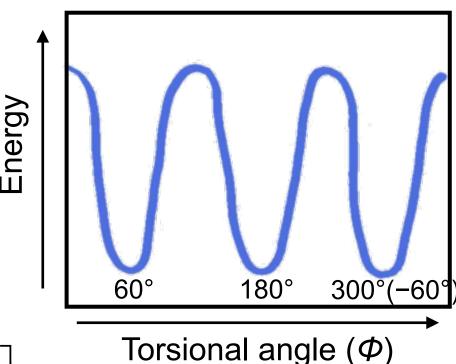
Likewise, each bond angle has some natural value.
 Increasing or decreasing it requires energy.



Torsional angle twisting

 Certain values of each torsional angle are preferred over others.



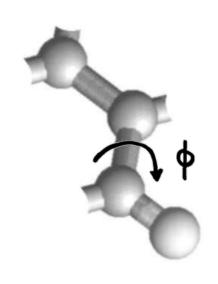


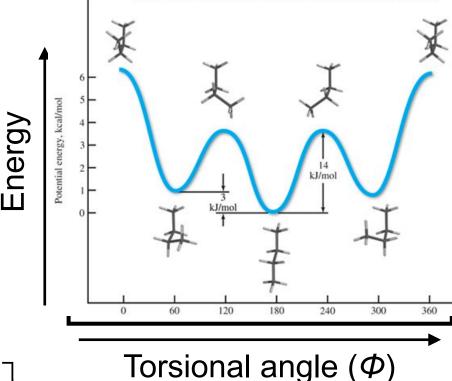
$$U(\phi) = \sum_{n} k_{\phi,n} \left[1 + \cos(n\phi - \phi_n) \right]$$

Typically *n* takes on one or a few values between 1 and 6

Torsional angle twisting

 Certain values of each torsional angle are preferred over others.

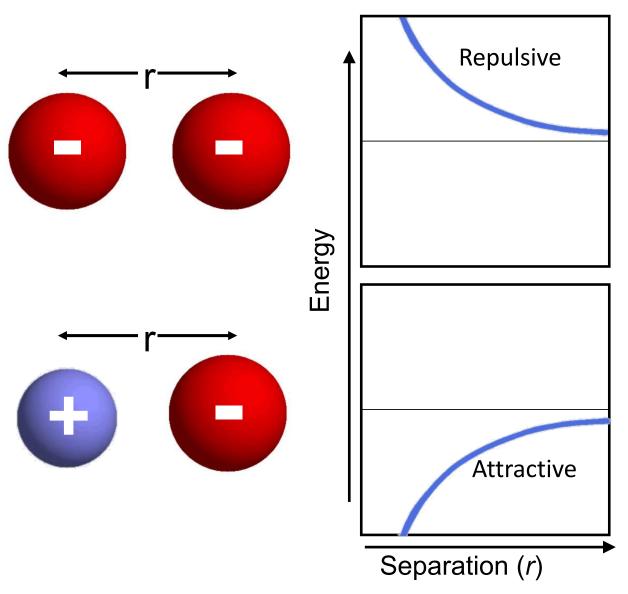




$$U(\phi) = \sum_{n} k_{\phi,n} \left[1 + \cos(n\phi - \phi_n) \right]$$

Typically *n* takes on one or a few values between 1 and 6

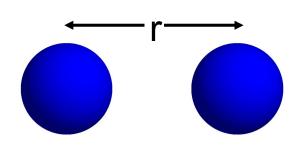
Electrostatics interaction

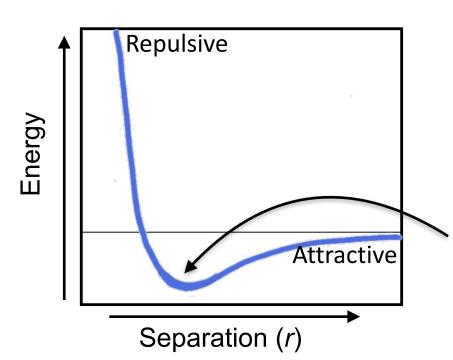


- Like charges repel.
 Opposite charges attract.
- Acts between all pairs of atoms, including those in different molecules.
- Each atom carries some "partial charge" (may be a fraction of an elementary charge), which depends on which atoms it's connected $G_i G_j$

where q_i and q_j are partial charges on atoms i and j

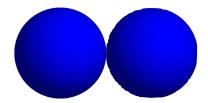
van der Waals interaction



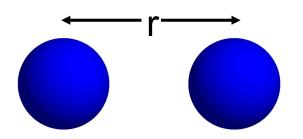


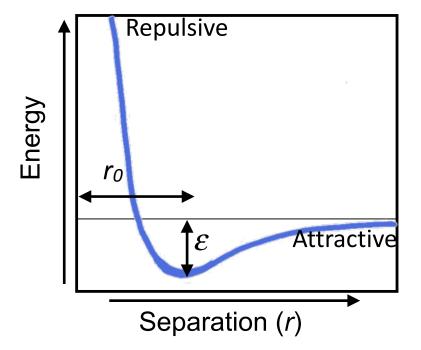
- van der Waals forces act between all pairs of atoms and do not depend on charge.
- When two atoms are too close together, they repel strongly.
- When two atoms are a bit further apart, they attract one another weakly.

Energy is minimal when atoms are "just touching" one another



van der Waals interaction





$$U(r) = \frac{A_{ij}}{r^{12}} - \frac{B_{ij}}{r^{6}}$$

We can also write this as:

$$U(r) = \varepsilon \left[\left(\frac{r_0}{r} \right)^{12} - 2 \left(\frac{r_0}{r} \right)^6 \right]$$

Note: Historically, r^{12} term was chosen for computational convenience; other forms are sometimes used

A typical molecular mechanics force field

$$U = \sum_{\text{bonds}} k_b \left(b - b_0\right)^2 \qquad \text{Bond lengths ("Stretch")}$$

$$+ \sum_{\text{angles}} k_\theta \left(\theta - \theta_0\right)^2 \qquad \text{Bond angles ("Bend")} \qquad \text{Bonded terms}$$

$$+ \sum_{\text{torsions}} \sum_n k_{\phi,n} \left[1 + \cos\left(n\phi - \phi_n\right)\right] \qquad \text{Torsional/dihedral angles}$$

$$+\sum_{i}\sum_{j>i}\frac{q_{i}q_{j}}{r_{ij}} + \sum_{i}\sum_{j>i}\frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^{6}}$$

Electrostatics

Van der Waals

Nonbonded terms

How are the parameters fit?

- Combination of:
 - Quantum mechanical calculations
 - Experimental data
 - For example: b₀ can be estimated from x-ray crystallography, and K_b from spectroscopy (infrared absorption)

$$U(b) = K_b \left(b - b_0 \right)^2$$

- The torsional parameters are usually fit last. They absorb the "slop." Fidelity to physics is debatable.
- These force fields are approximations!

Neural network-based force fields

- Researchers are now developing force fields by training neural networks to predict results of quantum mechanical calculations
 - These are not yet in widespread use, but I think this is a promising research direction
 - See optional reading on course website

What does the energy function tell us about biomolecular structure/conformation?

What does the energy function tell us about biomolecular conformation?

The Boltzmann distribution

Relating energy to probability

 Given the potential energy associated with a particular conformation (i.e., arrangement of atoms, or set of atomic coordinates), what is the probability that the molecular system will adapt that conformation at a given point in time?

Assumptions:

- System is at constant temperature (so atoms are constantly jiggling around).
- We watch the system for a really long time (allowing it to fully equilibrate).

The Boltzmann Distribution

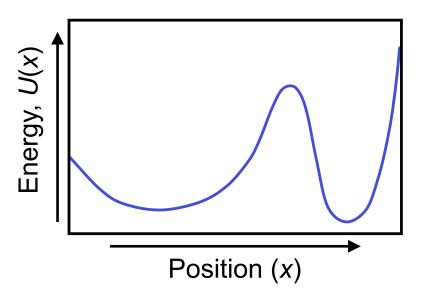
 The Boltzmann distribution relates the potential energy of a particular arrangement of atoms to the probability of observing that arrangement of atoms (at equilibrium):

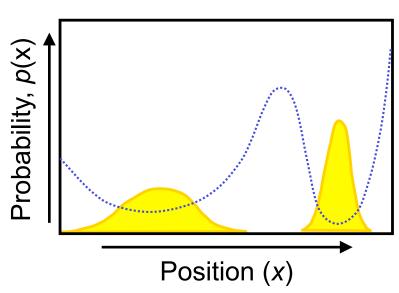
$$p(\mathbf{x}) \propto \exp\left(-\frac{U(\mathbf{x})}{k_B T}\right) \qquad \text{Equivalently,}$$

$$p(\mathbf{x}) = \frac{1}{Z} \exp\left(\frac{-U(\mathbf{x})}{k_B T}\right)$$

where T is temperature and k_B is the Boltzmann constant

 Note: Z is chosen such that the probabilities sum to 1 across all arrangements of atoms. It depends on U and T but not on x.

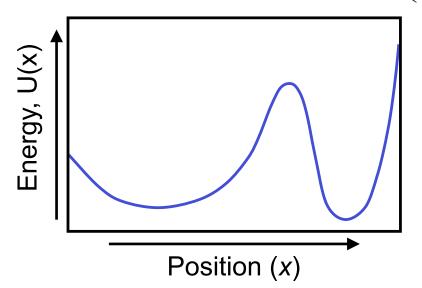


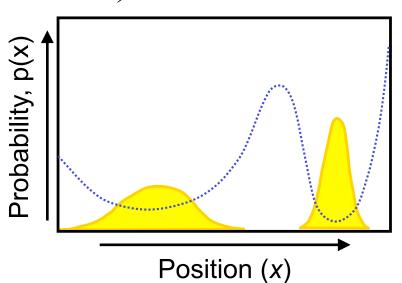


The Boltzmann Distribution

- Key properties:
 - Higher energy gives lower probability
 - Exponential relationship: as energy increases, probability goes down quickly
 - Temperature dependence: increasing temperature decreases differences in probability between high-energy and low-energy conformations

$$p(\mathbf{x}) \propto \exp\left(\frac{-U(\mathbf{x})}{k_B T}\right)$$





What does the energy function tell us about biomolecular conformation?

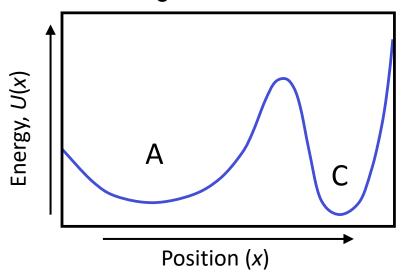
Conformations and conformational states

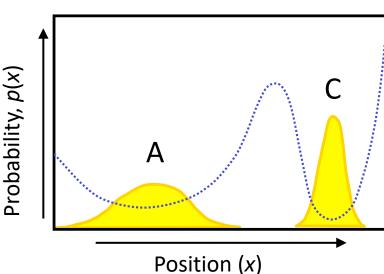
Protein (or other biomolecular) structure: what we care about

- We don't really care about the probability that all the atoms of the protein and all the surrounding water atoms will be in one precise arrangement
- Instead, we care about the probability that protein atoms will be in some approximate arrangement, with any arrangement of surrounding water

Protein (or other biomolecular) structure: what we care about

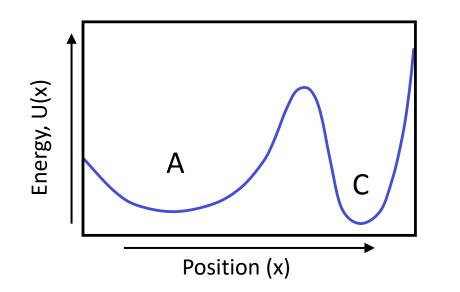
- In other words, we wish to compare probabilities of different sets (neighborhoods) of atomic arrangements
- We define each of these sets as a *conformational state*. Each *conformational state* includes many *conformations*, or specific atom arrangements **x**.
 - In the example below, conformational states A and C correspond to wells in the energy landscape
 - A more general term for "conformational state" is "macrostate," and a more general term for "conformation" is "microstate"

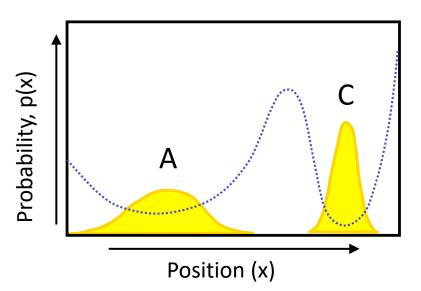




Probabilities of conformational states

- Which has greater probability, A or C?
 - C is a deeper well, so the individual atomic arrangements (conformations) within it are more likely
 - A is a broader well, so it includes more distinct individual arrangements (conformations)



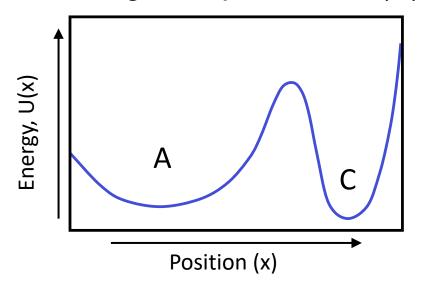


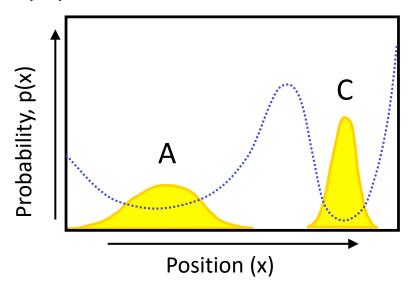
Probabilities of conformational states

- Which has greater probability, A or C?
- To get probability of a conformational state, sum/integrate over all conformations within it

$$P(A) = \int_{x \in A} P(x) \propto \int_{x \in A} \exp\left(\frac{-U(x)}{k_B T}\right) dx$$

- At low temperature, P(C) > P(A)
- At high temperature, P(A) > P(C)





What does the energy function tell us about biomolecular conformation?

Free energy

Free energy of a conformational state

- So far we have assigned energies only to individual conformations, but it's useful to assign them to conformational states as well.
- Define the free energy G_A of a conformational state A such that:

$$P(A) = \exp\left(-\frac{G_A}{k_B T}\right)$$

This is analogous to Boltzmann distribution formula:

$$p(\mathbf{x}) \propto \exp\left(\frac{-U(\mathbf{x})}{k_B T}\right)$$

 Key takeaway: Free energy is for a conformational state (i.e., set of conformations) what potential energy is for an individual conformation

Entropy and enthalpy

 One can also express free energy in terms of enthalpy (mean potential energy, H) and entropy ("disorder", S, a measure of the energy well's breadth)

$$G_A = H_A - TS_A$$

 This slide is optional material for this class. If you remember one thing, it should be that the entropy of a conformational state is the number of conformations in that state (roughly speaking).

So which conformational state will a biomolecule (e.g., protein) adopt?

- The one with the minimum free energy
 - Wide, shallow wells often win out over narrow, deep ones
- This depends on temperature
- At room or body temperature, the conformational state (macrostate) of minimum free energy is usually very different from the conformation with minimum potential energy

Comparing structures (conformations) of a biomolecule

• The most common measure of the similarity/difference between two structures of the same molecule is *root mean squared deviation (RMSD)*, defined as

$$\sqrt{\frac{1}{N}\sum_{i=1}^{3N} (\mathbf{x}_i - \mathbf{w}_i)^2}$$

where *N* is the number of atoms, *x* gives the coordinates for one structure, and *w* gives the coordinates for the other structure.

- We generally want to align the structures, which can be done by finding the rigid-body rotation and translation of one structure that will minimize its RMSD from the other
 - The relevant measure of similarity is RMSD after alignment