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Overview



A biomolecule adopts many shapes

• The atoms in biomolecules are constantly jiggling 
around 
– “Everything that living things do can be understood in 

terms of the jigglings and wigglings of atoms.” — 
Richard Feynman, 1963 (Nobel Prize, 1965) 

• A biomolecule adopts many geometries/shapes! 
• We refer to each geometry of a molecule (i.e., 

precise arrangement of atoms, specified by 3D 
coordinates) as a conformation 
– “Conformation” is similar to “structure,” except that 

“structure” is often used to describe an average 
structure, which is what one typically gets when 
determining a structure experimentally



The big questions

• Given a biomolecule (e.g., protein), which 
conformations will it adopt? How frequently 
will it adopt each conformation? 
– Note that this depends on the other molecules 

surrounding it, so we typically consider a “molecular 
system” consisting of multiple molecules 

– It also depends on temperature 
– We can ask these questions either for individual 

conformations or for sets of similar conformations 
(referred to as “conformational states”)



Demo

• Take-aways: 
– The system adopts many conformations  
– It adopts low-energy conformations more frequently 

than high-energy conformations 
– If we can define the energy associated with each 

conformation, we can determine how often the 
system will adopt each conformation 

• We’ll thus discuss how to calculate energies for 
conformations of biomolecules (and biomolecular 
systems)

actual probability depends on 
temperature



Key difference between demo and 
molecular systems

• To specify the “conformation” (horizontal position) 
of the cheerio or ball, I need only two numbers 

• To specify the conformation of a molecular 
system (or a single biomolecule), I need to 
specify the x, y, and z coordinates of each atom. 
– For N atoms, that’s 3N coordinates. 
– Energy depends on all of these coordinates! 

• All the take-aways still apply to molecular 
systems!



Energy functions for biomolecular 
systems



Energy functions for biomolecular 
systems

Definition and properties



Specifying atom positions 

• For a molecular 
system with N atoms, 
we can specify the 
position of all atoms by 
a single vector x of 
length 3N 
– This vector contains the 

x, y, and z coordinates 
of every atom

x =

x1
y1
z1
x2
y2
z2
⋮
xN
yN
zN



Energy function
• A potential energy function U(x) specifies the total 

potential energy of a system of atoms as a function of all 
their positions (x)  
– In the general case, include not only atoms in the protein but 

also surrounding atoms (e.g., water) 
• The potential energy function U is also called a force 

field, because one can use it to compute forces on atoms
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Types of force fields (energy functions)

• A wide variety of force fields are used in atomic-
level modeling of macromolecules 

• Physics-based vs. knowledge-based 
– Physics-based force fields attempt to model actual 

physical forces 
– Knowledge-based force fields are based on statistics 

about, for example, known protein structures 
– Most real force fields are somewhere in between 

• Atoms represented 
– Most realistic choice is to model all atoms 
– Some force fields omit waters and other surrounding 

molecules.  Some omit certain atoms within the protein.



Energy functions for biomolecular 
systems

Molecular mechanics force fields



Molecular mechanics force fields

• Today, we’ll focus on molecular mechanics force 
fields, which are often used for molecular 
simulations  

• These are more toward the physics-based, all-
atom end (i.e., the more “realistic” force fields) 
– Represent physical forces explicitly 
– Typically represent solvent molecules (e.g., water) 

explicitly 
• We’ll revisit the forces acting between atoms and 

write down the functional forms typically used to 
approximate them

a class of force fields



Bond length stretching
• A bonded pair of atoms is effectively connected 

by a spring with some preferred (natural) length.  
Stretching or compressing it requires energy.
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Bond length (b)

Natural bond  
length (b0)

U (b) = kb b− b0( )2
Note: A factor of 1/2 is sometimes included in 
this equation.  I’m ignoring such constant 
factors (they can be folded into kb or the units).

clarification: kb is a parameter for a particular bond representing rate 
of change of energy as we move away from the bond's natural length



Bond angle bending

• Likewise, each bond angle has some natural value.  
Increasing or decreasing it requires energy.
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Natural bond  
angle (θ0)

U (θ ) = kθ θ −θ0( )2



Torsional angle twisting
• Certain values of each torsional angle are 

preferred over others.
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Torsional angle (Φ)

180° 300°(−60°)60°

U (φ) = kφ ,n 1+ cos nφ −φn( )⎡⎣ ⎤⎦
n
∑

Typically n takes on one or a few values between 1 and 6

torsional angle: angle between atoms 1 and 4 
when looking down bond between atoms 2 and 3



Torsional angle twisting
• Certain values of each torsional angle are 

preferred over others.
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Torsional angle (Φ)U (φ) = kφ ,n 1+ cos nφ −φn( )⎡⎣ ⎤⎦
n
∑

Typically n takes on one or a few values between 1 and 6
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Electrostatics interaction
• Like charges repel.  

Opposite charges 
attract. 

• Acts between all pairs of 
atoms, including those 
in different molecules. 

• Each atom carries some 
“partial charge” (may be 
a fraction of an 
elementary charge), 
which depends on 
which atoms it’s 
connected to
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Separation (r)

Repulsive

Attractive U (r) =
qiq j
r

where qi and qj are partial 
charges on atoms i and j 

Note: U(r) represents energy;

The equation for force has r^2 in 
the denominator



van der Waals interaction
• van der Waals forces act 

between all pairs of atoms 
and do not depend on 
charge. 

• When two atoms are too 
close together, they repel 
strongly. 

• When two atoms are a bit 
further apart, they attract 
one another weakly.
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 “just touching” one another



van der Waals interaction
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We can also write this as:

U r( ) = ε r0
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Note: Historically, r12 term was chosen  
for computational convenience;  
other forms are sometimes used

A_ij and B_ij are parameters specific to a pair of atoms (i, j)



Bonded 
terms

Non-
bonded 
terms

A typical molecular mechanics force field 

( )
angles

2
0kθ θ θ+ −∑

i j

i j i ij

q q
r>

+∑∑

 12 6
ij ij

i j i ij ij

A B
r r>

+ −∑∑

Bond lengths (“Stretch”)

Bond angles (“Bend”)

Torsional/dihedral angles

Electrostatics

Van der Waals
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note: values of k_b and b_0 are specific to each bond in the summation

summing over all pairs of 
atoms in the system



How are the parameters fit?

• Combination of: 
– Quantum mechanical calculations 
– Experimental data 

• For example: b0 can be estimated from x-ray crystallography, 
and Kb from spectroscopy (infrared absorption)   

• The torsional parameters are usually fit last.  They 
absorb the “slop.”  Fidelity to physics is debatable. 

• These force fields are approximations!

U (b) = Kb b− b0( )2



Neural network–based force fields

• Researchers are now developing force fields by 
training neural networks to predict results of 
quantum mechanical calculations 
– These are not yet in widespread use, but I think this is 

a promising research direction 
– See optional reading on course website

Neural networks require fitting far more parameters but provide more flexibility 



What does the energy function tell us about 
biomolecular structure/conformation?

At a high level: conformation has a higher potential energy -> less likely to see that conformation



What does the energy function tell us 
about biomolecular conformation?

The Boltzmann distribution



Relating energy to probability

• Given the potential energy associated with a 
particular conformation (i.e., arrangement of 
atoms, or set of atomic coordinates), what is the 
probability that the molecular system will adapt 
that conformation at a given point in time? 

• Assumptions: 
– System is at constant temperature (so atoms are 

constantly jiggling around). 
– We watch the system for a really long time (allowing it 

to fully equilibrate).



The Boltzmann Distribution
• The Boltzmann distribution relates the potential energy of a 

particular arrangement of atoms to the probability of observing 
that arrangement of atoms (at equilibrium): 
 
 
 
 
where T is temperature and kB is the Boltzmann constant 

• Note: Z is chosen such that the probabilities sum to 1 across all 
arrangements of atoms. It depends on U and T but not on x.
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Equivalently, 

recall: x is a vector of x, y, z coordinates of all atoms in a molecule for a particular conformation



The Boltzmann Distribution
• Key properties: 

– Higher energy gives lower probability 
– Exponential relationship: as energy increases, probability goes down 

quickly 
– Temperature dependence: increasing temperature decreases 

differences in probability between high-energy and low-energy 
conformations 
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What does the energy function tell us 
about biomolecular conformation?

Conformations and  
conformational states



• We don’t really care about the probability that all 
the atoms of the protein and all the surrounding 
water atoms will be in one precise arrangement 

• Instead, we care about the probability that protein 
atoms will be in some approximate arrangement, 
with any arrangement of surrounding water

Protein (or other biomolecular) structure:  
what we care about



• In other words, we wish to compare probabilities of different 
sets (neighborhoods) of atomic arrangements 

• We define each of these sets as a conformational state.  Each 
conformational state includes many conformations, or specific 
atom arrangements x. 
– In the example below, conformational states A and C correspond to 

wells in the energy landscape 
– A more general term for “conformational state” is “macrostate,” and a 

more general term for “conformation” is “microstate”
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Protein (or other biomolecular) structure: what 
we care about



Probabilities of conformational states

• Which has greater probability, A or C? 
– C is a deeper well, so the individual atomic 

arrangements (conformations) within it are more likely 
– A is a broader well, so it includes more distinct 

individual arrangements (conformations)
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Probabilities of conformational states
• Which has greater probability, A or C? 
• To get probability of a conformational state, sum/integrate 

over all conformations within it 

• At low temperature, P(C) > P(A) 
• At high temperature, P(A) > P(C)

P A( ) = P(x)
x∈A
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What does the energy function tell us 
about biomolecular conformation?

Free energy



Free energy of a conformational state
• So far we have assigned energies only to individual 

conformations, but it’s useful to assign them to 
conformational states as well. 

• Define the free energy GA of a conformational state A 
such that: 

• This is analogous to Boltzmann distribution formula: 

• Key takeaway: Free energy is for a conformational 
state (i.e., set of conformations) what potential 
energy is for an individual conformation

p(x)∝ exp −U x( )
kBT
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P(A) = exp −GA
kBT( )

AKA Gibbs free energy



Entropy and enthalpy
• One can also express free energy in terms of 

enthalpy (mean potential energy, H) and entropy 
(“disorder”, S, a measure of the energy well’s 
breadth)

GA = HA −TSA

• This slide is optional material for this class. If you 
remember one thing, it should be that the entropy of 
a conformational state is the number of 
conformations in that state (roughly speaking).



So which conformational state will a 
biomolecule (e.g., protein) adopt?

• The one with the minimum free energy 
– Wide, shallow wells often win out over narrow, deep 

ones 
• This depends on temperature 
• At room or body temperature, the conformational 

state (macrostate) of minimum free energy is 
usually very different from the conformation with 
minimum potential energy

note: potential energy doesn't depend on temperature - only depends on the atomic 
coordinates of the molecule



Comparing structures (conformations)  
of a biomolecule

• The most common measure of the similarity/difference 
between two structures of the same molecule is root 
mean squared deviation (RMSD), defined as 
 
 
 
where N is the number of atoms, x gives the coordinates 
for one structure, and w gives the coordinates for the 
other structure. 

• We generally want to align the structures, which can be 
done by finding the rigid-body rotation and translation of 
one structure that will minimize its RMSD from the other 
– The relevant measure of similarity is RMSD after alignment  
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