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Project

• I recommend starting soon if you haven’t 
already 
– You may not use late days for the project 

• If you need help coming up with a project, talk with 
a TA during office hours 

• For those who wish to write/modify code but need 
help getting started, Ari will be doing a kickstart 
(Thursday at 8 am, via Zoom and recorded) 
– Reminder: Coding is not required for the project! If you 

prefer, you can do a project using existing software.



Outline

• Overview of x-ray crystallography 
• Crystals 
• Electron density 
• Diffraction patterns 
• The computational problem: determining structure 

from the diffraction pattern
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Overview of x-ray crystallography
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X-ray crystallography is the most common 
way to determine 3D molecular structures

• About 80% of the structures in the PDB were 
determined through x-ray crystallography 

• X-ray crystallography is also frequently used to 
determine 3D structures of small molecules 
(including drugs) 

• Why are we covering it in this course? 
– So you know where biomolecular structures come from 
– Because determining a structure this way involves 

solving a challenging computational problem 
• When crystallographers determine a structure, they 

typically say they “solved” the structure



The basic idea

• Make a crystal composed of the molecule whose 
structure you wish to determine 

• Shine an intense beam of x-rays through the 
crystal, giving rise to a “diffraction pattern” (a 
pattern of spots of varying brightnesses)

6http://lacasadeloscristales.trianatech.com/wp-
content/uploads/2014/09/image005-300x300.jpg

Note: In this lecture, I will often refer to the 
molecule being studied as “the protein”, but 
it could be any molecule, or a complex of 
multiple molecules bound together (e.g., 
protein+ligand)



The basic idea

• From that pattern, infer the 3D structure of the molecule 
– The diffraction pattern is 3D: one uses multiple images, with 

the x-rays shining through the crystal at different angles 
• This is a challenging computational problem! 
• It turns out the diffraction pattern is closely related to 

the Fourier transform of the electron density of the 
molecule that was crystallized 
– Before talking about what that means, let’s go back and 

discuss what a crystal is and what electron density is
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Crystals
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What’s a crystal?

• Under certain conditions, molecules come 
together to form a regular grid (a “lattice”).   
– Example: table salt

9http://www.atomsinmotion.com/book/
chapter4/rockSalt.png

http://www.bigfoto.com/miscellaneous/
photos-16/salt-crystals-94jf.jpg



Macromolecules can also form crystals

• Under certain conditions, proteins and other 
macromolecules will pack into a regular grid (a 
lattice)
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http://science.nasa.gov/media/medialibrary/
1999/09/10/msad20sep99_1_resources/
9901879.jpg

Insulin crystals



Macromolecules can also form crystals
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http://www.umass.edu/molvis/decatur/pe2.727/
protexpl/xtlcon.htm

Multiple views of the crystal formed by an 
immunoglobulin-binding domain (PDB entry  1PGB)

http://www.umass.edu/molvis/decatur/pe2.727/protexpl/xtlcon.htm
http://www.umass.edu/molvis/decatur/pe2.727/protexpl/xtlcon.htm


Caveats
• Getting macromolecules to form crystals can be hard 

– Historically, crystallographers sometimes worked for years or 
decades to get good crystals of a particular molecule (though it’s 
become easier over time thanks to better experimental methods)

More recent Nobel Prizes



Caveats

• Crystallography gives you a static snapshot of a 
molecule’s structure  
– Usually this snapshot corresponds to the molecule’s 

“average” structure  
• Sometimes a molecule will adopt a different 

average structure in a crystal than it does in its 
natural environment 
– Fortunately, these differences are usually small
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Electron density

14



Electron density of a molecule
• The electron density corresponding to the 3D 

structure of a molecule gives the probability of 
finding an electron at each point in space  

• X-rays bounce off electrons they hit 
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http://www.lynceantech.com/images/
electron_density_map.png



Diffraction patterns
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Diffraction patterns

• When you shine a light beam through a crystal, 
you get a distinctive pattern of bright spots called 
a diffraction pattern
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Note that the bright spots are sometimes pictured in light/white 
shades (left) and sometimes in dark/black shades (right)



Diffraction patterns

• This pattern is actually three dimensional. 
– If you rotate the crystal (or move the camera), you see 

different parts of it
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What causes diffraction patterns?

• Short answer: interference of light 
– The bright spots are places where light interferes 

constructively.  Elsewhere it tends to interfere 
destructively (cancel out).
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http://weelookang.blogspot.com/2011/10/ejs-
open-source-double-slit-diffraction.html



Relationship between diffraction pattern 
and electron density

• It turns out that the diffraction pattern is the 
Fourier transform of the electron density 
– Both the electron density and the diffraction 

pattern are functions of three dimensions (i.e., 
defined at every point in a 3D volume) 

– Each bright spot in the diffraction pattern 
corresponds to one sinusoidal component of 
the electron density (in 3D) 

– The Fourier transform gives a magnitude and a 
phase for each sinusoid, but it’s only practical 
to measure the magnitude, not the phase 
• Brightness of the spot gives the magnitude
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Why is the diffraction pattern the Fourier 
transform of the electron density?

• If you work out how much each point 
in the electron density contributes to 
a particular diffraction peak, the 
answer is a sinusoid (whose period 
fits into the unit cell an integer 
number of times in each dimension, 
so that each unit cell contributes 
equally).  

• In between the peaks, each unit cell 
contributes differently, resulting in 
destructive interference. 

• For a more detailed explanation, see 
Notes on course web site.
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You need to understand the Fourier transform relationship, but not why it holds



The computational problem: determining 
structure from the diffraction pattern

22



The challenge

• Given a diffraction pattern, determine the 
electron density and/or the position of each atom 

• If we had a magnitude and a phase associated 
with each spot in the diffraction pattern—and 
thus with each 3D sinusoid—then we could just 
sum up appropriately scaled and shifted 3D 
sinusoids to recover the electron density 

• But we don’t have the phases 
– This makes the problem “underdetermined”—in 

principle, multiple electron densities could give rise to 
the same diffraction pattern (i.e., same magnitudes for 
each spot) 23



Why is it possible to solve this problem?
• In principle, multiple electron densities could give rise to 

the observed diffraction pattern 
• But the vast majority of those won’t correspond to 

reasonable 3D structures 
• For example, we know that: 

– Electron density should never be negative 
– Electron density should correspond to the atoms in the 

crystallized protein/macromolecule 
• And, perhaps, other atoms present when the crystal formed 

– Atoms connected by a covalent bond will be near one another 
• The goal is to find a 3D structure that is both physically  

reasonable and consistent with the observed diffraction 
pattern 

• Discuss: How would you do this?



General approach to solution

• Step 1: Initial phasing 
– Come up with an approximate solution for the structure 

(and thus an approximate set of phases) 
• Step 2: Phase refinement 

– Then consider perturbations to the structure 
– Search for perturbations that improve the fit to the 

experimental data (the diffraction pattern)
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Initial phasing

• The most common method for initial phasing is 
molecular replacement 
– Start with a computational model of the protein's structure 

(e.g., an AlphaFold/RoseTTAFold prediction, or even just the 
structure of a homologous protein) 

– Search over the possible ways that a protein with this structure 
could be packed into a crystal, and find the one that gives the 
best fit to the data 

• If one can’t build a good computational model, then one 
can try various experimental methods to help determine 
phases 
– Example: isomorphous replacement, where one replaces 

several atoms of the protein with heavier atoms (usually 
metals), and then uses the change in the diffraction pattern to 
solve for the phases 26



Phase refinement

• Once we have an initial model, we can search for 
perturbations to that model that improve the fit to the 
experimental data 
– One usually restrains the search to “realistic” molecular 

structures using a molecular mechanics force field 
• Search for a structure that minimizes the sum of two terms: (1) 

difference between the observed diffraction pattern and the 
diffraction pattern calculated from the structure, (2) the 
calculated energy of the structure 

• This dramatically improves the accuracy of the results 
• The idea was introduced by Axel Brunger, now on the Stanford 

faculty 
– The search is usually done by Monte Carlo sampling, with 

simulated annealing
27



Phase refinement

• A major challenge in the phase refinement 
process is to avoid overfitting—i.e., fitting to the 
noise in the experimental measurements 

• To avoid overfitting, one generally ignores a small 
subset of the experimental data during the 
refinement process, then checks how well one 
can predict it at the end 
– Just like cross-validation in machine learning 
– This idea also came from Brunger (who introduced the 

term Rfree to quantify the error in the prediction)
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Computational methods continue to 
improve

• Although the phasing problem is decades old, 
researchers are still inventing better solutions
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approach (phenix.rosetta_refine) uses Phenix12 to perform bulk 
solvent correction, calculate electron-density maps and refine 
B factors, while the Rosetta force field, minimizer and sam-
pling methods optimize model geometry. Modular interfaces 
to the new refinement protocols provided by RosettaScripts13 
and Phenix allow refinement protocols to be customized  
(Supplementary Figs. 1–3).

Using this framework, we developed a protocol to optimize 
poor starting models against low-resolution data. The method 
alternates real- and reciprocal-space refinement: the Rosetta 
force field constrains reciprocal-space refinement to physically  
plausible conformations; density maps restrain Rosetta side-chain 
and backbone sampling in real space. Significant backbone move-
ment occurs during internal coordinate minimization, while side-
chain optimization allows traversal of large energy barriers that 
impede traditional continuous refinement.

To assess the performance of our approach in realistic diffi-
cult cases, we assembled a collection of 26 starting models for  
15 data sets at 3.0- to 4.5-Å resolution (Supplementary Table 1) by  
performing molecular replacement with low-resolution data sets 
using templates with nontrivial conformational changes. These 
cases are within the radius of convergence of molecular replace-
ment but are far enough from the final structure that large errors 
were expected unless extensive manual rebuilding was applied.

We compared Rosetta-Phenix refinement (phenix.rosetta_
refine) to three different low-resolution refinement strategies. As 
a control, structures were refined for 20 cycles in phenix.refine, 
optimizing X-ray weight at each cycle. We also refined structures 
in CNS14, using the DEN methodology (with full weight opti-
mization)2, and in REFMAC5 (ref. 15) with jelly-body refine-
ment. We compared the generated structures using free R factor 
(Rfree), MolProbity score16 and r.m.s. deviation to the re-refined 
published structure. Running times of DEN and Rosetta-Phenix 
were similar (about 4 h per model for a 1,000-residue protein), 
with Phenix roughly 4 times faster and REFMAC5 about 30 times 
faster (not accounting for parallelization).

The results (Fig. 1, Supplementary Tables 2 and 3) show clear 
improvement for CNS-DEN and REFMAC5 compared to con-
ventional refinement in Phenix, and further improvement with 
Rosetta-Phenix refinement. Although DEN and REFMAC5 
refinement consistently showed a large radius of convergence, 
model quality (using MolProbity) was worse than that of  
Rosetta-Phenix in all but two cases. We discuss several illustrative 
examples below.

The starting molecular replacement models for a Ca2+ ATPase 
structure (PDB 3FPS) require significant conformational changes 

Improved low-resolution 
crystallographic refinement 
with Phenix and Rosetta
Frank DiMaio1,6, Nathaniel Echols2,6, Jeffrey J Headd2, 
Thomas C Terwilliger3, Paul D Adams2,4 &  
David Baker1,5

Refinement of macromolecular structures against low-resolution  
crystallographic data is limited by the ability of current 
methods to converge on a structure with realistic geometry.  
We developed a low-resolution crystallographic refinement 
method that combines the Rosetta sampling methodology  
and energy function with reciprocal-space X-ray refinement  
in Phenix. On a set of difficult low-resolution cases,  
the method yielded improved model geometry and lower  
free R factors than alternate refinement methods.

While determination of X-ray crystal structures at moderate to 
high resolutions has recently accelerated, structure determina-
tion and refinement at lower resolutions remains problematic1 
despite considerable recent work2–8. We reasoned that combin-
ing the strengths of the Rosetta structure modeling methodology 
and the Phenix X-ray refinement software could yield improved 
refinement at low resolution. Rosetta utilizes a detailed all-atom 
force field that could partially compensate for the lack of high-
resolution data, as well as search procedures combining backbone 
minimization with discrete side-chain optimization that more 
effectively explore alternative side-chain arrangements than does 
simulated annealing. Phenix is a state-of-the-art X-ray refinement 
package that can be readily integrated with other computational 
methods. We therefore incorporated the maximum-likelihood 
reciprocal-space X-ray target function from phenix.refine9  
into Rosetta.

To enable refinement in Rosetta, we use Phenix routines 
(called through Python bindings) to calculate the crystallo-
graphic refinement target function. Rosetta energy is weighted 
against the crystallographic likelihood function by normalizing 
the gradients of each before each minimization cycle10. Unlike in 
standard Rosetta structure prediction, non-ideal bond geometry 
is allowed throughout refinement; Rosetta symmetry11 optimizes 
the energy of the protein in the crystal lattice. The combined 
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Deep learning applications in protein
crystallography

Senik Matinyan,a Pavel Filipcika and Jan Pieter Abrahamsa,b*

aBiozentrum, Basel University, Basel, Switzerland, and bPaul Scherrer Institute, Villigen, Switzerland. *Correspondence

e-mail: jp.abrahams@unibas.ch

Deep learning techniques can recognize complex patterns in noisy, multi-
dimensional data. In recent years, researchers have started to explore the
potential of deep learning in the field of structural biology, including protein
crystallography. This field has some significant challenges, in particular
producing high-quality and well ordered protein crystals. Additionally,
collecting diffraction data with high completeness and quality, and determining
and refining protein structures can be problematic. Protein crystallographic data
are often high-dimensional, noisy and incomplete. Deep learning algorithms can
extract relevant features from these data and learn to recognize patterns, which
can improve the success rate of crystallization and the quality of crystal
structures. This paper reviews progress in this field.

1. Introduction

Protein crystallography is a crucial tool for understanding the
three-dimensional structures of proteins (Bücker et al., 2020).
The vast majority of the protein structures deposited in the
Protein Data Bank (Berman et al., 2000) were solved with
crystallographic methods (!85% of the deposited structures
and around 10 000 structures annually). Exciting advance-
ments in the field, such as X-ray free-electron lasers (XFELs)
(Chapman et al., 2011; Tenboer et al., 2014) and MicroED
(microcrystal electron diffraction) (Nederlof et al., 2013), have
significantly improved the efficiency of determining protein
structures, even for sub-micron-sized crystals.

However, several key challenges persist in protein crystal-
lography, the main one being the production of high-quality
and well ordered protein crystals. Additionally, extracting
accurate protein structures from diffraction data remains a
complex task. Fortunately, deep learning techniques have
emerged as a promising solution to address these limitations.

Deep learning is a branch of machine learning (ML) that
employs artificial neural networks to learn complex patterns
from data (Sarker, 2021). Analogous to biological neural
networks, these consist of multiple layers of interconnected
nodes, each layer representing a different level of abstraction.
This allows the development of algorithms and network
architectures that can be readily applied to various types of
data in order to create and/or optimize a model – an ML
program tailored for the task. ML models are created using
training data that can be labeled or unlabeled. One of the
major risks in preparing an ML model is that training data may
not be sufficiently representative of the problem at hand,
resulting in a neural network that is biased by preconceptions.
Since the strength of deep learning lies in its ability to analyze
complex and high-dimensional data, it has significant rele-
vance for the analysis of protein crystallography data.
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Serial crystallography with XFEL
• Using an extremely bright x-ray beam, one could 

detect diffraction patterns from extremely small 
crystals (which are easier to obtain) or even single 
particles (e.g., a virus) 

• This is now possible thanks to x-ray free electron 
lasers (XFELs), pioneered at Stanford/SLAC 

• Challenge: 
– The particle (or tiny crystal) disintegrates when the laser 

beam hits it  
– For each particle or crystal, one can only capture a single 

image. One repeats this for many particles/crystals. 
– This makes the computational reconstruction problem more 

challenging!   
• We’ll cover related problems in the cryo-EM lecture
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A few additional notes

• Protein crystals contain water 
– Often half the crystal is water (filling all the empty 

spaces between copies of the protein) 
– Usually only a few water molecules are visible in the 

structure, because the rest are too mobile 
• One generally can’t determine hydrogen 

positions by x-ray crystallography 
– But one can model them in computationally 

• Some high-profile, published crystal structures 
have turned out to be completely incorrect due to 
computational problems/errors
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