
Fourier transforms and convolution

CS/CME/BioE/Biophys/BMI 279
Oct. 26, 2023

Ron Dror

1

(without the agonizing pain)

Outline

• Why do we care?
• Convolution

– Moving averages
– Mathematical definition

• Fourier transforms
– Writing functions as sums of sinusoids
– The Fast Fourier Transform (FFT)
– Multi-dimensional Fourier transforms

• Performing convolution using Fourier transforms

2

Why do we care?

3

Why study Fourier transforms and
convolution?

• In the remainder of the course, we’ll study several
methods that depend on analysis of images or
reconstruction of structure from images:
– Light microscopy (particularly fluorescence microscopy)
– Cryoelectron microscopy
– X-ray crystallography

• The computational aspects of each of these
methods involve Fourier transforms and convolution

• Fourier transforms are also used in methods for
– Ligand docking and virtual screening
– Molecular dynamics simulations

Convolution

5

Time (minutes)

A
ir

qu
al

ity
 (t

ru
e

va
lu

e)

A function, as stored in a computer

Time (minutes)

A
ir

qu
al

ity
 (m

ea
su

re
d

va
lu

e)
In practice, measurements are imperfect

—there’s always some noise

Convolution

8

Moving averages

Time (minutes)

A
ir

qu
al

ity
 (m

ea
su

re
d

va
lu

e)
Original data (measurements)

Time (minute)

A
ir

qu
al

ity
 (m

ov
in

g
av

er
ag

e)
Moving average

Weighting function
(equal weights)

Time (minutes)

A
ir

qu
al

ity
 (m

ov
in

g
av

er
ag

e)
Weighted moving average

Weighting function
(unequal weights)

A convolution is basically a
weighted moving average

• We’re given an array of numerical values
– We can think of this array as specifying values of a function at

regularly spaced intervals
• To compute a moving average, we replace each value in

the array with the average of several values that precede
and follow it (i.e., the values within a window)

• We might choose instead to calculate a weighted moving
average, where we again replace each value in the array
with the average of several surrounding values, but we
weight those values differently

• We can express this as a convolution of the original
function (i.e., array) with another function (array) that
specifies the weights on each value in the window 12

Example

13

f g

f convolved with g (written f∗g)

Convolution

14

Mathematical definition

Convolution: mathematical definition

• If f and g are functions defined at evenly spaced
points, their convolution is given by:

15

f ∗g() n[]= f m[]
m=−∞

∞

∑ g n −m[]

Convolution

16

Multidimensional convolution

Images as functions of two variables

• Many of the applications we’ll
consider involve images

• A grayscale image can be
thought of as a function of
two variables
– The position of each pixel

corresponds to some value of x
and y

– The brightness of that pixel is
proportional to f(x,y)

17

x

y

Two-dimensional convolution

• In two-dimensional convolution, we replace each
value in a two-dimensional array with a weighted
average of the values surrounding it in two
dimensions
– We can represent two-dimensional arrays as functions

of two variables, or as matrices, or as images

18

Two-dimensional convolution: example

19

f g

f∗g (f convolved with g)

Multidimensional convolution

• The concept generalizes to higher dimensions
• For example, in three-dimensional convolution,

we replace each value in a three-dimensional
array with a weighted average of the values
surrounding it in three dimensions

20

Fourier transforms

21

Fourier transforms

22

Writing functions as sums of sinusoids

Writing functions as sums of sinusoids
• Given a function defined on an interval of length L,

we can express it as a sum of sinusoids whose
periods are L, L/2, L/3, L/4, … (plus a constant term)

23

Original function Sum of sinusoids below

+ + +

Decreasing period
Increasing frequency

Writing functions as sums of sinusoids
• Given a function defined on an interval of length L,

we can write it as a sum of sinusoids whose periods
are L, L/2, L/3, L/4, … (plus a constant term)

24

Original function sum of 49 sinusoids (plus constant term)

sum of 50 sinusoids (plus constant term)

+ +

Magnitude: 0.39

+

• Each of these sinusoidal terms has a magnitude
(scale factor) and a phase (shift).

Original function Sum of sinusoids below

Magnitude: 1.9
Phase: -.94

Magnitude: 0.27
Phase: -1.4 Phase: -2.8

Writing functions as sums of sinusoids

Magnitude: -0.3
Phase: 0 (arbitrary)

• We can thus express the original function as a
series of magnitude and phase coefficients
– If the original function is defined at N equally spaced

points, we’ll need N magnitude and phase coefficients
– If the original function is defined at an infinite set of

inputs, we’ll need an infinite set of magnitude and
phase coefficients—but we can approximate the
function with just the first few

Expressing a function as a set of
sinusoidal term coefficients

Magnitude: 0.39Magnitude: 1.9
Phase: -.94

Magnitude: 0.27
Phase: -1.4 Phase: -2.8

Magnitude: -0.3

Sinusoid 1
(period L, frequency 1/L)

Constant term
(frequency 0)

Sinusoid 2
(period L/2, frequency 2/L)

Sinusoid 3
(period L/3, frequency 3/L)

Phase: 0 (arbitrary)

Using complex numbers to represent
magnitude plus phase

• We can express the magnitude and phase
coefficients of each sinusoidal component using
a single complex number

27

Imaginary part

Real
part

Magnitude = length
of blue arrow

Phase =
angle of blue arrow

Using complex numbers to represent
magnitude plus phase

• We can express the magnitude and phase
coefficients of each sinusoidal component using
a single complex number

• Thus we can express our original function as a
set of complex numbers representing the
sinusoidal components
– This turns out to be more convenient (mathematically

and computationally) than storing magnitudes and
phases

The Fourier transform

• The Fourier transform maps a function to a set of
complex numbers representing sinusoidal
coefficients
– We also say it maps the function from “real space” to

“Fourier space” (or “frequency space”)
– Note that in a computer, we can represent a function as

an array of numbers giving the values of that function at
equally spaced points.

• The inverse Fourier transform maps in the other
direction
– It turns out that the Fourier transform and inverse

Fourier transform are almost identical. A program that
computes one can easily be used to compute the other.

Why do we want to express our function
using sinusoids?

• Sinusoids crop up all over the place in nature
– For example, sound is usually described in terms of

different frequencies
• Sinusoids have the unique property that if you

sum two sinusoids of the same frequency (of any
phase or magnitude), you always get another
sinusoid of the same frequency
– This leads to some very convenient computational

properties that we’ll come to later

30

Fourier transforms

31

The Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT)

• The number of arithmetic operations required to
compute the Fourier transform of N numbers
(i.e., of a function defined at N points) in a
straightforward manner is proportional to N2

• Surprisingly, it is possible to reduce this N2 to
NlogN using a clever algorithm
– This algorithm is the Fast Fourier Transform (FFT)
– It is arguably the most important algorithm of the past

century
– (For this class, you’re not required to know just how

this algorithm works, although it’s really interesting!)
32

Fourier transforms

33

Multidimensional Fourier Transforms

Images as functions of two variables

• Many of the applications we’ll
consider involve images

• A grayscale image can be
thought of as a function of
two variables
– The position of each pixel

corresponds to some value of x
and y

– The brightness of that pixel is
proportional to f(x,y)

34

x

y

Two-dimensional Fourier transform
• We can express functions of two variables as sums of sinusoids
• Each sinusoid has a frequency in the x-direction and a frequency

in the y-direction
• We need to specify a magnitude and a phase for each sinusoid
• Thus the 2D Fourier transform maps the original function to a

complex-valued function of two frequencies

35

f x, y() = sin 2π ⋅0.02x + 2π ⋅0.01y()

Three-dimensional Fourier transform

• The 3D Fourier transform maps functions of three
variables (i.e., a function defined on a volume) to
a complex-valued function of three frequencies

• 2D and 3D Fourier transforms can also be
computed efficiently using the FFT algorithm

36

37

Performing convolution using Fourier
transforms

Relationship between convolution and
Fourier transforms

• It turns out that convolving two functions is
equivalent to multiplying them in the frequency
domain
– One multiplies the complex numbers representing

coefficients at each frequency
• In other words, we can perform a convolution by

taking the Fourier transform of both functions,
multiplying the results, and then performing an
inverse Fourier transform

38

Why does this relationship matter?

• First, it allows us to perform convolution faster
– If two functions are each defined at N points, the

number of operations required to convolve them in the
straightforward manner is proportional to N2

– If we use Fourier transforms and take advantage of the
FFT algorithm, the number of operations is
proportional to NlogN

• Second, it allows us to characterize convolution
operations in terms of modification to
components of a function at each frequency
– For example, convolution with a Gaussian will

preserve low-frequency components while reducing
magnitude of high-frequency components

