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Why do we care?
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Why study Fourier transforms and 
convolution? 

• In the remainder of the course, we’ll study several 
methods that depend on analysis of images or 
reconstruction of structure from images: 
– Light microscopy (particularly fluorescence microscopy) 
– Cryoelectron microscopy  
– X-ray crystallography 

• The computational aspects of each of these 
methods involve Fourier transforms and convolution 

• Fourier transforms are also used in methods for 
– Ligand docking and virtual screening 
– Molecular dynamics simulations



Convolution
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Convolution
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Moving averages
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A convolution is basically a  
weighted moving average

• We’re given an array of numerical values 
– We can think of this array as specifying values of a function at 

regularly spaced intervals 
• To compute a moving average, we replace each value in 

the array with the average of several values that precede 
and follow it (i.e., the values within a window) 

• We might choose instead to calculate a weighted moving 
average, where we again replace each value in the array 
with the average of several surrounding values, but we 
weight those values differently 

• We can express this as a convolution of the original 
function (i.e., array) with another function (array) that 
specifies the weights on each value in the window  12



Example
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f g

f convolved with g (written f∗g)



Convolution
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Mathematical definition



Convolution: mathematical definition

• If f and g are functions defined at evenly spaced 
points, their convolution is given by: 
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f ∗g( ) n[ ]= f m[ ]
m=−∞

∞

∑ g n −m[ ]



Convolution
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Multidimensional convolution



Images as functions of two variables

• Many of the applications we’ll 
consider involve images 

• A grayscale image can be 
thought of as a function of 
two variables 
– The position of each pixel 

corresponds to some value of x 
and y 

– The brightness of that pixel is 
proportional to f(x,y)
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Two-dimensional convolution

• In two-dimensional convolution, we replace each 
value in a two-dimensional array with a weighted 
average of the values surrounding it in two 
dimensions 
– We can represent two-dimensional arrays as functions 

of two variables, or as matrices, or as images
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Two-dimensional convolution: example
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f g

f∗g (f convolved with g)



Multidimensional convolution

• The concept generalizes to higher dimensions 
• For example, in three-dimensional convolution, 

we replace each value in a three-dimensional 
array with a weighted average of the values 
surrounding it in three dimensions
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Fourier transforms
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Fourier transforms
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Writing functions as sums of sinusoids



Writing functions as sums of sinusoids
• Given a function defined on an interval of length L, 

we can express it as a sum of sinusoids whose 
periods are L, L/2, L/3, L/4, … (plus a constant term)
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Original function Sum of sinusoids below

+ + +

Decreasing period 
Increasing frequency



Writing functions as sums of sinusoids
• Given a function defined on an interval of length L, 

we can write it as a sum of sinusoids whose periods 
are L, L/2, L/3, L/4, … (plus a constant term)
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Original function sum of 49 sinusoids (plus constant term)

sum of 50 sinusoids (plus constant term)



+ +

Magnitude: 0.39

+

• Each of these sinusoidal terms has a magnitude 
(scale factor) and a phase (shift).

Original function Sum of sinusoids below

Magnitude: 1.9
Phase: -.94

Magnitude: 0.27
Phase: -1.4 Phase: -2.8

Writing functions as sums of sinusoids

Magnitude: -0.3
Phase: 0 (arbitrary)



• We can thus express the original function as a 
series of magnitude and phase coefficients  
– If the original function is defined at N equally spaced 

points, we’ll need N magnitude and phase coefficients 
– If the original function is defined at an infinite set of 

inputs, we’ll need an infinite set of magnitude and 
phase coefficients—but we can approximate the 
function with just the first few

Expressing a function as a set of 
sinusoidal term coefficients

Magnitude: 0.39Magnitude: 1.9
Phase: -.94

Magnitude: 0.27
Phase: -1.4 Phase: -2.8

Magnitude: -0.3

Sinusoid 1  
(period L, frequency 1/L)

Constant term  
(frequency 0)

Sinusoid 2  
(period L/2, frequency 2/L)

Sinusoid 3  
(period L/3, frequency 3/L)

Phase: 0 (arbitrary)



Using complex numbers to represent 
magnitude plus phase

• We can express the magnitude and phase 
coefficients of each sinusoidal component using 
a single complex number
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Imaginary part

Real 
part

Magnitude = length 
of blue arrow

Phase =  
angle of blue arrow



Using complex numbers to represent 
magnitude plus phase

• We can express the magnitude and phase 
coefficients of each sinusoidal component using 
a single complex number 

• Thus we can express our original function as a 
set of complex numbers representing the 
sinusoidal components 
– This turns out to be more convenient (mathematically 

and computationally) than storing magnitudes and 
phases



The Fourier transform

• The Fourier transform maps a function to a set of 
complex numbers representing sinusoidal 
coefficients 
– We also say it maps the function from “real space” to 

“Fourier space” (or “frequency space”) 
– Note that in a computer, we can represent a function as 

an array of numbers giving the values of that function at 
equally spaced points. 

• The inverse Fourier transform maps in the other 
direction 
– It turns out that the Fourier transform and inverse 

Fourier transform are almost identical.  A program that 
computes one can easily be used to compute the other.



Why do we want to express our function 
using sinusoids?

• Sinusoids crop up all over the place in nature 
– For example, sound is usually described in terms of 

different frequencies 
• Sinusoids have the unique property that if you 

sum two sinusoids of the same frequency (of any 
phase or magnitude), you always get another 
sinusoid of the same frequency 
– This leads to some very convenient computational 

properties that we’ll come to later
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Fourier transforms
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The Fast Fourier Transform (FFT)



The Fast Fourier Transform (FFT)

• The number of arithmetic operations required to 
compute the Fourier transform of N numbers 
(i.e., of a function defined at N points) in a 
straightforward manner is proportional to N2 

• Surprisingly, it is possible to reduce this N2 to 
NlogN using a clever algorithm 
– This algorithm is the Fast Fourier Transform (FFT) 
– It is arguably the most important algorithm of the past 

century 
– (For this class, you’re not required to know just how 

this algorithm works, although it’s really interesting!)
32



Fourier transforms
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Multidimensional Fourier Transforms



Images as functions of two variables

• Many of the applications we’ll 
consider involve images 

• A grayscale image can be 
thought of as a function of 
two variables 
– The position of each pixel 

corresponds to some value of x 
and y 

– The brightness of that pixel is 
proportional to f(x,y)
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Two-dimensional Fourier transform
• We can express functions of two variables as sums of sinusoids 
• Each sinusoid has a frequency in the x-direction and a frequency 

in the y-direction 
• We need to specify a magnitude and a phase for each sinusoid 
• Thus the 2D Fourier transform maps the original function to a 

complex-valued function of two frequencies
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f x, y( ) = sin 2π ⋅0.02x + 2π ⋅0.01y( )



Three-dimensional Fourier transform

• The 3D Fourier transform maps functions of three 
variables (i.e., a function defined on a volume) to 
a complex-valued function of three frequencies 

• 2D and 3D Fourier transforms can also be 
computed efficiently using the FFT algorithm  
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Performing convolution using Fourier 
transforms



Relationship between convolution and 
Fourier transforms

• It turns out that convolving two functions is 
equivalent to multiplying them in the frequency 
domain 
– One multiplies the complex numbers representing 

coefficients at each frequency 
• In other words, we can perform a convolution by 

taking the Fourier transform of both functions, 
multiplying the results, and then performing an 
inverse Fourier transform
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Why does this relationship matter?

• First, it allows us to perform convolution faster 
– If two functions are each defined at N points, the 

number of operations required to convolve them in the 
straightforward manner is proportional to N2 

– If we use Fourier transforms and take advantage of the 
FFT algorithm, the number of operations is 
proportional to NlogN 

• Second, it allows us to characterize convolution 
operations in terms of modification to 
components of a function at each frequency 
– For example, convolution with a Gaussian will 

preserve low-frequency components while reducing 
magnitude of high-frequency components


