Overview

» Forums provide a wealth of information

» Semi structured data not taken
advantage of by popular search
software

* Despite being crawled, many

information rich posts are lost in low
page rank

Board Search
An Internet Forum Index

Forum Examples

vBulletin

» phpBB

- UBB

* Invision

* YaBB

* Phorum
WWWBoard

| Finding g Lot Pt

TomTon o T

Pawé_

e =rr=—rrrerrereen

Pty oy et Pen

Current Solutions

» Search engines
* Forum’s internal search

[Lvc s JS— s LR e : f

- = Combing

e

Evaluation Metric

Metrics: Recall - C/N, Precision C/E

Rival system:

« Rival system is the search engine / forum internal
search combination

» Rival system lacks precision

Evaluations:
« How good our system is at finding forums

* How good our system is at finding relevant
posts/threads

Problems:
« Relevance is in the eye of the beholder
* How many correct extractions exist?

Implementation

* Lucene

» Mysql

Ted.Grenager’'s Crawler Source
Jakarta HTTPClient

Improving Software Package
Search Quality
Dan Fingal

and
Jamie Nicolson

The Problem

» Search engines for softare packages
typically perform poorly
» Tend to search project name an blurb only

» For example...

Sourceforge.org

Gentoo.org

I

i

i
g1t
i

Freshmeat.net

How can we improve this?

Better keyword matching

Better ranking of the results

Better source of information about the
package

Pulling in nearest neighbors of top
matches

Better Sources of Information

» Every package is associated with a
website that contains much more detailed
information about it

» Spidering these sites should give us a
richer representation of the package

» Freshmeat.net has data regarding
popularity, vitality, and user ratings

Building the System

Will spider freshmeat.net and the project
webpages, put into mySQL database

Also convert gentoo package database to
mySQL
Text indexing done with Lucene

Results generator will combine this with
other available metrics

How do we measure success?

» Create a gold corpus of queries to relevant
packages

» Measure precision within the first N results

» Compare results with search on
packages.gentoo.org, freshmeat.net, and
google.com

Any questions?

Incorporating Social Clusters in Email
Classification

By
Mahesh Kumar Chhaparia

Previous Work

Previous work on email classification focus mostly on:
— Binary classification (spam vs. Non-spam)

— Supervised learning techniques for grouping into multiple existing
folders

* Rule-based learning, naive-Bayes classifier, support vector machines
« Sender and recipient information usually discarded

Some existing classification tools
— POPFile : Naive-Bayes classifier
— RIPPER : Rule-Based learning
— MailCat : TF-IDF weighting

Email Classification

« Emails:
— Usually small documents
— Keyword sharing across related emails may be small or indistinctive
— Hence, on-the-fly training may be slow
— Classifications change over time, and
— Different for different users !!

* Motivation:

— The sender-receiver link mostly has a unique role (social/professional)
for a particular user

— Hence, it may be used as one of the distinctive characteristics of
classification

Incorporating Social Clusters

Identify initial social clusters (unsupervised)
Weights to distinguish

— From and cc fields,

— Number of occurrences in distinct emails

Study effects of incorporating sender and recipient information:
— Can it substitute part of the training required ?
— Can it compensate for documental evidence of similarity ?
— Quality of results vs. Training time tradeoff ?
— How does it affect regular classification if used as terms too ?

Evaluation

* Recently Enron Email Dataset made public
— The only substantial collection of “real” email that is public
— Fast becoming a benchmark for most of the experiments in
« Social Network Analysis
« Email Classification
« Textual Analysis ...

« Study/Comparison of aforementioned metrics with the already
available folder classification on Enron Dataset

Extensions

Role discovery using Author-Topic-Recipient Model to facilitate
classification

Lexicon expansion to capture similarity in small amounts of data
Using past history of conversation to relate messages

References

. Provost, J. “Naive-Bayes vs. Rule-Learning in Classification of Email”,
The University of Texas at Austin, Artificial Intelligence Lab. Technical
Report AI-TR-99-284, 1999.

. E. Crawford, J. Kay, and E. McCreath, “Automatic Induction of Rules for
E-mail Classification,” in Proc. Australasian Document Computing
Symposium 2001.

. Kiritchenko S. & Matwin S. “Email Classification with Co-Training”,
CASCON'02 (IBM Center for Advanced Studies Conference), Toronto,
2002.

. Nicolas Turenne. “Learning Semantic Classes for improving Email
Classification”, Proc. IJCAlI 2003, Text-Mining and Link-Analysis
Workshop, 2003.

. Manu Arey & Sharma Chakravarthy. “eMailSift: Adapting Graph Mining
Techniques for Email Classification”, SIGIR 2004.

A research literature search engine
with abbreviation recognition

Group members
Cheng-Tao Chu
Pei-Chin Wang

Motivation

« Existing research literature search engines
don't perform well in author, conference,
proceedings abbreviation

» Ex: search “C. Manning, IJCAI" in Citeseer,
Google Scholar

st 1 10 9 abond 333 or € Maseing LICAI (0,83 sacsnch

Outline

* Motivation

» Approach
— Architecture

» Technology
» Evaluation

Searching for PHRASE c manning gcal

Resinct to: Header Tale Orderby Espected ceatons Hubs Usage Dale Try Google [(CeSeer) Google (Web) Yahoo! MSN
[c58 DaLP

ria documents match Boalean queny. Trying non-Boolean relevance query.

500 documents fousd. Order: relevance to query.

[Appication of Color to Reduce Complewity in A, - Yodtsky , (2002) (T
Ropecaion of Cokr ko Radice Compley i Ae Trakc Conto
ach220 1z faa g ot ag-et.

L mri o Gemant iispentatin: Sesto - Mogney (1999 ect) [chations)
Dusriting Down Raymond J. Mocoe; OM uf:urwr Scences Uneraity of Texas Austn, T

tions Of The Seaesdnger Equation. Ground Stxte . - Dverak, Skala |
5¢‘-|r\evlhwr;ﬁ 121 16 Prague 2, cm..n.m

I\azine Traslanon e Cormgle

[Machne Trmw and Comples Predicates - auu Universitat

|4 Linfiect Moded of 53ustural Organizaton n Language and Muss - Bod
nsnsmuc i Logee, Language and Computation unwml;‘ of Amsterdam, Heuwe

Goal

« Instead of searching by only index, identify
the semantic in query

» Recognize abbreviation for author and
proceedings names

Approach

Crawl DBLP as the data source

Index the data with fields of authors, proceedings, etc.
Train the tagger to recognize authors and proceedings
Use the probabilistic model to calculate the probability of
each possible name

Use the tailored edit distance function to calculate the
weight of each possible proceeding

Combine these weights to the score of each selected
result

Architecture

DBLP

@ Database
uer
Q y Search
Browser Engine
Retrieved g
Documents

Technology

Crawler: UbiCrawler

Tagger: LingPipe or YamCha
Search Engine: Lucene

Bayesian Network: BNJ

Web Server: Tomcat

Database: MySQL

Programming Language: J2SE 1.4.2

Evaluation

1. We will ask for friends to participate in the
evaluation (estimated: 2000 queries/200 friends).
2. Randomly sample 1000 data from DBLP,
extract the authors and proceedings info, query
with abbreviated info, check how well the
retrieved documents match the result from the
Google scholar

A Web-based Question
Answering System

Yu-shan & Wenxiu
01.25.2005

Outline

QA Background
Introduction to our system
System architecture

— Query classification

— Query rewriting

— Pattern learning
Evaluation

QA Background

« Traditional Search Engine

— Google, Yahoo, MSN,...

— Users construct keywords query

— Users go through the HitPages to find answer
¢ Question Answering SE

— Askjeeve, AskMSR, ...

— Users ask in natural language pattern

— Return short answers

— Maybe support by reference

Our QA System

Open domain

Massive web documents based

— redundancy guarantee effective
Question classification

— focus on numeric, definition, human...

Exact answer pattern

System Architecture

fupduvioed Lennig |
tatktics Seore
e |
e ANSWE i ever Panern mateh ._/J

Question Classifier

Given a question, map it to one of the predefined
classes.

6 coarse classes (Abbreviation, Entity,
Description, Human, Location, and Numeric
Value) and 50 fine classes.

Also show syntactic analysis result such as POS
Tagging, Name Entity Tagging, and Chunking.

http://12r.cs.uiuc.edu/~cogcomp/demo.php?dkey=QC

Query Rewrite

 Use the syntactic analysis result to decide
which part of question to be expanded with
synonym.

» Use WordNet for synonyms.

Answer Pattern Learning

» Supervised machine learning approach
» Select correct answers/patterns manually
« Statistics answer pattern rule

Evaluation

¢ Use TREC 2003 QA set. Answers are retrieved
from the Web, not from TREC corpus.

« Metrics
- MRR(Mean Peciprocal Rank) of the first correct
answer
- NAns(Number of Questions Correctly
Answered), and
- %Ans(the proportion of Questions Correctly
Answered)

Streaming XPath Engine

Oleg Slezberg
Amruta Joshi

Traditional XML Processing

« Parse whole document into a DOM

tree structure
HML Documnent

* Query engine search the in-memory 1
tree to get the result
. COI’]SZ EML Parser
— Extensive memory overhead l
— Unnecessary multiple traversals of the Build Tres
document fragment
* E.G./Descendent::x/ancestor::y/child::z 1
— Can not return result as early as e
possible
« E.G. Non-blocking query Figure 1

Streaming XML Processing

XML parser is event-based,

ML D
such as SAX s
XPath processor performs the l
online event-based matching e e e

Pros:

— Less memory overhead i I l

— Only process necessary Seecuized XPah

part of input document Procaseor oo
— Result returned on-the-fly,

efficient support for non-

blocking query

What is XPath?

¢ A syntax used for selecting parts of an XML
document

« Describes paths to elements similar to an os
describing paths to files

¢ Almost a small programming language; it has
functions, tests, and expressions

* W3C standard

« Not itself written as XML, but is used heavily in
XSLT

A Simple Example

An XML document | | SAX API Event

<doc>

</doc>

<paral> Start element: paral
Hello world! data: Hello world!
</paral> End element: paral

<para2> ... </para2>

Start element: doc

End element: doc

XPath query Q = /doc/paral/data()
Traditional processing:

— Buildan
- Return

in-memory DOM strucuture
Hello world” after end document

Streaming processing

- Match /d
- Match /d
- Return |

loc in Q when start element doc
oc/paral in Q when start element paral
Hello world” when end element paral

10

Objective

* Build an Streaming XPath Engine using
TurboXPath algorithm

» Contributions:

— comparison of FA-based (XSQ) and tree-
based (TurboXPath) algorithms

— performance comparison between
TurboXPath & XSQ

XPath Challenges

» Predicates

» Backward axis

« Common subexpressions

» /[+ nested tags (e.g. <a> ... <a>)

o *

» Children in predicates that are not yet seen
(e.g. a[b)/c and c is streamed before b)

» Simultaneous multiple XPath query processing

Algorithms

 Finite-Automata Based
— XFilter
— YFilter
- XSQ
» Tree-Based
— XAOS
— TurboXPath

Evaluation

» Implementations will be evaluated for
— Feature Completeness
— Performance (QPS rate)

* XMark
— XML Benchmarking Software

11

