
1

Board Search
An Internet Forum Index

Overview

• Forums provide a wealth of information
• Semi structured data not taken

advantage of by popular search
software

• Despite being crawled, many
information rich posts are lost in low
page rank

Forum Examples

• vBulletin
• phpBB
• UBB
• Invision
• YaBB
• Phorum
• WWWBoard

vBulletin

phpBB UBB

2

gentoo evolutionM

bayareaprelude warcraft

Paw talk Current Solutions

• Search engines
• Forum’s internal search

3

Google lycos

internal boardsearch

boardsearch
Evaluation Metric

Metrics: Recall - C/N, Precision C/E

Rival system:
• Rival system is the search engine / forum internal

search combination
• Rival system lacks precision

Evaluations:
• How good our system is at finding forums
• How good our system is at finding relevant

posts/threads

Problems:
• Relevance is in the eye of the beholder
• How many correct extractions exist?

4

Implementation

• Lucene
• Mysql
• Ted Grenager’s Crawler Source
• Jakarta HTTPClient

Improving Software Package
Search Quality

Dan Fingal
and

Jamie Nicolson

The Problem

• Search engines for softare packages
typically perform poorly

• Tend to search project name an blurb only
• For example…

Sourceforge.org

Gentoo.org Freshmeat.net

5

How can we improve this?

• Better keyword matching
• Better ranking of the results
• Better source of information about the

package
• Pulling in nearest neighbors of top

matches

Better Sources of Information

• Every package is associated with a
website that contains much more detailed
information about it

• Spidering these sites should give us a
richer representation of the package

• Freshmeat.net has data regarding
popularity, vitality, and user ratings

Building the System

• Will spider freshmeat.net and the project
webpages, put into mySQL database

• Also convert gentoo package database to
mySQL

• Text indexing done with Lucene
• Results generator will combine this with

other available metrics

How do we measure success?

• Create a gold corpus of queries to relevant
packages

• Measure precision within the first N results
• Compare results with search on

packages.gentoo.org, freshmeat.net, and
google.com

Any questions?

Incorporating Social Clusters in Email
Classification

By
Mahesh Kumar Chhaparia

6

Previous Work

• Previous work on email classification focus mostly on:
– Binary classification (spam vs. Non-spam)
– Supervised learning techniques for grouping into multiple existing

folders
• Rule-based learning, naïve-Bayes classifier, support vector machines
• Sender and recipient information usually discarded

• Some existing classification tools
– POPFile : Naïve-Bayes classifier
– RIPPER : Rule-Based learning
– MailCat : TF-IDF weighting

Email Classification

• Emails:
– Usually small documents
– Keyword sharing across related emails may be small or indistinctive
– Hence, on-the-fly training may be slow
– Classifications change over time, and
– Different for different users !!

• Motivation:
– The sender-receiver link mostly has a unique role (social/professional)

for a particular user
– Hence, it may be used as one of the distinctive characteristics of

classification

Incorporating Social Clusters

• Identify initial social clusters (unsupervised)
• Weights to distinguish

– From and cc fields,
– Number of occurrences in distinct emails

• Study effects of incorporating sender and recipient information:
– Can it substitute part of the training required ?
– Can it compensate for documental evidence of similarity ?
– Quality of results vs. Training time tradeoff ?
– How does it affect regular classification if used as terms too ?

Evaluation

• Recently Enron Email Dataset made public
– The only substantial collection of “real” email that is public
– Fast becoming a benchmark for most of the experiments in

• Social Network Analysis
• Email Classification
• Textual Analysis …

• Study/Comparison of aforementioned metrics with the already
available folder classification on Enron Dataset

Extensions

• Role discovery using Author-Topic-Recipient Model to facilitate
classification

• Lexicon expansion to capture similarity in small amounts of data
• Using past history of conversation to relate messages

References

• Provost, J. “Naïve-Bayes vs. Rule-Learning in Classification of Email”,
The University of Texas at Austin, Artificial Intelligence Lab. Technical
Report AI-TR-99-284, 1999.

• E. Crawford, J. Kay, and E. McCreath, “Automatic Induction of Rules for
E-mail Classification,” in Proc. Australasian Document Computing
Symposium 2001.

• Kiritchenko S. & Matwin S. “Email Classification with Co-Training”,
CASCON’02 (IBM Center for Advanced Studies Conference), Toronto,
2002.

• Nicolas Turenne. “Learning Semantic Classes for improving Email
Classification”, Proc. IJCAI 2003, Text-Mining and Link-Analysis
Workshop, 2003.

• Manu Arey & Sharma Chakravarthy. “eMailSift: Adapting Graph Mining
Techniques for Email Classification”, SIGIR 2004.

7

A research literature search engine
with abbreviation recognition

Group members
Cheng-Tao Chu
Pei-Chin Wang

Outline

• Motivation
• Approach

– Architecture
• Technology
• Evaluation

Motivation

• Existing research literature search engines
don’t perform well in author, conference,
proceedings abbreviation

• Ex: search “C. Manning, IJCAI” in Citeseer,
Google Scholar

Search result in Google Scholar Goal

• Instead of searching by only index, identify
the semantic in query

• Recognize abbreviation for author and
proceedings names

8

Approach
• Crawl DBLP as the data source
• Index the data with fields of authors, proceedings, etc.
• Train the tagger to recognize authors and proceedings
• Use the probabilistic model to calculate the probability of

each possible name
• Use the tailored edit distance function to calculate the

weight of each possible proceeding
• Combine these weights to the score of each selected

result

Architecture

Database

Crawler

Tagger

DBLP

Search
EngineBrowser

Probabilistic
Model

Tailored
Edit Distance

Query

Retrieved
Documents

Technology

• Crawler: UbiCrawler
• Tagger: LingPipe or YamCha
• Search Engine: Lucene
• Bayesian Network: BNJ
• Web Server: Tomcat
• Database: MySQL
• Programming Language: J2SE 1.4.2

Evaluation

• 1. We will ask for friends to participate in the
evaluation (estimated: 2000 queries/200 friends).

• 2. Randomly sample 1000 data from DBLP,
extract the authors and proceedings info, query
with abbreviated info, check how well the
retrieved documents match the result from the
Google scholar

A Web-based Question
Answering System

Yu-shan & Wenxiu
01.25.2005

Outline

• QA Background
• Introduction to our system
• System architecture

– Query classification
– Query rewriting
– Pattern learning

• Evaluation

9

QA Background

• Traditional Search Engine
– Google, Yahoo, MSN,…
– Users construct keywords query
– Users go through the HitPages to find answer

• Question Answering SE
– Askjeeve, AskMSR, …
– Users ask in natural language pattern
– Return short answers
– Maybe support by reference

Our QA System

• Open domain

• Massive web documents based

– redundancy guarantee effective

• Question classification

– focus on numeric, definition, human…

• Exact answer pattern

System Architecture Question Classifier
• Given a question, map it to one of the predefined

classes.
• 6 coarse classes (Abbreviation, Entity,

Description, Human, Location, and Numeric
Value) and 50 fine classes.

• Also show syntactic analysis result such as POS
Tagging, Name Entity Tagging, and Chunking.

• http://l2r.cs.uiuc.edu/~cogcomp/demo.php?dkey=QC

Query Rewrite

• Use the syntactic analysis result to decide
which part of question to be expanded with
synonym.

• Use WordNet for synonyms.

Answer Pattern Learning

• Supervised machine learning approach
• Select correct answers/patterns manually
• Statistics answer pattern rule

10

Evaluation
• Use TREC 2003 QA set. Answers are retrieved

from the Web, not from TREC corpus.
• Metrics

- MRR(Mean Peciprocal Rank) of the first correct
answer
- NAns(Number of Questions Correctly
Answered), and
- %Ans(the proportion of Questions Correctly
Answered)

Streaming XPath Engine

Oleg Slezberg
Amruta Joshi

Traditional XML Processing
• Parse whole document into a DOM

tree structure
• Query engine search the in-memory

tree to get the result
• Cons:

– Extensive memory overhead
– Unnecessary multiple traversals of the

document fragment
• E.G. /Descendent::x/ancestor::y/child::z

– Can not return result as early as
possible

• E.G. Non-blocking query

Streaming XML Processing

• XML parser is event-based,
such as SAX

• XPath processor performs the
online event-based matching

• Pros:
– Less memory overhead
– Only process necessary

part of input document
– Result returned on-the-fly,

efficient support for non-
blocking query

What is XPath?
• A syntax used for selecting parts of an XML

document
• Describes paths to elements similar to an os

describing paths to files
• Almost a small programming language; it has

functions, tests, and expressions
• W3C standard
• Not itself written as XML, but is used heavily in

XSLT

A Simple Example

• XPath query Q = /doc/para1/data()
• Traditional processing:

– Build an in-memory DOM strucuture
– Return “Hello world” after end document

• Streaming processing
– Match /doc in Q when start element doc
– Match /doc/para1 in Q when start element para1
– Return “Hello world” when end element para1

doc

para1

Hello, world

<doc>
<para1>

Hello world!
</para1>
<para2> … </para2>
</doc>

An XML document

Start element: doc
Start element: para1
data: Hello world!
End element: para1
...
End element: doc

SAX API Event

para2

11

Objective

• Build an Streaming XPath Engine using
TurboXPath algorithm

• Contributions:
– comparison of FA-based (XSQ) and tree-

based (TurboXPath) algorithms
– performance comparison between

TurboXPath & XSQ

XPath Challenges
• Predicates
• Backward axis
• Common subexpressions
• // + nested tags (e.g. <a> ... <a>)
• *
• Children in predicates that are not yet seen

(e.g. a[b]/c and c is streamed before b)
• Simultaneous multiple XPath query processing

Algorithms

• Finite-Automata Based
– XFilter
– YFilter
– XSQ

• Tree-Based
– XAOS
– TurboXPath

Evaluation

• Implementations will be evaluated for
– Feature Completeness
– Performance (QPS rate)

• XMark
– XML Benchmarking Software

