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CS276B
Text Retrieval and Mining

Winter 2005

Lecture 9

Plan for today

Web size estimation
Mirror/duplication detection
Pagerank

Size of the web
What is the size of the web ?

Issues
The web is really infinite 

Dynamic content, e.g., calendar 
Soft 404: www.yahoo.com/anything is a valid page

Static web contains syntactic duplication, 
mostly due to mirroring (~20-30%)
Some servers are seldom connected

Who cares?
Media, and consequently the user
Engine design
Engine crawl policy. Impact on recall

What can we attempt to 
measure?

The relative size of search engines 
The notion of a page being indexed is still reasonably well 
defined.
Already there are problems

Document extension: e.g. Google indexes pages not yet 
crawled by indexing anchortext.
Document restriction: Some engines restrict what is indexed 
(first n words, only relevant words, etc.) 

The coverage of a search engine relative to 
another particular crawling process.

Statistical methods

Random queries

Random searches

Random IP addresses

Random walks
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URL sampling via Random 
Queries

Ideal strategy: Generate a random URL and 
check for containment in each index.

Problem: Random URLs are hard to find!

Random queries [Bhar98a]

Sample URLs randomly from each engine
20,000 random URLs from each engine

Issue random conjunctive query with <200 results
Select a random URL from the top 200 results

Test if present in other engines. 
Query with 8 rarest words. Look for URL match

Compute intersection & size ratio

Issues
Random narrow queries may bias towards long documents
(Verify with disjunctive queries)
Other biases induced by process

Intersection =  x% of E1  =  y% of E2
E1/E2 = y/x E1 E2

Random searches

Choose random searches extracted from a 
local log [Lawr97] or build “random 
searches” [Note02]

Use only queries with small results sets. 
Count normalized URLs in result sets.
Use ratio statistics

Advantage:
Might be a good reflection of the human 
perception of coverage

Random searches [Lawr98, Lawr99]

575 & 1050 queries from the NEC RI employee logs
6 Engines in 1998, 11 in 1999
Implementation:

Restricted to queries with < 600 results in total
Counted URLs from each engine after verifying query 
match
Computed size ratio & overlap for individual queries 
Estimated index size ratio & overlap by averaging over all 
queries

Issues

Samples are correlated with source of log
Duplicates
Technical statistical problems (must have non-
zero results, ratio average, use harmonic mean? )

adaptive access control 
neighborhood 
preservation topographic 
hamiltonian structures 
right linear grammar 
pulse width modulation 
neural 
unbalanced prior 
probabilities 
ranked assignment 
method 
internet explorer 
favourites importing 
karvel thornber
zili liu

Queries from Lawrence and Giles study

softmax activation 
function 
bose multidimensional 
system theory 
gamma mlp
dvi2pdf 
john oliensis
rieke spikes exploring 
neural 
video watermarking 
counterpropagation
network 
fat shattering dimension 
abelson amorphous 
computing

Size of the Web Estimation
[Lawr98, Bhar98a]

Capture – Recapture technique
Assumes engines get independent random 
subsets of the Web

E2 contains x% of E1.
Assume, E2 contains x% 
of the Web as well

Knowing size of E2 
compute size of the Web
Size of the Web = 100*E2/x

E1
E2

WEB

Bharat & Broder: 200 M (Nov 97), 275 M (Mar 98) 
Lawrence & Giles: 320 M (Dec 97)
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Random IP addresses [Lawr99]

Generate random IP addresses
Find, if possible, a web server at the given 
address
Collect all pages from server
Advantages

Clean statistics, independent of any crawling 
strategy

Random IP addresses  [ONei97, Lawr99]

HTTP requests to random IP addresses 
Ignored: empty or authorization required or excluded
[Lawr99] Estimated 2.8 million IP addresses running 
crawlable web servers (16 million total) from observing 
2500 servers.
OCLC using IP sampling found 8.7 M hosts in 2001

Netcraft [Netc02] accessed 37.2 million hosts in July 2002

[Lawr99] exhaustively crawled 2500 servers 
and extrapolated

Estimated size of the web to be 800 million
Estimated use of metadata descriptors:

Meta tags (keywords, description) in 34% of home pages, 
Dublin core metadata in 0.3%

Issues

Virtual hosting
Server might not accept http://102.93.22.15
No guarantee all pages are linked to root 
page
Power law for # pages/hosts generates bias

Random walks [Henz99, BarY00, Rusm01]

View the Web as a directed graph from a given list 
of seeds.
Build a random walk on this graph

Includes various “jump” rules back to visited sites
Converges to a stationary distribution

Time to convergence not really known
Sample from stationary distribution of walk
Use the “small results set query” method to check 
coverage by SE
“Statistically clean” method, at least in theory!

Issues

List of seeds is a problem.
Practical approximation might not be valid: 
Non-uniform distribution, subject to link 
spamming
Still has all the problems associated with 
“strong queries”

Conclusions

No sampling solution is perfect. 
Lots of new ideas ...
....but the problem is getting harder
Quantitative studies are fascinating and a 
good research problem
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Duplicates and mirrors

Duplicate/Near-Duplicate Detection

Duplication: Exact match with fingerprints
Near-Duplication: Approximate match

Overview
Compute syntactic similarity with an edit-
distance measure
Use similarity threshold to detect near-
duplicates

E.g.,  Similarity > 80% => Documents are “near 
duplicates”
Not transitive though sometimes used transitively

Computing Similarity

Features:
Segments of a document (natural or artificial 
breakpoints) [Brin95]
Shingles (Word N-Grams)  [Brin95, Brod98]

“a rose is a rose is a rose” => 
a_rose_is_a

rose_is_a_rose
is_a_rose_is 

Similarity Measure
TFIDF [Shiv95]
Set intersection [Brod98]
(Specifically, Size_of_Intersection / Size_of_Union )

Jaccard measure

Shingles + Set Intersection
Computing exact set intersection of shingles 

between all pairs of documents is 
expensive/intractable

Approximate using a cleverly chosen subset of shingles from 
each (a sketch)

Estimate size_of_intersection / size_of_union based 
on a short sketch ( [Brod97, Brod98] )

Create a “sketch vector” (e.g., of size 200) for each document
Documents which share more than t (say 80%) corresponding 
vector elements are similar
For doc D, sketch[ i ] is computed as follows:

Let f map all shingles in the universe to 0..2m (e.g., f = 
fingerprinting)
Let πi be a specific random permutation on 0..2m

Pick MIN πi ( f(s) )  over all shingles s in D

Computing Sketch[i] for Doc1

Document 1

264

264

264

264

Start with 64 bit shingles

Permute on the number line

with πi

Pick the min value

Test if Doc1.Sketch[i] = Doc2.Sketch[i] 

Document 1 Document 2

264

264

264

264

264

264

264

264

Are these equal?

Test for 200 random permutations: π1, π2,… π200

A B
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However…

Document 1 Document 2

264

264

264

264

264

264

264

264

A = B iff the shingle with the MIN value in the union of Doc1 and 
Doc2 is common to both (I.e., lies in the intersection)

This happens with probability:
Size_of_intersection / Size_of_union

BA

Why?  See minhash slides on class website.

Mirror Detection

Mirroring is systematic replication of web pages across hosts.
Single largest cause of duplication on the web

Host1/α and Host2/β are mirrors iff
For all (or most) paths p such that when
http://Host1/ α / p exists
http://Host2/ β / p exists as well

with identical (or near identical) content, and vice versa.

E.g.,
http://www.elsevier.com/ and http://www.elsevier.nl/
Structural Classification of Proteins

http://scop.mrc-lmb.cam.ac.uk/scop
http://scop.berkeley.edu/
http://scop.wehi.edu.au/scop
http://pdb.weizmann.ac.il/scop
http://scop.protres.ru/

Repackaged MirrorsAuctions.msn.com Auctions.lycos.com

Aug 2001

Motivation

Why detect mirrors?
Smart crawling 

Fetch from the fastest or freshest server
Avoid duplication

Better connectivity analysis 
Combine inlinks
Avoid double counting outlinks

Redundancy in result listings
“If that fails you can try: <mirror>/samepath”

Proxy caching

Maintain clusters of subgraphs
Initialize clusters of trivial subgraphs

Group near-duplicate single documents into a cluster
Subsequent passes

Merge clusters of the same cardinality and corresponding linkage

Avoid decreasing cluster cardinality
To detect mirrors we need:

Adequate path overlap 
Contents of corresponding pages within a small time range

Bottom Up Mirror Detection
[Cho00]

Can we use URLs to find 
mirrors?

www.synthesis.org

a b

c
d

synthesis.stanford.edu

a b

c
d

www.synthesis.org/Docs/ProjAbs/synsys/synalysis.html
www.synthesis.org/Docs/ProjAbs/synsys/visual-semi-quant.html
www.synthesis.org/Docs/annual.report96.final.html
www.synthesis.org/Docs/cicee-berlin-paper.html
www.synthesis.org/Docs/myr5
www.synthesis.org/Docs/myr5/cicee/bridge-gap.html
www.synthesis.org/Docs/myr5/cs/cs-meta.html
www.synthesis.org/Docs/myr5/mech/mech-intro-mechatron.html
www.synthesis.org/Docs/myr5/mech/mech-take-home.html
www.synthesis.org/Docs/myr5/synsys/experiential-learning.html
www.synthesis.org/Docs/myr5/synsys/mm-mech-dissec.html
www.synthesis.org/Docs/yr5ar
www.synthesis.org/Docs/yr5ar/assess
www.synthesis.org/Docs/yr5ar/cicee
www.synthesis.org/Docs/yr5ar/cicee/bridge-gap.html
www.synthesis.org/Docs/yr5ar/cicee/comp-integ-analysis.html

synthesis.stanford.edu/Docs/ProjAbs/deliv/high-tech-…
synthesis.stanford.edu/Docs/ProjAbs/mech/mech-enhanced…
synthesis.stanford.edu/Docs/ProjAbs/mech/mech-intro-…
synthesis.stanford.edu/Docs/ProjAbs/mech/mech-mm-case-…
synthesis.stanford.edu/Docs/ProjAbs/synsys/quant-dev-new-…
synthesis.stanford.edu/Docs/annual.report96.final.html
synthesis.stanford.edu/Docs/annual.report96.final_fn.html
synthesis.stanford.edu/Docs/myr5/assessment
synthesis.stanford.edu/Docs/myr5/assessment/assessment-…
synthesis.stanford.edu/Docs/myr5/assessment/mm-forum-kiosk-…
synthesis.stanford.edu/Docs/myr5/assessment/neato-ucb.html
synthesis.stanford.edu/Docs/myr5/assessment/not-available.html
synthesis.stanford.edu/Docs/myr5/cicee
synthesis.stanford.edu/Docs/myr5/cicee/bridge-gap.html
synthesis.stanford.edu/Docs/myr5/cicee/cicee-main.html
synthesis.stanford.edu/Docs/myr5/cicee/comp-integ-analysis.html
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Top Down Mirror Detection
[Bhar99, Bhar00c]
E.g., 
www.synthesis.org/Docs/ProjAbs/synsys/synalysis.html
synthesis.stanford.edu/Docs/ProjAbs/synsys/quant-dev-new-teach.html

What features could indicate mirroring?
Hostname similarity: 

word unigrams and bigrams: { www, www.synthesis, synthesis, …}
Directory similarity: 

Positional path bigrams { 0:Docs/ProjAbs, 1:ProjAbs/synsys, … }

IP address similarity: 
3 or 4 octet overlap
Many hosts sharing an IP address => virtual hosting by an ISP

Host outlink overlap
Path overlap 

Potentially, path + sketch overlap

Implementation

Phase I - Candidate Pair Detection
Find features that pairs of hosts have in common 
Compute a list of host pairs which might be mirrors

Phase II - Host Pair Validation
Test each host pair and determine extent of mirroring
Check if 20 paths sampled from Host1 have near-
duplicates on Host2 and vice versa
Use transitive inferences:

IF Mirror(A,x) AND Mirror(x,B) THEN Mirror(A,B) 
IF Mirror(A,x) AND !Mirror(x,B) THEN !Mirror(A,B)

Evaluation
140 million URLs on 230,000 hosts (1999)
Best approach combined 5 sets of features

Top 100,000 host pairs had precision = 0.57 and recall = 
0.86

Link Analysis on the Web
Citation Analysis

Citation frequency
Co-citation coupling frequency

Cocitations with a given author measures “impact”
Cocitation analysis [Mcca90]

Convert frequencies to correlation coefficients, do 
multivariate analysis/clustering, validate conclusions 
E.g., cocitation in the “Geography and GIS” web shows 
communities [Lars96 ]

Bibliographic coupling frequency
Articles that co-cite the same articles are related 

Citation indexing
Who is a given author cited by? (Garfield [Garf72])

E.g., Science Citation Index ( http://www.isinet.com/ )
CiteSeer ( http://citeseer.ist.psu.edu ) [Lawr99a]

Query-independent ordering

First generation: using link counts as simple 
measures of popularity.
Two basic suggestions:

Undirected popularity:
Each page gets a score = the number of in-links 
plus the number of out-links (3+2=5).

Directed popularity:
Score of a page = number of its in-links (3).

Query processing

First retrieve all pages meeting the text 
query (say venture capital).
Order these by their link popularity (either 
variant on the previous page).
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Spamming simple popularity

Exercise: How do you spam each of the 
following heuristics so your page gets a high 
score?
Each page gets a score = the number of in-
links plus the number of out-links.
Score of a page = number of its in-links.

Pagerank scoring

Imagine a browser doing a random walk on 
web pages:

Start at a random page
At each step, go out of the current page 
along one of the links on that page, 
equiprobably

“In the steady state” each page has a long-
term visit rate - use this as the page’s score.

1/3
1/3
1/3

Not quite enough

The web is full of dead-ends.
Random walk can get stuck in dead-ends.
Makes no sense to talk about long-term visit 
rates.

??

Teleporting

At a dead end, jump to a random web page.
At any non-dead end, with probability 10%, 
jump to a random web page.

With remaining probability (90%), go out on a 
random link.
10% - a parameter.

Result of teleporting

Now cannot get stuck locally.
There is a long-term rate at which any page 
is visited (not obvious, will show this).
How do we compute this visit rate?

Markov chains

A Markov chain consists of n states, plus an 
n×n transition probability matrix P.
At each step, we are in exactly one of the 
states.
For 1 ≤ i,j ≤ n, the matrix entry Pij tells us the 
probability of j being the next state, given 
we are currently in state i. 

i jPij

Pii>0
is OK.
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n
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Markov chains

Clearly, for all i,
Markov chains are abstractions of random 
walks.
Exercise: represent the teleporting random 
walk from 3 slides ago as a Markov chain, 
for this case: 

Ergodic Markov chains

A Markov chain is ergodic if
you have a path from any state to any other
you can be in any state at every time step, 
with non-zero probability.

Not
ergodic
(even/
odd).

Ergodic Markov chains

For any ergodic Markov chain, there is a 
unique long-term visit rate for each state.

Steady-state distribution.

Over a long time-period, we visit each state 
in proportion to this rate.
It doesn’t matter where we start.

Probability vectors

A probability (row) vector x = (x1, … xn) tells 
us where the walk is at any point.
E.g., (000…1…000) means we’re in state i.

i n1

More generally, the vector x = (x1, … xn) means the
walk is in state i with probability xi.

.1
1

=∑
=

n

i
ix

Change in probability vector

If the probability vector is  x = (x1, … xn) at 
this step, what is it at the next step?
Recall that row i of the transition prob. 
Matrix P tells us where we go next from 
state i.
So from x, our next state is distributed as 
xP.

Steady state example

The steady state looks like a vector of 
probabilities a = (a1, … an):

ai is the probability that we are in state i.

1 2
3/4

1/4
3/41/4

For this example, a1=1/4 and a2=3/4.
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How do we compute this 
vector?

Let a = (a1, … an) denote the row vector of 
steady-state probabilities.
If we our current position is described by a, 
then the next step is distributed as aP.
But a is the steady state, so a=aP.
Solving this matrix equation gives us a.

So a is the (left) eigenvector for P.
(Corresponds to the “principal” eigenvector of 
P with the largest eigenvalue.)
Transition probability matrices always have 
larges eigenvalue 1.

One way of computing a

Recall, regardless of where we start, we 
eventually reach the steady state a.
Start with any distribution (say x=(10…0)).
After one step, we’re at xP;
after two steps at xP2 , then xP3 and so on.
“Eventually” means for “large” k, xPk = a.
Algorithm: multiply x by increasing powers 
of P until the product looks stable.

Pagerank summary

Preprocessing:
Given graph of links, build matrix P.
From it compute a.
The entry ai is a number between 0 and 1: the 
pagerank of page i.

Query processing:
Retrieve pages meeting query.
Rank them by their pagerank.
Order is query-independent.

The reality

Pagerank is used in google, but so are many 
other clever heuristics

more on these heuristics later.

Resources

http://www2004.org/proceedings/docs/1p3
09.pdf
http://www2004.org/proceedings/docs/1p5
95.pdf
http://www2003.org/cdrom/papers/referee
d/p270/kamvar-270-xhtml/index.html
http://www2003.org/cdrom/papers/referee
d/p641/xhtml/p641-mccurley.html


