CS2768B

Text Retrieval and Mining
Winter 2005

Lecture 9

Plan for today

= Web size estimation
= Mirror/duplication detection
= Pagerank

Size of the web

What is the size of the web ?

= Issues

= The web is really infinite
« Dynamic content, e.g., calendar
= Soft 404: www.yahoo.com/anything is a valid page

= Static web contains syntactic duplication,
mostly due to mirroring (~20-30%)

= Some servers are seldom connected
= Who cares?

= Media, and consequently the user

= Engine design

= Engine crawl policy. Impact on recall

What can we attempt to
measure?

sThe relative size of search engines
= The notion of a page being indexed is still reasonably well
defined.
= Already there are problems
= Document extension: e.g. Google indexes pages not yet
crawled by indexing anchortext.
= Document restriction: Some engines restrict what is indexed
(first n words, only relevant words, etc.)
=The coverage of a search engine relative to
another particular crawling process.

Statistical methods

—
= Random queries
= Random searches

= Random IP addresses

= Random walks

URL sampling via Random
Queries

= |deal strategy: Generate a random URL and
check for containment in each index.

= Problem: Random URLs are hard to find!

Random queries [Bhar98a]
—

= Sample URLs randomly from each engine
= 20,000 random URLs from each engine
- Issue random conjunctive query with <200 results
« Select a random URL from the top 200 results

= Test if present in other engines.
= Query with 8 rarest words. Look for URL match
= Compute intersection & size ratio

Intersection = x% of E1 = y% of E2
E1/E2 = y/x

= Issues
= Random narrow queries may bias towards long documents
(Verify with disjunctive queries)
= Other biases induced by process

Random searches

= Choose random searches extracted from a
local log [Lawr97] or build “random
searches” [Note02]
= Use only queries with small results sets.
= Count normalized URLs in result sets.
= Use ratio statistics

= Advantage:

= Might be a good reflection of the human
perception of coverage

Random searches [Lawr98, Lawr99]
|
= 575 & 1050 queries from the NEC RI employee logs
= 6 Engines in 1998, 11 in 1999
= Implementation:
Restricted to queries with < 600 results in total

Counted URLs from each engine after verifying query
match

Computed size ratio & overlap for individual queries
Estimated index size ratio & overlap by averaging over all
queries

= |ssues
= Samples are correlated with source of log
= Duplicates

» Technical statistical problems (must have non-
zero results, ratio average, use harmonic mean?)

Queries from Lawrence and Giles study
—

= adaptive access control = softmax activation
= neighborhood function
preservation topographic = bose multidimensional
= hamiltonian structures system theory
=« right linear grammar = gamma mlp
= pulse width modulation = dvi2pdf
neural = john oliensis
= unbalanced prior = rieke spikes exploring
probabilities neural
= ranked assignment = video watermarking
method = counterpropagation
= internet explorer network
favourites importing = fat shattering dimension

= karvel thornber abelson amorphous
= zili liu computing

Size of the Web Estimation
[Lawr98, Bhar98a]

= Capture - Recapture technique

= Assumes engines get independent random
subsets of the Web

E2 contains x% of E1.
Assume, E2 contains x%
of the Web as well

Knowing size of E2
compute size of the Web
Size of the Web = 100*E2/x WEB

Bharat & Broder: 200 M (Nov 97), 275 M (Mar 98)
Lawrence & Giles: 320 M (Dec 97)

Random IP addresses [Lawr99]

= Generate random IP addresses

= Find, if possible, a web server at the given
address

= Collect all pages from server
= Advantages

= Clean statistics, independent of any crawling
strategy

Random IP addresses [ONei97, Lawr99]

= HTTP requests to random IP addresses
= Ignored: empty or authorization required or excluded
= [Lawr99] Estimated 2.8 million IP addresses running
crawlable web servers (16 million total) from observing
2500 servers.
= OCLC using IP sampling found 8.7 M hosts in 2001
= Netcraft [Netc02] accessed 37.2 million hosts in July 2002
» [Lawr99] exhaustively crawled 2500 servers
and extrapolated
» Estimated size of the web to be 800 million
= Estimated use of metadata descriptors:

= Meta tags (keywords, description) in 34% of home pages,
Dublin core metadata in 0.3%

Issues
- ————
= Virtual hosting
= Server might not accept http://102.93.22.15
= No guarantee all pages are linked to root
page
= Power law for # pages/hosts generates bias

Random walks [Henz99, BarY00, RusmO01]

= View the Web as a directed graph from a given list
of seeds.
= Build a random walk on this graph
= Includes various “jump” rules back to visited sites
= Converges to a stationary distribution
= Time to convergence not really known
= Sample from stationary distribution of walk

= Use the “small results set query” method to check
coverage by SE

= “Statistically clean” method, at least in theory!

Issues
—
= List of seeds is a problem.
= Practical approximation might not be valid:
Non-uniform distribution, subject to link
spamming
= Still has all the problems associated with
“strong queries”

Conclusions

—
= No sampling solution is perfect.
= Lots of new ideas ...
=but the problem is getting harder

= Quantitative studies are fascinating and a
good research problem

Duplicates and mirrors

Duplicate/Near-Duplicate Detection

= Duplication: Exact match with fingerprints
= Near-Duplication: Approximate match
= Overview
« Compute syntactic similarity with an edit-
distance measure
= Use similarity threshold to detect near-
duplicates

= E.g., Similarity > 80% => Documents are “near
duplicates”

= Not transitive though sometimes used transitively

Computing Similarity

= Features:

= Segments of a document (natural or artificial
breakpoints) [Brin95]
= Shingles (Word N-Grams) [Brin95, Brod98]
“arose is a rose is a rose” =>
a_rose_is_a
rose_is_a_rose
is_a_rose_is
= Similarity Measure
= TFIDF [Shiv95]
= Set intersection [Brod98]
(Specifically, Size_of_Intersection / Size_of_Union)

Jaccard measure

Shingles + Set Intersection

« Computing exact set intersection of shingles
between all pairs of documents is
expensive/intractable
= Approximate using a cleverly chosen subset of shingles from

each (a sketch)
= Estimate size_of_intersection / size_of_union based
on a short sketch ([Brod97, Brod98])
= Create a “sketch vector” (e.g., of size 200) for each document
= Documents which share more than t (say 80%) corresponding

vector elements are similar
= For doc D, sketch[i]is computed as follows:

= Let f map all shingles in the universe to 0..2™ (e.g., f =

fingerprinting)
= Let «; be a specific random permutation on 0..2m
= Pick MIN ; (f(s)) over all shingles s in D

Computing Sketchli] for Doc1
Document 1

e @ e @ 264 Start with 64 bit shingles

Permute on the number line
e o o e 2% with w;

Pick the min value

Test if Doc1.Sketchl[i] = Doc2.Sketchli]

Document 1 Document 2

264

264

264

.A 264 ° B 264
X 2

Are these equal?

Test for 200 random permutations: Ty, T,... Tlopg

However...

Document 2

Document 1

A = B iff the shingle with the MIN value in the union of Doc1 and
Doc2 is common to both (l.e., lies in the intersection)

This happens with probability:
Size_of _intersection / Size_of_union

Why? See minhash slides on class website.

Auctions.lycos.com

ged Mirrors

o

i g
18:

oo - i
. B
=o e | P00 11:00
=a i 1
@
o 718/
wa ’ - | 100 AN

Aug 2001

Bottom Up Mirror Detection
[Cho00]

= Maintain clusters of subgraphs
= Initialize clusters of trivial subgraphs
= Group near-duplicate single documents into a cluster
= Subsequent passes
= Merge clusters of the same cardinality and corresponding linkage

e

= Avoid decreasing cluster cardinality
= To detect mirrors we need:
= Adequate path overlap
= Contents of corresponding pages within a small time range

Mirror Detection

= Mirroring is systematic replication of web pages across hosts.
= Single largest cause of duplication on the web
= Hostl/a and Host2/B are mirrors iff
For all (or most) paths p such that when
http://Host1/ o / p exists
http://Host2/ B / p exists as well
with identical (or near identical) content, and vice versa.
[] E.g.,
= http://www.elsevier.com/ and http://www.elsevier.nl/
= Structural Classification of Proteins
» http://scop.mrc-Imb.cam.ac.uk/scop
= http://scop.berkeley.edu/
» http://scop.wehi.edu.au/scop
= http://pdb.weizmann.ac.il/scop
= http://scop.protres.ru/

Motivation

= Why detect mirrors?
= Smart crawling
« Fetch from the fastest or freshest server
= Avoid duplication
= Better connectivity analysis
= Combine inlinks
« Avoid double counting outlinks
= Redundancy in result listings
» “If that fails you can try: <mirror>/samepath”
= Proxy caching

Can we use URLs to find
mirrors?

synthesis.stanford.edu

CO— .

nthesis.org/D) html ynthesis.stanford.edu/Ds h-...
www.synthesis.org/Docs/ProjAbs/synsysivisual-semi-quar| synthesis.stanford.edu/Docs/ProjAbs/mech/mech-enhanced

mthesis.org/Ds report96.final.html ynthesis.stanford.edu/Ds
www.synthesis.org/Docs/cicee-berlin-paper.htmi synthesis.stanford.edu/Docs/ProjAbs/mech/mech-mm-case-
www.synthesis.org/Docs/myrs synthesis. stanford.edu/Docs/ProjAbs/synsys/quant-dev-new-.
www.synthesis. org/D: gap.html ynthesis. stanford.edu/D: report96 final.html
www.synthesis.org/D Lhtm synthesis.stanford.edu/D report96.final_fn.html
www.synthesis.org/D hé synthesis.stanford.edu/D -
www.synthesis.org/D ke-h ht synthesis.stanford.edu/D .

mthesis.org/Ds I ynthesis.stanford.edu/Ds f kiosk-...
www.synthesis. org/Ds h-dissec.hi] synthesis stanford.edu/D b.htm
www.synthesis.org/Docs/yr5ar ynthesis. stanford.edu/D lable.html
www.synthesis.org/D: ynthesis.stanford.edu/D:
www.synthesis.org/Docs/yrSaricicee ynthesis. stanford.edu/D gap.html
www.synthesis. org/D: gap.html ynthesis. stanford. edu/D: html
www.synthesis.org/D g-analysis.|| synthesis.stanford.edu/Dr integ-analysis.htm!

Top Down Mirror Detection
[Bhar99, Bhar00c]
= E.g

w.synthesis.org/Docs/ProjAbs/synsys/synalysis.htnl
synthesis.stanford.edu/Docs/ProjAbs/synsys/quant-dev-new-teach . html

= What features could indicate mirroring?

= Hostname similarity:

= word unigrams and bigrams: { www, www.synthesis, synthesis, ...}
= Directory similarity:

= Positional path bigrams { 0:Docs/ProjAbs, 1:ProjAbs/synsys, ... }
= IP address similarity:

= 3 or 4 octet overlap

= Many hosts sharing an IP address => virtual hosting by an ISP
= Host outlink overlap
= Path overlap

= Potentially, path + sketch overlap

Implementation

————————]
= Phase | - Candidate Pair Detection
= Find features that pairs of hosts have in common
= Compute a list of host pairs which might be mirrors
= Phase Il - Host Pair Validation

. Test each host pair and determine extent of mirroring
» Check if 20 paths sampled from Host1 have near-
duplicates on Host2 and vice versa
= Use transitive inferences:
IF Mirror(A,x) AND Mirror(x,B) THEN Mirror(A,B)
IF Mirror(A,x) AND !Mirror(x,B) THEN !Mirror(A,B)
= Evaluation
= 140 million URLs on 230,000 hosts (1999)
= Best approach combined 5 sets of features

= Top 100,000 host pairs had precision = 0.57 and recall =
0.86

Link Analysis on the Web

Citation Analysis
]
= Citation frequency
= Co-citation coupling frequency
= Cocitations with a given author measures “impact”
= Cocitation analysis [Mcca90]

= Convert frequencies to correlation coefficients, do
multivariate analysis/clustering, validate conclusions

= E.g., cocitation in the “Geography and GIS” web shows
communities [Lars96]
= Bibliographic coupling frequency
= Articles that co-cite the same articles are related
= Citation indexing
= Who is a given author cited by? (Garfield [Garf72])
= E.g., Science Citation Index (http://www.isinet.com/)
= CiteSeer (http://citeseer.ist.psu.edu) [Lawr99a]

Query-independent ordering

= First generation: using link counts as simple
measures of popularity.

= Two basic suggestions:
= Undirected popularity:

= Each page gets a score = the number of in-links
plus the number of out-links (3+2=5).

= Directed popularity:
= Score of a page = number of its in-links (3).

Query processing

= First retrieve all pages meeting the text
query (say venture capital).

= Order these by their link popularity (either
variant on the previous page).

Spamming simple popularity

= Exercise: How do you spam each of the
following heuristics so your page gets a high
score?

= Each page gets a score = the number of in-
links plus the number of out-links.

= Score of a page = number of its in-links.

Pagerank scoring

= Imagine a browser doing a random walk on

web pages: 1/3
= Start at a random page< >éig

= At each step, go out of the current page
along one of the links on that page,
equiprobably
= “In the steady state” each page has a long-
term visit rate - use this as the page’s score.

Not quite enough
]
= The web is full of dead-ends.
= Random walk can get stuck in dead-ends.

= Makes no sense to talk about long-term visit
rates.

—

Teleporting
- ———
= At a dead end, jump to a random web page.
= At any non-dead end, with probability 10%,
jump to a random web page.

= With remaining probability (90%), go out on a
random link.

= 10% - a parameter.

Result of teleporting

= Now cannot get stuck locally.

= There is a long-term rate at which any page
is visited (not obvious, will show this).

= How do we compute this visit rate?

Markov chains

= A Markov chain consists of n states, plus an
nxn transition probability matrix P.

= At each step, we are in exactly one of the
states.

= For 1 <i,j< n, the matrix entry P; tells us the

probability of j being the next state, given
we are currently in state i.

o=g

Markov chains

= Clearly, for all i, > R=L
j=1
= Markov chains are abstractions of random
walks.
= Exercise: represent the teleporting random
walk from 3 slides ago as a Markov chain,
for this case:

.

Ergodic Markov chains

= A Markov chain is ergodic if
= you have a path from any state to any other

= you can be in any state at every time step,
with non-zero probability.

Ergodic Markov chains

= For any ergodic Markov chain, there is a
unique long-term visit rate for each state.
= Steady-state distribution.

= Over a long time-period, we visit each state
in proportion to this rate.

= |t doesn’t matter where we start.

Probability vectors
e s ——
= A probability (row) vector x = (x,, ... x,) tells

us where the walk is at any point.
= E.g.,, (000...1...000) means we’re in state i.
1 i n

More generally, the vector x = (X,, ... X;) means the

walk is in state i with probability x;.

x =1

-

Change in probability vector

= If the probability vector is x = (x,, ... x,) at
this step, what is it at the next step?

= Recall that row i of the transition prob.
Matrix P tells us where we go next from
state i.

= So from X, our next state is distributed as
xP.

Steady state example
]
= The steady state looks like a vector of
probabilities a = (a,, ... a,):
= a; is the probability that we are in state i.

3/4
1/4 3/4

1/4

For this example, a,=1/4 and a,=3/4.

How do we compute this

vector?
—
= Leta = (a,, ... a,) denote the row vector of
steady-state probabilities.
= If we our current position is described by a,
then the next step is distributed as aP.
= But a is the steady state, so a=aP.
= Solving this matrix equation gives us a.
= So a is the (left) eigenvector for P.
= (Corresponds to the “principal” eigenvector of
P with the largest eigenvalue.)
= Transition probability matrices always have
larges eigenvalue 1.

One way of computing a

= Recall, regardless of where we start, we
eventually reach the steady state a.

= Start with any distribution (say x=(10...0)).
= After one step, we're at xP;

= after two steps at xP?, then xP3 and so on.
= “Eventually” means for “large” k, xPk= a.

= Algorithm: multiply x by increasing powers
of P until the product looks stable.

Pagerank summary
——————————]
= Preprocessing:
= Given graph of links, build matrix P.
= From it compute a.
= The entry g; is a number between 0 and 1: the
pagerank of page i.
= Query processing:
= Retrieve pages meeting query.
= Rank them by their pagerank.
= Order is query-independent.

The reality
- ———
= Pagerank is used in google, but so are many
other clever heuristics
= more on these heuristics later.

Resources
—
= http://www2004.org/proceedings/docs/1p3
09.pdf
= http://www2004.org/proceedings/docs/1p5
95.pdf
= http://www2003.org/cdrom/papers/referee
d/p270/kamvar-270-xhtml/index.html
= http://www2003.org/cdrom/papers/referee
d/p641/xhtml/p641-mccurley.html

