CS2768B

Text Retrieval and Mining
Winter 2005

Lecture 7

Plan for today

]
= Review search engine history (slightly more
technically than in the first lecture)
= Web crawling/corpus construction
= Distributed crawling
= Connectivity servers

Evolution of search engines
e ———]
= First generation - use only “on page”, text data

= Word frequency, language 1995-1997 AV,

= Boolean Excite, Lycos, etc
= Second generation - use off-page, web-specificdata

= Link (or connectivity) analysis From 1998. Made

= Click-through data popular by Google

= Anchor-text (How people refer to this page) | but everyone now

= Third generation - answer “the need behind the query”
= Semantic analysis - what is this about?
Focus on user need, rather than on query
Context determination -
Helping the user
= Ul, spell checking, query refinement, query suggestion,

syntax driven feedback, context help, context transfer, etc
Integration of search and text analysis

Connectivity analysis

sldea: mine hyperlink information of the Web

sAssumptions:

= Links often connect related pages

= A link between pages is a recommendation “people vote
with their links”

=Classic IR work (citations = links) a.k.a.

“Bibliometrics” [Kess63, Garf72, Smal73, ...]. See

also [Lars96].

sMuch Web related research builds on this idea

[Piro96, Aroc97, Sper97, Carr97, Klei98, Brin98,...]

Third generation search engine:
answering “the need behind the query”

sSemantic analysis
= Query language determination
= Auto filtering
» Different ranking (if query in Japanese do not return
English)
= Hard & soft matches
= Personalities (triggered on names)
» Cities (travel info, maps)
= Medical info (triggered on names and/or results)
» Stock quotes, news (triggered on stock symbol)
» Company info ...

Answering “the need behind the query”

=Context determination

= spatial (user location/target location)

= query stream (previous queries)

= personal (user profile)

= explicit (vertical search, family friendly)

sContext use
= Result restriction
= Ranking modulation

Spatial context - geo-search

- ———
=Geo-coding

= Geometrical hierarchy (squares)

= Natural hierarchy (country, state, county, city,
zip-codes)

sGeo-parsing

= Pages (infer from phone nos, zip, etc)

= Queries (use dictionary of place names)

= Users

» Explicit (tell me your location)
= From IP data

= Mobile phones

« In its infancy, many issues (display size, privacy, etc)

Helping the user
]
= Ul
= Spell checking
= Query completion

Crawling

Crawling Issues

= How to crawl?
= Quality: “Best” pages first
= Efficiency: Avoid duplication (or near duplication)
= Etiquette: Robots.txt, Server load concerns

= How much to crawl? How much to index?
= Coverage: How big is the Web? How much do we cover?
= Relative Coverage: How much do competitors have?

= How often to crawl?
= Freshness: How much has changed?

= How much has really changed? (why is this a different
question?)

Basic crawler operation
]
= Begin with known “seed” pages
= Fetch and parse them
= Extract URLs they point to
= Place the extracted URLs on a queue
= Fetch each URL on the queue and repeat

Simple picture - complications
]

= Web crawling isn’t feasible with one machine
= All of the above steps distributed
= Even non-malicious pages pose challenges
= Latency/bandwidth to remote servers vary
= Robots.txt stipulations
» How “deep” should you crawl a site’s URL hierarchy?
= Site mirrors and duplicate pages
= Malicious pages
= Spam pages (Lecture 1, plus others to be
discussed)

= Spider traps - incl dynamically generated
= Politeness - don’t hit a server too often

Robots.txt

]

= Protocol for giving spiders (“robots”) limited
access to a website, originally from 1994
= www.robotstxt.org/wc/norobots.html

= Website announces its request on what
can(not) be crawled
= For a URL, create a file URL/robots.txt
= This file specifies access restrictions

Robots.txt example

= No robot should visit any URL starting with
"/yoursite/temp/", except the robot called
“searchengine™

User-agent: *
Disallow: /yoursite/temp/

User-agent: searchengine
Disallow:

Crawling and Corpus Construction
]

= Crawl order

= Distributed crawling
= Filtering duplicates
= Mirror detection

Where do we spider next?

N
Il
N2Y

URLs crawled* \

P
and parsed

N

)

/
(@

Y URLs in queue

Web &

Crawl Order

= Want best pages first

= Potential quality measures:
= Final In-degree

« Final

Crawl Order

= Want best pages first
= Potential quality measures:

» Final In-degree Measure of page

= Final[Pagerankl—— quality we’ll define
= Crawl heuristic: later in the course.

= Breadth First Search (BFS)

» Partial Indegree

= Partial Pagerank

» Random walk

BFS & Spam (Worst case scenario

BFS depth =2

BFS depth =3
2000 URLSs on the queue

RlolallavloliceyiReld (o 50% belong to the spammer

100 URLSs on the queue

including a spam page.

BFS depth = 4

1.01 million URLs on the queue
99% belong to the spammer

Assume the spammer is able to
generate dynamic pages with
1000 outlinks

Stanford Web Base (179K, 1998)
[Cho98]

Overlap with
best x% by s
indegree

0% 20% 40% BOW S0% 100%

X% crawled by O(u)

Web Wide Crawl (328M pages,
2000) [Najo01]

BFS crawling brings in high quality
pages early in the crawl

Average PageRank

| I"IJHIIllllI!!I.lqumyllglu.qyupul!yllymgn

Average PageRank score by day of crawl

Queue of URLs to be fetched

= What constraints dictate which queued URL
is fetched next?

= Politeness - don’t hit a server too often,
even from different threads of your spider
= How far into a site you’ve crawled already
= Most sites, stay at < 5 levels of URL hierarchy
= Which URLs are most promising for building
a high-quality corpus
= This is a graph traversal problem:

= Given a directed graph you’ve partially
visited, where do you visit next?

Where do we spider next?

URLs crawled 4

and parsed><
/,

(
it

T URLs in queue

Web &

=27

N

il

Where do we spider next?

= Keep all spiders busy

= Keep spiders from treading on each others’
toes

= Avoid fetching duplicates repeatedly
= Respect politeness/robots.txt
= Avoid getting stuck in traps
Detect/minimize spam
Get the “best” pages
= What's best?
= Best for answering search queries

Where do we spider next?

= Complex scheduling optimization problem,
subject to all the constraints listed

= Plus operational constraints (e.g., keeping all
machines load-balanced)

= Scientific study - limited to specific aspects
= Which ones?
= What do we measure?

= What are the compromises in distributed
crawling?

Parallel Crawlers
I
= We follow the treatment of Cho and

Garcia-Molina:
= http://www2002.0rg/CDROM/refereed/108/index.html

= Raises a number of questions in a clean
setting, for further study

= Setting: we have a number of c-proc’s
= c-proc = crawling process

= Goal: we wish to spider the best pages with
minimum overhead
= What do these mean?

Distributed model

= Crawlers may be running in diverse
geographies - Europe, Asia, etc.
= Periodically update a master index
= Incremental update so this is “cheap”
= Compression, differential update etc.
= Focus on communication overhead during the
crawl

= Also results in dispersed WAN load

c-proc’s crawling the web

Which c-proc

Communication: by URLs
passed between c-procs.

Measurements

= Overlap = (N-1)/I where
= N = number of pages fetched
» /= number of distinct pages fetched
= Coverage = I/U where
= U= Total number of web pages
= Quality = sum over downloaded pages of
their importance
= Importance of a page = its in-degree
= Communication overhead =
= Number of URLs c-proc’s exchange

Crawler variations

= C-procs are independent
= Fetch pages oblivious to each other.
= Static assignment
= Web pages partitioned statically a priori, e.g.,
by URL hash ... more to follow
= Dynamic assignment

= Central co-ordinator splits URLs among c-
procs

Static assignment

= Firewall mode: each c-proc only fetches URL
within its partition - typically a domain
= inter-partition links not followed

= Crossover mode: c-proc may following inter-
partition links into another partition
= possibility of duplicate fetching

= Exchange mode: c-procs periodically
exchange URLs they discover in another

partition i

Experiments
—
= 40M URL graph - Stanford Webbase
= Open Directory (dmoz.org) URLs as seeds
= Should be considered a small Web

Summary of findings
e ——— |
= Cho/Garcia-Molina detail many findings
= We will review some here, both qualitatively
and quantitatively
= You are expected to understand the reason
behind each qualitative finding in the paper
= You are not expected to remember quantities
in their plots/studies

Firewall mode coverage

= The price of crawling in firewall mode

Coverage
1
—
0.8
0.6l
0.4l
0.2
] n
z 1 E] 1s 3z 64

Mumber of C-proés

Crossover mode overlap

= Demanding coverage drives up overlap

overlap
? . I
n - number of C-proc’s TN
/
2.5
z
1.5
1
0.5

0.8 1
coverage

Exchange mode communication

= Communication overhead sublinear

Communication overhead

0.5
Processes -
0.4 2 T
Per o
downloaded
URL

T R . . X
0 12 4 10 20 50100 500100C
Nurnber of URL exchanges

Connectivity servers

Connectivity Server
[CST:Bhar98b, CS2 & 3: Rand01]
]
= Support for fast queries on the web graph
= Which URLs point to a given URL?
= Which URLs does a given URL point to?
Stores mappings in memory from
= URL to outlinks, URL to inlinks
= Applications
= Crawl control
= Web graph analysis
= Connectivity, crawl optimization
» Link analysis
= More on this later

Most recent published work

= Boldi and Vigna
= http://www2004.org/proceedings/docs/1p595.pdf

= Webgraph - set of algorithms and a java
implementation

= Fundamental goal - maintain node adjacency
lists in memory

= For this, compressing the adjacency lists is
the critical component

Adjacency lists
- e -—-———
= The set of neighbors of a node
= Assume each URL represented by an integer
= Properties exploited in compression:
= Similarity (between lists)
» Locality (many links from a page go to
“nearby” pages)
= Use gap encodings in sorted lists
» As we did for postings in CS276A
= Distribution of gap values

Storage
]
= Boldi/Vigna report getting down to an
average of ~3 bits/link
= (URL to URL edge)
= For a 118M node web graph

Resources

= Www.robotstxt.org/wc/norobots.html
= www2002.0rg/CDROM/refereed/108/index.html
= www2004.org/proceedings/docs/1p595.pdf

