
1

CS276B
Text Retrieval and Mining

Winter 2005

Lecture 7

Plan for today

Review search engine history (slightly more
technically than in the first lecture)
Web crawling/corpus construction

Distributed crawling

Connectivity servers

Evolution of search engines
First generation – use only “on page”, text data

Word frequency, language
Boolean

Second generation – use off-page, web-specific data
Link (or connectivity) analysis
Click-through data
Anchor-text (How people refer to this page)

Third generation – answer “the need behind the query”
Semantic analysis – what is this about?
Focus on user need, rather than on query
Context determination
Helping the user

UI, spell checking, query refinement, query suggestion,
syntax driven feedback, context help, context transfer, etc

Integration of search and text analysis

1995-1997 AV,
Excite, Lycos, etc

From 1998. Made
popular by Google
but everyone now

Evolving

Connectivity analysis

Idea: mine hyperlink information of the Web

Assumptions:
Links often connect related pages

A link between pages is a recommendation “people vote
with their links”

Classic IR work (citations = links) a.k.a.
“Bibliometrics” [Kess63, Garf72, Smal73, …]. See
also [Lars96].

Much Web related research builds on this idea
[Piro96, Aroc97, Sper97, Carr97, Klei98, Brin98,…]

Third generation search engine:
answering “the need behind the query”

Semantic analysis
Query language determination

Auto filtering
Different ranking (if query in Japanese do not return
English)

Hard & soft matches
Personalities (triggered on names)
Cities (travel info, maps)
Medical info (triggered on names and/or results)
Stock quotes, news (triggered on stock symbol)
Company info …

Answering “the need behind the query”

Context determination
spatial (user location/target location)
query stream (previous queries)
personal (user profile)
explicit (vertical search, family friendly)

Context use
Result restriction
Ranking modulation

2

Spatial context – geo-search
Geo-coding

Geometrical hierarchy (squares)
Natural hierarchy (country, state, county, city,
zip-codes)

Geo-parsing
Pages (infer from phone nos, zip, etc)
Queries (use dictionary of place names)
Users

Explicit (tell me your location)
From IP data

Mobile phones
In its infancy, many issues (display size, privacy, etc)

Helping the user

UI
Spell checking
Query completion
…

Crawling
Crawling Issues

How to crawl?
Quality: “Best” pages first
Efficiency: Avoid duplication (or near duplication)
Etiquette: Robots.txt, Server load concerns

How much to crawl? How much to index?
Coverage: How big is the Web? How much do we cover?
Relative Coverage: How much do competitors have?

How often to crawl?
Freshness: How much has changed?
How much has really changed? (why is this a different
question?)

Basic crawler operation

Begin with known “seed” pages
Fetch and parse them

Extract URLs they point to
Place the extracted URLs on a queue

Fetch each URL on the queue and repeat

Simple picture – complications

Web crawling isn’t feasible with one machine
All of the above steps distributed

Even non-malicious pages pose challenges
Latency/bandwidth to remote servers vary
Robots.txt stipulations

How “deep” should you crawl a site’s URL hierarchy?

Site mirrors and duplicate pages
Malicious pages

Spam pages (Lecture 1, plus others to be
discussed)
Spider traps – incl dynamically generated

Politeness – don’t hit a server too often

3

Robots.txt

Protocol for giving spiders (“robots”) limited
access to a website, originally from 1994

www.robotstxt.org/wc/norobots.html

Website announces its request on what
can(not) be crawled

For a URL, create a file URL/robots.txt

This file specifies access restrictions

Robots.txt example

No robot should visit any URL starting with
"/yoursite/temp/", except the robot called
“searchengine":

User-agent: *
Disallow: /yoursite/temp/

User-agent: searchengine

Disallow:

Crawling and Corpus Construction

Crawl order
Distributed crawling
Filtering duplicates
Mirror detection

Where do we spider next?

Web

URLs crawled
and parsed

URLs in queue

Crawl Order

Want best pages first
Potential quality measures:

Final In-degree
Final Pagerank

What’s this?

Crawl Order

Want best pages first
Potential quality measures:

Final In-degree
Final Pagerank

Crawl heuristic:
Breadth First Search (BFS)
Partial Indegree
Partial Pagerank
Random walk

Measure of page
quality we’ll define
later in the course.

4

BFS & Spam (Worst case scenario)

BFS depth = 2

Normal avg outdegree = 10

100 URLs on the queue
including a spam page.

Assume the spammer is able to
generate dynamic pages with
1000 outlinks

Start
Page

Start
Page

BFS depth = 3
2000 URLs on the queue
50% belong to the spammer

BFS depth = 4
1.01 million URLs on the queue
99% belong to the spammer

Overlap with
best x% by
indegree

x% crawled by O(u)

Stanford Web Base (179K, 1998)
[Cho98]

Web Wide Crawl (328M pages,
2000) [Najo01]

BFS crawling brings in high quality
pages early in the crawl

Queue of URLs to be fetched

What constraints dictate which queued URL
is fetched next?
Politeness – don’t hit a server too often,
even from different threads of your spider
How far into a site you’ve crawled already

Most sites, stay at ≤ 5 levels of URL hierarchy

Which URLs are most promising for building
a high-quality corpus

This is a graph traversal problem:
Given a directed graph you’ve partially
visited, where do you visit next?

Where do we spider next?

Web

URLs crawled
and parsed

URLs in queue

Where do we spider next?

Keep all spiders busy
Keep spiders from treading on each others’
toes

Avoid fetching duplicates repeatedly

Respect politeness/robots.txt
Avoid getting stuck in traps
Detect/minimize spam
Get the “best” pages

What’s best?
Best for answering search queries

5

Where do we spider next?

Complex scheduling optimization problem,
subject to all the constraints listed

Plus operational constraints (e.g., keeping all
machines load-balanced)

Scientific study – limited to specific aspects
Which ones?
What do we measure?

What are the compromises in distributed
crawling?

Parallel Crawlers

We follow the treatment of Cho and
Garcia-Molina:

http://www2002.org/CDROM/refereed/108/index.html

Raises a number of questions in a clean
setting, for further study
Setting: we have a number of c-proc’s

c-proc = crawling process

Goal: we wish to spider the best pages with
minimum overhead

What do these mean?

Distributed model

Crawlers may be running in diverse
geographies – Europe, Asia, etc.

Periodically update a master index
Incremental update so this is “cheap”

Compression, differential update etc.

Focus on communication overhead during the
crawl

Also results in dispersed WAN load

c-proc’s crawling the web

URLs crawled
URLs in
queues

Which c-proc
gets this URL?

Communication: by URLs
passed between c-procs.

Measurements

Overlap = (N-I)/I where
N = number of pages fetched
I = number of distinct pages fetched

Coverage = I/U where
U = Total number of web pages

Quality = sum over downloaded pages of
their importance

Importance of a page = its in-degree

Communication overhead =
Number of URLs c-proc’s exchange

x

Crawler variations

c-procs are independent
Fetch pages oblivious to each other.

Static assignment
Web pages partitioned statically a priori, e.g.,
by URL hash … more to follow

Dynamic assignment
Central co-ordinator splits URLs among c-
procs

6

Static assignment

Firewall mode: each c-proc only fetches URL
within its partition – typically a domain

inter-partition links not followed

Crossover mode: c-proc may following inter-
partition links into another partition

possibility of duplicate fetching

Exchange mode: c-procs periodically
exchange URLs they discover in another
partition

Experiments

40M URL graph – Stanford Webbase
Open Directory (dmoz.org) URLs as seeds

Should be considered a small Web

Summary of findings

Cho/Garcia-Molina detail many findings
We will review some here, both qualitatively
and quantitatively
You are expected to understand the reason
behind each qualitative finding in the paper
You are not expected to remember quantities
in their plots/studies

Firewall mode coverage

The price of crawling in firewall mode

Crossover mode overlap

Demanding coverage drives up overlap

Exchange mode communication

Communication overhead sublinear

Per
downloaded
URL

7

Connectivity servers

Connectivity Server
[CS1: Bhar98b, CS2 & 3: Rand01]

Support for fast queries on the web graph
Which URLs point to a given URL?
Which URLs does a given URL point to?

Stores mappings in memory from
URL to outlinks, URL to inlinks

Applications
Crawl control
Web graph analysis

Connectivity, crawl optimization

Link analysis
More on this later

Most recent published work

Boldi and Vigna
http://www2004.org/proceedings/docs/1p595.pdf

Webgraph – set of algorithms and a java
implementation
Fundamental goal – maintain node adjacency
lists in memory

For this, compressing the adjacency lists is
the critical component

Adjacency lists

The set of neighbors of a node
Assume each URL represented by an integer
Properties exploited in compression:

Similarity (between lists)
Locality (many links from a page go to
“nearby” pages)
Use gap encodings in sorted lists

As we did for postings in CS276A

Distribution of gap values

Storage

Boldi/Vigna report getting down to an
average of ~3 bits/link

(URL to URL edge)
For a 118M node web graph

Resources

www.robotstxt.org/wc/norobots.html
www2002.org/CDROM/refereed/108/index.html

www2004.org/proceedings/docs/1p595.pdf

