CS276B

Web Search and Mining Winter 2005

Lecture 6

Recap: Recommendation Systems

- What they are and what they do?
- A couple of algorithms
 - Classical Collaborative Filtering (CF): Nearest neighbor-based approaches
- Going beyond simple behavior: context
- How do you measure their quality?

Implementation

- We worked in terms of matrices, but
- Don't really want to maintain this gigantic (and sparse) vector space
 - Dimension reduction
 - Fast nearest neighbors
- Incremental versions
 - update as new transactions arrive
 - typically done in batch mode
 - incremental dimension reduction etc.

Plan for Today

- Issues related to last time
 - Extensions
 - Privacy
- Model-based RS approaches
 - Learn model from database, and make predictions from model rather than iterating over users each time
 - Utility formulation
 - Matrix reconstruction for low-rank matrices
 - Model-based probabilistic formulations
- Evaluation and a modified NN formulation

Extensions

- Amazon "Why was I recommended this"
 See where the "evidence" came from
- Clickstreams do sequences matter?
- HMMs (next IE lecture) can be used to infer user type from browse sequence
 - E.g., how likely is the user to make a purchase?
 - Meager improvement in using sequence relative to looking only at last page

Privacy

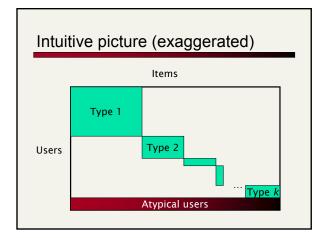
- What info does a recommendation leak?
 E.g., you're looking for illicit content and it shows me as an expert
- What about compositions of recommendations?
- "These films are popular among your colleagues"
- "People who bought this book in your dept also bought ... "
 - "Aggregates" are not good enough
- Poorly understood

Utility formulation of RS

- Microeconomic view
- Assume that each user has a real-valued utility for each item
- *m* × *n* matrix U of utilities for each of *m* users for each of *n* items
 - not all utilities known in advance
- Predict which (unseen) utilities are highest for each user

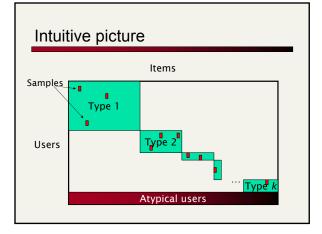
User types

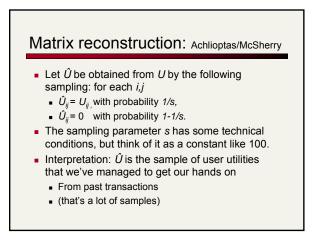
- If users are arbitrary, all bets are off
 - typically, assume matrix U is of low rank
 - say, a constant *k* independent of *m*,*n*
 - some perturbation is allowable
- I.e., users belong to k well-separated types
 - (almost)
 - Most users' utility vectors are close to one of k well-separated vectors



Matrix reconstruction

- Given some utilities from the matrix
- Reconstruct missing entries
 - Suffices to predict biggest missing entries for each user
 - Suffices to predict (close to) the biggest
 - For most users
 - Not the atypical ones





How do we reconstruct *U* from \hat{U} ?

- First the "succinct" way
 - then the (equivalent) intuition
- Find the best rank k approximation to sÛ
 - Use SVD (best by what measure?)
 - Call this Û_k
- Output \hat{U}_k as the reconstruction of U
 - Pick off top elements of each row as recommendations, etc.

Achlioptas/McSherry theorem

- With <u>high probability</u>, reconstruction <u>error</u> is small
 - see paper for detailed statement
- What's high probability?
- Over the samples
- <u>not</u> the matrix entries
- What's error how do you measure it?

Norms of matrices

- Frobenius norm of a matrix *M*:
 - $|M|_{F}^{2}$ = sum of the square of the entries of *M*
- Let *M_k* be the rank *k* approximation computed by the SVD
- Then for any other rank *k* matrix *X*, we know
 |*M M*_k|_F ≤ |*M*-*X*]_F
- Thus, the SVD gives the best rank k approximation for each k

Norms of matrices

- The L₂ norm is defined as
- |*M*|₂ = max |*Mx*|, taken over all unit vectors *x*Then for any other rank *k* matrix *X*, we know
 - $|M M_k|_2 \le |M X|_2$
- Thus, the SVD also gives the best rank k approximation by the L₂ norm
- What is it doing in the process?
 Will avoid using the language of eigenvectors and eigenvalues

What is the SVD doing?

- Consider the vector v defining the L₂ norm of U:
 |U|₂ = |Uv|
- Then v measures the "dominant vector direction" amongst the rows of U (i.e., users)
 - ith coordinate of Uv is the projection of the ith user onto v
 - $|U|_2 = |Uv|$ captures the tendency to align with v

What is the SVD doing, contd. U₁ (the rank 1 approximation to U) is given by U_VV^T If all rows of U are collinear, i.e., rank(U)=1, then U=U₁; the error of approximating U by U₁ is zero In general of course there are still user types not captured by v leftover in the residual matrix U-U₁:

Iterating to get other user types

- Now repeat the above process with the residual matrix U-U₁
- Find the dominant user type in U-U₁ etc.
 Gives us a second user type etc.
- Iterating, get successive approximations
 U₂, U₃, ... U_k

Achlioptas/McSherry again

- SVD of Û: the uniformly sampled version of U
- Find the rank k SVD of Û
- The result Û_k is close to the best rank k approximation to U
- Is it reasonable to sample uniformly?
 - Probably not
 - E.g., unlikely to know much about your fragrance preferences if you're a sports fan

Probabilistic Model-based RS

Breese et al. UAI 1998

- Similar to Achlioptas/McSherry but probabilistic:
 - Assume a latent set of k classes, never observed
 These generate observed votes as a Naïve Bayes
 - model (recall cs276a)
 - Learn a best model using the EM algorithm
- Bayesian Network model
 - Learn probabilistic decision trees for predicting liking each item based on liking other items
- They concluded that in many (but not all!) circumstances, Bayesian DT model works best

McLaughlin & Herlocker 2004

- Argues that current well-known algorithms give poor user experience
- Nearest neighbor algorithms are the most frequently cited and the most widely implemented CF algorithms, consistently are rated the top performing algorithms in a variety of publications
- But many of their top recommendations are terrible
- These algorithms perform poorly where it matters
 most in user recommendations
- Concealed because past evaluation mainly on offline datasets not real users

Novelty versus Trust

- There is a trade-off
 - High confidence recommendations
 - Recommendations are obvious
 - Low utility for user
 - However, they build trust
 - Users like to see some recommendations that they know are right
 - Recommendations with high prediction yet lower confidence
 - Higher variability of error
 - Higher novelty \rightarrow higher utility for user
 - McLaughlin and Herlocker argue that "very obscure" recommendations are often bad (e.g., hard to obtain)

Common Prediction Accuracy Metric

Mean absolute error (MAE)

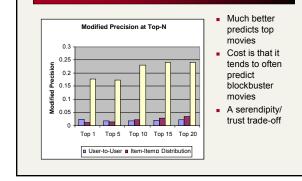
$$\overline{\left|E\right|} = \frac{\sum_{i=1}^{N} \left|p_i - r_i\right|}{N}$$

- Most common metric
- Characteristics
 - Assumes errors at all levels in the ranking have equal weight
 - Sensitive to small changes
 - Good for "Annotate in Context" taskSeems not appropriate for "Find Good Items" task

McLaughlin & Herlocker 2004

- Limitations of the MAE metric have concealed the flaws of previous algorithms (it looks at all predictions not just top predictions)
- Precision of top *k* has wrongly been done on top *k* rated movies.
 - Instead, treat not-rated as disliked (underestimate)
 Captures that people pre-filter movies
- They propose a NN algorithm where each user gives a movie a rating distribution, not a single rating, which is smoothed with a uniform rating
 - Movie recommendation must have enough evidence to overcome uniform rating

Rsults from SIGIR 2004 Paper



Resources

- Achlioptas McSherry STOC 2001
 http://portal.acm.org/citation.cfm?id=380858
- Breese et al. UAI 1998
 - <u>http://research.microsoft.com/users/breese/cfalgs.</u>
 <u>html</u>
- McLaughlin and Herlocker, SIGIR 2004
 - http://portal.acm.org/citation.cfm?doid=1009050