CS2768B

Text Retrieval and Mining
Winter 2005

Project Practicum 2

Plan for today

= General discussion of your proposals

= Sample project overview (what you have to
turn in on Tuesday)

= More tools you might want to use
= More examples of past projects

General feedback on proposals

= We need more specifics on what exactly
you’re planning to build.

= Vagueness was fine for the proposals, but it’s
not appropriate for your overview.

Avoid discussion of “possible applications” -
your overview is a commitment to develop a
fleshed-out, polished application.

Be ambitious but realistic. It’s okay if at some
future point you realize that you don’t have
time to implement every feature described in
your overview; but your final product should
not deviate too far from the scope of your
overview.

General feedback on proposals

= Measurement criteria are essential

= Creating a cool application is great but not
sufficient - you also need a predetermined
standard for evaluating the success or failure
of your work.

= Some kind of scientific numerical analysis of
your system’s performance in comparison to
a baseline or rival system:

precision/recall

user satisfaction ratings

correlation or mean squared error (if you're

predicting values)

processing time, main memory requirements, disk

space

General feedback on proposals

= Remember: a successful project doesn’t

have to achieve great performance!

= Of course it’s better to get good results...

= But there can be significant value in trying
something interesting and finding that it
doesn’t work very well.

= So don’t be afraid to explore an idea that
isn’t guaranteed to pan out - as long as
there’s reason to believe that it might.

Project overview:
Suggested structure

= Title
= Group members
= Abstract (one short paragraph)
= Topic(s) investigated
= Relevant prior work (paper citations, actual systems)
= Delineation of group member responsibilities
= Data sources
= Technologies (programming languages, software, etc.)
= Existing tools leveraged
= Implementation details
= Submission calendar:
= Block 1
= Block 2
= Block 3 (final product)




Sample project overview
(idealized - not my actual proposal!)

= MovieThing: A web-based collaborative filtering
movie recommendation system

= Group: Louis Eisenberg (CS coterm) and Joe User (CS
senior)

= Abstract: | will conduct an online experiment by
building a website on which registered users can
provide ratings for popular movies using a graphical
interface. Once | have collected ratings from a
substantial number of users, | will generate movie
recommendations, assigning each user randomly to
one of a handful of distinct recommendation
algorithms. | will then solicit feedback from the
users on the quality of the recommendations and
use that feedback to perform a qualitative analysis of
the relative accuracy of the different algorithms.

Sample project overview

= Topics investigated: collaborative filtering,
recommendation systems
= Relevant prior work:
= MovielLens (U. of Minn.)
= Jester (UC-Berkeley)
= CF research papers:
http://jamesthornton.com/cf/
= Empirical Analysis of Predictive Algorithms for
Collaborative Filtering:
http://research.microsoft.com/users/breese/
cfalgs.html
= More research papers...

Sample project overview
]

= Group member responsibilities:
= Louis: set up database, JDBC and utility code,
JavaScript sliders, evaluation code
= Joe: AWS code, JSP and servlet front-end code,
literature review
= Both: fill movie table, design CF algorithms, recruit
subjects, write final paper
= Data sources:
= Movie data (title, actors, genres, etc.) from IMDB and
Amazon
= Movie ratings supplied by my users
= Amazon product similarity data
= Technologies: servlets/JSP, Javascript, MySQL
= Existing tools leveraged: Amazon Web Services

Sample project overview
]

= Implementation details:
= Website will display movies in tabular format with ability to
search/filter by title, genre, actors, etc. Users rate movies by
dragging sliders.
» Algorithms:
= Amazon: use product similarity to generate predicted ratings
based on weighted averages using user’s ratings and movies
considered “similar” to those the user has rate
Standard: predicted ratings are weighted averages using user’s
Pearson correlation to other users and the ratings of the other

users

= General deviation: emphasize movies for which user has an
unusual opinion by introducing additional term into covariance
calculation (which factors into user similarity weight)

= Personal deviation: emphasize movies about which user feels
strongly by cubing covariance terms.

= Both deviations: combine tweaks of general and personal.

= Evaluation:

= Overall ratings of quality of recommendation lists

= Correlation between predicted and actual ratings for
recommended movies that user has already seen

Sample project overview
—

= Submission calendar:

= Block 1:
= movies table is fully populated
» website is live and accepting ratings

= Block 2:
= sufficient users and ratings have been collected
= Amazon similarity data has been retrieved
= recommendation algorithms are functional

= Block 3:
= users have received recommendations and provided

feedback

=« final paper includes analysis of algorithms’ relative
performance

Notes on sample project overview
—

= Your overview should be more extensive
than this sample...
= More specific implementation details,
particularly in regard to algorithms

= More specific goals for each block/milestone

= Contingency plans for slight modifications to
your project if you encounter obstacles?




More tools

MALLET

= A Machine Learning for Language Toolkit

= http://mallet.cs.umass.edu

= “an integrated collection of Java code useful for
statistical natural language processing, document
classification, clustering, information extraction, and
other machine learning applications to text”

= Minimally documented but has lots of stuff:

Building feature vectors

Various classification methods (Naive Bayes, max-ent,

boosting, winnowing)

Evaluation: precision, recall, F1, etc.

N-grams

Selecting features using information gain

= They have some examples of front-end code

MinorThird

= http://minorthird.sourceforge.net

= “a collection of Java classes for storing text,
annotating text, and learning to extract entities and
categorize text”

= Documentation seems to be pretty good:
comprehensive Javadocs, tutorial, FAQ...

= Has the concept of “spans” (sequences of words) that
can be extracted and classified based on content or
context

= Stored documents can be annotated in independent
files using TextLabels (denoting, say, part-of-speech
and semantic information)

Weka 3:
Data Mining Software in Java

= http://www.cs.waikato.ac.nz/~ml/weka

= “Weka is a collection of machine learning algorithms
for data mining tasks. The algorithms can either be
applied directly to a dataset or called from your own
Java code. Weka contains tools for data pre-
processing, classification, regression, clustering,
association rules, and visualization. It is also well-
suited for developing new machine learning
schemes.”

= Has a GUI

= Extensive documentation

= Website lists a number of compatible datasets
(regression and classification problems)

= Also lists many Weka-related projects

CLUTO

= http://www-users.cs.umn.edu/~karypis/cluto

= “a software package for clustering low- and high-
dimensional datasets and for analyzing the
characteristics of the various clusters”

= Partitional, agglomerative and graph-partitioning
algorithms

= Various similarity/distance metrics

= Many options/tools for visualizing and summarizing
clustering results

= Claims to scale to hundreds of thousands of objects
in tens of thousands of dimensions

= wCluto: web-based application built on CLUTO

= gCluto: cross-platform graphical application

MG4)J: Managing Gigabytes for Java

= http://mg4j.dsi.unimi.it/

= “a collaborative effort aimed at providing a
free Java implementation of inverted-index
compression techniques; as a by-product, it
offers several general-purpose optimised
classes, including fast & compact mutable
strings, bit-level /0, fast unsynchronised
buffered streams, (possibly signed) minimal
perfect hashing for very large strings
collections, etc.”




Crawlers
- v ————
= UbiCrawler
= http://ubi.imc.pi.cnr.it/projects/ubicrawler/

= Not available publicly, but “upon agreement
with the authors for scientific purposes.”

= Primary advantage: “a very effective
assignment function (based on consistent
hashing) for partitioning the domain to crawl”
= Teg Grenager’s crawler

= See the links on the projects page of the
course website

= Easily extensible

TiMBL

= Tilburg Memory Based Learner
= http://ilk.kub.nl/software.html
= Nearest-neighbor classification software with
lots of options:
« k
= voting scheme
= feature weighting
= Optimizations
= built-in leave-one-out testing and cross-fold
validation

Stanford WebBase (more info)

= http://www-diglib.stanford.edu/~testbed/doc2/WebBase/

= Kayur Patel will supply a Java client to the
WebBase data. It should be available by next
Tuesday

= WebBase provides the source for a client
written in C

More links than you can
shake a stick at

e —— ]
= http://nlp.stanford.edu/links/statnlp.html
= Many options for all kinds of different NLP

tools and tasks:

= POS taggers

= Probabilistic parsers

= Named entity recognition

= NP chunking

» Information extraction/wrapper induction
= Word sense disambiguation

= Lots of datasets/corpora

Reminder: pubcrawl
—
= SULinux server
= Terabytes of disk space
= MySQL
= Tomcat upon request
= Email us if you want access

Tutorial on basic skills/tools
—
= http://www.stanford.edu/class/cs276b/2003/project_tools.html
= Provides basic instructions for using Java
and some of its key packages, Ant, CVS,
MySQL, Lucene, Tomcat, etc.
= Mostly stuff that the majority of you already
know, but definitely worth browsing through




More datasets

= Another place to look for data:
/usr/class/cs276a/datal
= .../dmoz
= .../selected-linguistic-data
= .../linguistic-data
= This is a superset of the selected-linguistic-data
directory, but you need permission to access it
(we’ll take care of this soon)
= More information on the contents of this directory

at
http://www.stanford.edu/dept/linguistics/corpora

Some more examples of projects
from two years ago

Returning Multiple Pages as

Individual Search Results
|

= Angrish and Malhotra

= Idea: Find a group of logically linked documents that
collectively satisfy the user’s information need

= Logical link could be any number of things. They
defined two URLs as logically linked if:
= one is a “subdirectory” of another, or
= they are within N degrees of each other in the Web’s

link graph

= Compared their approach (multiple-page algorithm)
to baseline (single-page algorithm) by having human
subjects in various fields run queries and judge
results

= MAX_LEVEL and MAX_LINK: parameters that they
didn’t vary but should have

Sentiment Identification Using
Maximum Entropy Analysis of
Movie Reviews

= Mehra, Khandelwal, and Patel

= Used movie reviews from
rec.arts.movies.reviews

= Got people to rank their preferences for
various movies on a website (but only had
six users!)

= Implemented personalized classification:
based on a user’s movie preferences, used
maximum entropy model to classify reviews
to find ones that they would like...? I’'m not
even sure what they did.

News Meta-Search
Across Multiple Languages

= Patel

= Built “Global Reporter” system that tried to
implement CLIR for news articles

= Used Babel Fish to translate both queries
and articles

= Evaluation: six users issued nine queries
each using a) English-only and b) multi-
language and judged relevance of results

Parametric Search Using

In-memory Auxiliary Index
—

= Verman and Ravela

= Problem: traditional parametric search is
slow because of disk accesses necessitated
by frequent database reads

= Solution: since metadata is relatively small
compared to corpus itself, store in main
memory

= Used Lucene, MySQL, Citeseer Postscript
docs with associated metadata




More comments based on

examples
]
= If your algorithms crucially depend on
certain parameters, vary them.
= Make your write-up clear!
= If you’re using human subjects to evaluate
your system, you really should try to get a
statistically significant sample.




