
1

CS276B
Text Retrieval and Mining

Winter 2005

Project Practicum 2

Plan for today

General discussion of your proposals
Sample project overview (what you have to 
turn in on Tuesday)
More tools you might want to use
More examples of past projects

General feedback on proposals

We need more specifics on what exactly 
you’re planning to build.

Vagueness was fine for the proposals, but it’s 
not appropriate for your overview.
Avoid discussion of “possible applications” –
your overview is a commitment to develop a 
fleshed-out, polished application.
Be ambitious but realistic. It’s okay if at some 
future point you realize that you don’t have 
time to implement every feature described in 
your overview; but your final product should 
not deviate too far from the scope of your 
overview. 

General feedback on proposals

Measurement criteria are essential
Creating a cool application is great but not 
sufficient – you also need a predetermined 
standard for evaluating the success or failure 
of your work.
Some kind of scientific numerical analysis of 
your system’s performance in comparison to 
a baseline or rival system:

precision/recall
user satisfaction ratings
correlation or mean squared error (if you’re 
predicting values)
processing time, main memory requirements, disk 
space

General feedback on proposals

Remember: a successful project doesn’t 
have to achieve great performance!

Of course it’s better to get good results…
But there can be significant value in trying 
something interesting and finding that it 
doesn’t work very well.
So don’t be afraid to explore an idea that 
isn’t guaranteed to pan out – as long as 
there’s reason to believe that it might.

Project overview:
Suggested structure

Title
Group members
Abstract (one short paragraph)
Topic(s) investigated
Relevant prior work (paper citations, actual systems)
Delineation of group member responsibilities
Data sources
Technologies (programming languages, software, etc.)
Existing tools leveraged
Implementation details
Submission calendar:

Block 1
Block 2
Block 3 (final product)



2

Sample project overview
(idealized – not my actual proposal!)

MovieThing: A web-based collaborative filtering 
movie recommendation system
Group: Louis Eisenberg (CS coterm) and Joe User (CS 
senior)
Abstract: I will conduct an online experiment by 
building a website on which registered users can 
provide ratings for popular movies using a graphical 
interface. Once I have collected ratings from a 
substantial number of users, I will generate movie 
recommendations, assigning each user randomly to 
one of a handful of distinct recommendation 
algorithms. I will then solicit feedback from the 
users on the quality of the recommendations and 
use that feedback to perform a qualitative analysis of 
the relative accuracy of the different algorithms.

Sample project overview

Topics investigated: collaborative filtering, 
recommendation systems
Relevant prior work:

MovieLens (U. of Minn.)
Jester (UC-Berkeley)
CF research papers: 
http://jamesthornton.com/cf/
Empirical Analysis of Predictive Algorithms for 
Collaborative Filtering:
http://research.microsoft.com/users/breese/
cfalgs.html
More research papers…

Sample project overview

Group member responsibilities:
Louis: set up database, JDBC and utility code, 
JavaScript sliders, evaluation code
Joe: AWS code, JSP and servlet front-end code, 
literature review
Both: fill movie table, design CF algorithms, recruit 
subjects, write final paper

Data sources:
Movie data (title, actors, genres, etc.) from IMDB and 
Amazon
Movie ratings supplied by my users
Amazon product similarity data

Technologies: servlets/JSP, Javascript, MySQL
Existing tools leveraged: Amazon Web Services

Sample project overview

Implementation details:
Website will display movies in tabular format with ability to 
search/filter by title, genre, actors, etc. Users rate movies by
dragging sliders.
Algorithms:

Amazon: use product similarity to generate predicted ratings 
based on weighted averages using user’s ratings and movies 
considered “similar” to those the user has rated
Standard: predicted ratings are weighted averages using user’s 
Pearson correlation to other users and the ratings of the other 
users
General deviation: emphasize movies for which user has an 
unusual opinion by introducing additional term into covariance 
calculation (which factors into user similarity weight)
Personal deviation: emphasize movies about which user feels 
strongly by cubing covariance terms.
Both deviations: combine tweaks of general and personal.

Evaluation:
Overall ratings of quality of recommendation lists
Correlation between predicted and actual ratings for 
recommended movies that user has already seen

Sample project overview

Submission calendar:
Block 1:

movies table is fully populated
website is live and accepting ratings

Block 2:
sufficient users and ratings have been collected
Amazon similarity data has been retrieved
recommendation algorithms are functional

Block 3:
users have received recommendations and provided 
feedback
final paper includes analysis of algorithms’ relative 
performance

Notes on sample project overview

Your overview should be more extensive 
than this sample…

More specific implementation details, 
particularly in regard to algorithms
More specific goals for each block/milestone
Contingency plans for slight modifications to 
your project if you encounter obstacles?



3

More tools
MALLET

A Machine Learning for Language Toolkit
http://mallet.cs.umass.edu/
“an integrated collection of Java code useful for 
statistical natural language processing, document 
classification, clustering, information extraction, and 
other machine learning applications to text”
Minimally documented but has lots of stuff:

Building feature vectors
Various classification methods (Naïve Bayes, max-ent, 
boosting, winnowing)
Evaluation: precision, recall, F1, etc.
N-grams
Selecting features using information gain

They have some examples of front-end code

MinorThird

http://minorthird.sourceforge.net/
“a collection of Java classes for storing text, 
annotating text, and learning to extract entities and 
categorize text”
Documentation seems to be pretty good: 
comprehensive Javadocs, tutorial, FAQ…
Has the concept of “spans” (sequences of words) that 
can be extracted and classified based on content or 
context
Stored documents can be annotated in independent 
files using TextLabels (denoting, say, part-of-speech 
and semantic information)

Weka 3:
Data Mining Software in Java 

http://www.cs.waikato.ac.nz/~ml/weka/
“Weka is a collection of machine learning algorithms 
for data mining tasks. The algorithms can either be 
applied directly to a dataset or called from your own 
Java code. Weka contains tools for data pre-
processing, classification, regression, clustering, 
association rules, and visualization. It is also well-
suited for developing new machine learning 
schemes.”
Has a GUI
Extensive documentation
Website lists a number of compatible datasets 
(regression and classification problems)
Also lists many Weka-related projects

CLUTO

http://www-users.cs.umn.edu/~karypis/cluto/

“a software package for clustering low- and high-
dimensional datasets and for analyzing the 
characteristics of the various clusters”
Partitional, agglomerative and graph-partitioning 
algorithms
Various similarity/distance metrics
Many options/tools for visualizing and summarizing 
clustering results
Claims to scale to hundreds of thousands of objects 
in tens of thousands of dimensions
wCluto: web-based application built on CLUTO
gCluto: cross-platform graphical application

MG4J: Managing Gigabytes for Java

http://mg4j.dsi.unimi.it/
“a collaborative effort aimed at providing a 
free Java implementation of inverted-index 
compression techniques; as a by-product, it 
offers several general-purpose optimised
classes, including fast & compact mutable 
strings, bit-level I/O, fast unsynchronised
buffered streams, (possibly signed) minimal 
perfect hashing for very large strings 
collections, etc.”



4

Crawlers

UbiCrawler
http://ubi.imc.pi.cnr.it/projects/ubicrawler/
Not available publicly, but “upon agreement 
with the authors for scientific purposes.”
Primary advantage: “a very effective 
assignment function (based on consistent 
hashing) for partitioning the domain to crawl”

Teg Grenager’s crawler
See the links on the projects page of the 
course website
Easily extensible

TiMBL

Tilburg Memory Based Learner
http://ilk.kub.nl/software.html
Nearest-neighbor classification software with 
lots of options:

k
voting scheme
feature weighting
optimizations
built-in leave-one-out testing and cross-fold 
validation

Stanford WebBase (more info)

http://www-diglib.stanford.edu/~testbed/doc2/WebBase/

Kayur Patel will supply a Java client to the 
WebBase data. It should be available by next 
Tuesday
WebBase provides the source for a client 
written in C

More links than you can
shake a stick at

http://nlp.stanford.edu/links/statnlp.html
Many options for all kinds of different NLP 
tools and tasks:

POS taggers
Probabilistic parsers
Named entity recognition
NP chunking
Information extraction/wrapper induction
Word sense disambiguation
Lots of datasets/corpora

Reminder: pubcrawl

SULinux server
Terabytes of disk space
MySQL
Tomcat upon request
Email us if you want access

Tutorial on basic skills/tools

http://www.stanford.edu/class/cs276b/2003/project_tools.html

Provides basic instructions for using Java 
and some of its key packages, Ant, CVS, 
MySQL, Lucene, Tomcat, etc.
Mostly stuff that the majority of you already 
know, but definitely worth browsing through



5

More datasets

Another place to look for data: 
/usr/class/cs276a/data1

…/dmoz
…/selected-linguistic-data
…/linguistic-data

This is a superset of the selected-linguistic-data 
directory, but you need permission to access it 
(we’ll take care of this soon)
More information on the contents of this directory 
at 
http://www.stanford.edu/dept/linguistics/corpora/

Some more examples of projects 
from two years ago

Returning Multiple Pages as 
Individual Search Results

Angrish and Malhotra
Idea: Find a group of logically linked documents that 
collectively satisfy the user’s information need
Logical link could be any number of things. They 
defined two URLs as logically linked if:

one is a “subdirectory” of another, or
they are within N degrees of each other in the Web’s 
link graph

Compared their approach (multiple-page algorithm) 
to baseline (single-page algorithm) by having human 
subjects in various fields run queries and judge 
results
MAX_LEVEL and MAX_LINK: parameters that they 
didn’t vary but should have

Sentiment Identification Using 
Maximum Entropy Analysis of
Movie Reviews

Mehra, Khandelwal, and Patel
Used movie reviews from 
rec.arts.movies.reviews
Got people to rank their preferences for 
various movies on a website (but only had 
six users!)
Implemented personalized classification: 
based on a user’s movie preferences, used 
maximum entropy model to classify reviews 
to find ones that they would like…? I’m not 
even sure what they did.

News Meta-Search
Across Multiple Languages

Patel
Built “Global Reporter” system that tried to 
implement CLIR for news articles
Used Babel Fish to translate both queries 
and articles
Evaluation: six users issued nine queries 
each using a) English-only and b) multi-
language and judged relevance of results

Parametric Search Using
In-memory Auxiliary Index

Verman and Ravela
Problem: traditional parametric search is 
slow because of disk accesses necessitated 
by frequent database reads
Solution: since metadata is relatively small 
compared to corpus itself, store in main 
memory
Used Lucene, MySQL, Citeseer Postscript 
docs with associated metadata



6

More comments based on 
examples

If your algorithms crucially depend on 
certain parameters, vary them.
Make your write-up clear!
If you’re using human subjects to evaluate 
your system, you really should try to get a 
statistically significant sample.


