
1

CS276B
Text Retrieval and Mining

Winter 2005

Lecture 2

Recap: Lecture 1

Web search basics
Characteristics of the web and users
Paid placement
Search Engine Optimization

Plan for today

Overview of CS276B this quarter
Practicum 1: basics for the project

Possible project topics
Helpful tools you might want to know about

Overview of 276B

Consider it the “applications” course built on CS276A
in Autumn
Significant project component

Less homework/exams

A research paper appraisal that you conduct
Application topics that are “current” and that
introduce new challenges:

Web search/mining
Information extraction
Recommendation systems
XML querying
Text mining

Topics: web search

Initiated in Lecture 1
Issues in web search

Scale
Crawling
Adversarial search

Link analysis and derivatives
Duplicate detection and corpus quality
Behavioral ranking

Topics: XML search

The nature of semi-structured data
Tree models and XML
Content-oriented XML retrieval
Query languages and engines

2

Topics: Information extraction

Getting semantic information out of textual
data

Filling the fields of a database record

E.g., looking at an events web page:
What is the name of the event?
What date/time is it?
How much does it cost to attend

Other applications: resumes, health data, …
A limited but practical form of natural
language understanding

Topics: Recommendation systems

Using statistics about the past actions of a
group to give advice to an individual
E.g., Amazon book suggestions or NetFlix
movie suggestions
A matrix problem: but now instead of words
and documents, it’s users and “documents”
What kinds of methods are used?
Why have recommendation systems become
a source of jokes on late night TV?

How might one build better ones?

Topics: Text mining

“Text mining” is a cover-all marketing term
A lot of what we’ve already talked about is
actually the bread and butter of text mining:

Text classification, clustering, and retrieval

But we will focus in on some of the higher-
level text applications:

Extracting document metadata
Topic tracking and new story detection
Cross document entity and event coreference
Text summarization
Question answering

Course grading

Project: 50%
Broken into several incremental deliverables

Paper appraisal/evaluation: 10%
Midterm (or slightly-after-midterm): 20%

In class, Feb 15

Two Homeworks: 10% each
See course website for schedule

Paper appraisal (10%)

You are to read and critically appraise a recent
research paper which is relevant to your project

Students work by themselves, not in groups

By Jan 27, you must obtain instructor confirmation
on the paper you will read

Propose a paper no later than Jan 25

By Feb 10 you must turn in a 3-4 page report on the
paper:

Summarize the paper
Compare it to other work in the area
Discuss some interesting issue or some research
directions that arise

I.e., not just a summary: there should be some value-add

Paper sources

Look at relevant recent conferences:
Often then find papers at CiteSeer/library or homepage!

SIGIR:
http://www.sigir.org/sigir2004/draft.htm
WWW: http://www2004.org/
SIGMOD: [SIGMOD 2004 site seemed dead!]

ICML:
http://www.aicml.cs.ualberta.ca/_banff04/icml/

…

3

Project (50%)

Opportunity to devote time to a substantial
research project

Typically a substantive programming project

Work in teams of 2-3 students
Higher expectation on project scope for
teams of 3
But same expectation on fit and finish from
teams of 2

Project (50%)

Due Jan 11: Project group and project idea
Decision on project group
Brief description of project area/topic
We’ll provide initial feedback

Due Jan 18: Project proposal
Should break project execution into three
phases – Block 1, Block 2 and Block 3

Each phase should have a tangible deliverable
Block 1 delivery due Feb 1
Block 2 due Feb 17
Block 3 (final project report) due Mar 10

Jan 20/25: Student project presentations

Project 50% - breakdown

5% for initial project proposal
Scope, timeline, cleanliness of measurements
Writeup should state problem being solved,
related prior work, approach you propose and
what you will measure.

7.5% for deliveries each of Blocks 1, 2
30% for final delivery of Block 3

Must turn in a writeup
Components measured will be overall scope,
writeup, code quality, fit/finish.
Writeup should be ~8 pages

Project 0% requirements

These pieces won’t be graded, but you do need to
do them, and they’re a great opportunity to get
feedback and inform your fellow students.

Project presentations in class (about 10 mins
per group):

Jan 20/25: Students present project plans

Mar 8/10: Final project presentations

Finding partners

If you don’t have a group yet, try to find
people after class today
Otherwise use the class newsgroup
(su.class.cs276b)

How much time should I
spend on my project?

Of course the quality of your work is the
most important part, but...
Since this is 50% of your grade for a 3-unit
course, we figure something like 40 hours
per person is a reasonable goal.
The more you leverage existing work, the
more time you have for innovation.

4

Practicum (Part 1 of 2)
Practicum 1: Plan for today

Project examples
MovieThing
Tadpole
Search engine spam
Lexical chains
English text compression

Recommendation systems
Tools

WordNet
Google API
Amazon Web Services / Alexa
Lucene
Stanford WebBase

Next time: more datasets and tools, implementation
issues

MovieThing

My project for CS 276 in Fall 2003
Web-based movie recommendation system
Implemented collaborative filtering: using the
recorded preferences of a group of users to
extrapolate an individual’s preferences for other
items
Goals:

Demonstrate that my collaborative filtering was more
effective than simple Amazon recommendations (used
Amazon Web Services to perform similarity queries)
Identify aspects of users’ preference profiles that
might merit additional weight in the calculations

Personal favorites and least favorites
Deviations from popular opinion (e.g. high ratings of
Pauly Shore movies)

MovieThing

MovieThing Tadpole

Mahabhashyam and Singitham, Fall 2002
Meta-search engine (searched Google,
Altavista and MSN)
How to aggregate results of individual
searches into meta-search results?
Evaluation of different rank aggregation
strategies, comparisons with individual
search engines.
Evaluation dimensions: search time, various
precision/recall metrics (based on user-
supplied relevance judgments).

5

Using Semantic Analysis to Classify
Search Engine Spam

Greene and Westbrook, Fall 2002
Attempted semantic analysis of text within
HTML to classify spam (“search engine
optimized”) vs. non-spam pages
Analyzed sentence length, stop words, part
of speech frequency
Fetched Altavista results for various queries,
trained decision tree

Judging relevance through
identification of lexical chains

Holliman and Ngai, Fall 2002
Use WordNet to introduce a level of semantic
knowledge to querying/browsing
Builds on “lexical chain” concept from other
research: notion that chains of discourse run
through documents, consisting of
semantically-related words
Compare this approach to standard vector-
space model

English text compression

Almassian and Sy, Fall 2002
Used assumptions about patterns in English
text to develop lossless compression
software:

Separator – word – separator – word …
8 bits per character is usually excessive
Zipf’s Law – use shorter encodings for more
frequent words
Stem words and record suffixes

Achieved performance superior to gzip,
comparable to bzip2

Project examples: summary

Leveraging existing theory/data/software is
not only acceptable but encouraged, e.g.:

Web services
WordNet
Algorithms and concepts from research
papers
Etc.

Most projects: compare performance of
several options, or test a new idea against
some baseline

Tools and data

For the rest of the practicum we’ll discuss
various tools and datasets that you might
want to use
Many of these are already installed in the
class directory or elsewhere on AFS
Ask us before installing your own copy of
any large software package
We will provide access to a server running
Tomcat and MySQL for those who want to
develop websites and/or databases (more
information soon)

Recommendation systems

Web resources (contain lots of links):
http://www.paulperry.net/notes/cf.asp
http://jamesthornton.com/cf/

Data:
EachMovie dataset: 73,000 users, 1600
movies, 2.5 million ratings
other data?

Software:
Cofi: http://www.nongnu.org/cofi/
CoFE: http://eecs.oregonstate.edu/iis/CoFE/

6

Recommendation systems:
other relevant topics

Efficient implementations
Clustering
Representation of preferences: non-Euclidean
space?
Min-hash, locality-sensitive hashing (LSH)

Social networks?

WordNet

http://www.cogsci.princeton.edu/~wn/
Java API available (already installed)
Useful tool for semantic analysis
Represents the English lexicon as a graph
Each node is a “synset” – a set of words with
similar meanings
Nodes are connected by various relations
such as hypernym/hyponym (X is a kind of
Y), troponym, pertainym, etc.
Could use for query reformulation,
document classification, …

Google API

http://www.google.com/apis/
Web service for querying Google from your software
You can use SOAP/WSDL or the custom Java library
that they provide (already installed)
Limited to 1,000 queries per day per user, so get
started early if you’re going to use this!
Three types of request:

Search: submit query and params, get results
Cache: get Google’s latest copy of a page
Query spell correction

Note: within search requests you can use special
commands like link, related, intitle, etc.

Amazon Web Services:
E-Commerce Service (ECS)

http://www.amazon.com/gp/aws/landing.html

Mostly for third-party sellers, so not that
appropriate for our purposes
But information on sales rank, product
similarity, etc. might be useful for a project
related to recommendation systems
Also could build some sort of parametric
search UI on top of this

Amazon Web Services:
Alexa Web Information Service

Currently in beta, so use at your own risk…
Limit 10,000 requests per user per day
Access to data from Alexa’s 4 billion-page web crawl
and web usage analysis
Available operations:

URL information: popularity, related sites, usage/traffic
stats
Category browsing: claims to provide access to all
Open Directory (www.dmoz.com) data
Web search: like a Google query
Crawl metadata
Web graph structure: e.g. get in-links and out-links for
a given page

Lucene

http://jakarta.apache.org/lucene/docs/index.html

If you didn’t get enough of it in 276A…
Easy-to-use, efficient Java library for building
and querying your own text index
Could use it to build your own search
engine, experiment with different strategies
for determining document relevance, …

7

Stanford WebBase

http://www-diglib.stanford.edu/~testbed/doc2/WebBase/

They offer various relatively small web
crawls (the largest is about 100 million
pages) offering cached pages and link
structure data
Includes specialized crawls such as Stanford
and UC-Berkeley
They provide code for accessing their data
More on this next week

Run your own web crawl

Teg Grenager is providing Java code for a
functional web crawler
You can’t reasonably hope to accumulate a
cache of millions of pages, but you could
investigate issues that web crawlers face:

What to crawl next?
Adverse IR: cloaking, doorway pages, link
spamming (see lecture 1)
Distributed crawling strategies (more on this
in lecture 5)

More project ideas

(these slides borrowed from previous
editions of the course)

Parametric search

Each document has, in addition to text,
some “meta-data” e.g.,

Language = French
Format = pdf
Subject = Physics etc.
Date = Feb 2000

A parametric search interface allows the user
to combine a full-text query with selections
on these parameters e.g.,

language, date range, etc.

Notice that the output is a (large) table.
Various parameters in the table (column
headings) may be clicked on to effect a sort.

Parametric search example Parametric search example

We can add text search.

8

Secure search

Set up a document collection in which each
document can be viewed by a subset of
users.
Simulate various users issuing searches,
such that only docs they can see appear on
the results.
Document the performance hit in your
solution

index space
retrieval time

“Natural language” search / UI

Present an interface that invites users to
type in queries in natural language
Find a means of parsing such questions into
full-text queries for the engine
Measure what fraction of users actually
make use of the feature

Bribe/beg/cajole your friends into
participating
Suggest information discovery tasks for them
Understand some aspect of interface design
and its influence on how people search

Link analysis

Measure various properties of links on the
Stanford web

what fraction of links are navigational rather
than annotative
what fraction go outside (to other
universities?)

(how do you tell automatically?)

What is the distribution of links in Stanford
and how does this compare to the web?
Are there isolated islands in the Stanford
web?

Visual Search Interfaces

Pick a visual metaphor for displaying search
results

2-dimensional space
3-dimensional space
Many other possibilities

Design visualization for formulating and
refining queries
Check www.kartoo.com

Visual Search Interfaces

Are visual search interfaces more effective?
On what measure?

Time needed to find answer
Time needed to specify query
User satisfaction
Precision/recall

Cross-Language Information
Retrieval

Given: a user is looking for information in a
language that is not his/her native language.
Example: Spanish speaking doctor searching
for information in English medical journals.
Simpler: The user can read the non-native
language.
Harder: no knowledge of non-native
language.

9

Cross-Language Information
Retrieval

Two simple approaches:
Use bilingual dictionary to translate query
Use simplistic transformation to normalize
orthographic differences (coronary/coronario)

Performance is expected to be worse - By
how much?
Query refinement/modification more
important -
Implications for UI design?

Meta Search Engine

Send user query to several retrieval systems
and present combined results to user.
Two problems:

Translate query to query syntax of each
engine
Combine results into coherent list

What is the response time/result quality
trade-off? (fast methods may give bad
results)
How to deal with time-out issues?

Meta Search Engine

Combined web search:
Google, Altavista, Overture

Medical Information
Google, Pubmed

University search
Stanford, MIT, CMU

Research papers
Universities, citeseer, e-print archive

Also: look at metasearch engines such as
dogpile, mamma

IR for Biological Data

Biological data offer a wealth of information
retrieval challenges
Combine textual with sequence similarity

Requires BLAST or other sequence homology
algorithm

Term normalization is a big problem (greek
letters, roman numerals, name variants, eg,
E. coli O157:H7)

IR for Biological Data

One place to start: www.netaffx.com
Sequence data
Textual data, describing genes/proteins
Links to national center of bioinformatics

What is the best way to combine textual and
non-textual data?
UI design for mixed queries/results
Pros/Cons of querying on text only,
sequence only, text/sequence combined.

Peer-to-Peer Search

Build information retrieval system with
distributed collections and query engines.
Advantages: robust (eg, against law
enforcement shutdown), fewer update
problems, natural for distributed
information creation
Challenges

Which nodes to query?
Combination of results from different nodes
Spam / trust

10

Personalized Information
Retrieval

Most IR systems give the same answer to every user.
Relevance is often user dependent:

Location
Different degrees of prior knowledge
Query context (buy a car, rent a car, car enthusiast)

Questions
How can personalization information be represented
Privacy concerns
Expected utility
Cost/benefit tradeoff

Latent Semantic Indexing (LSI)

LSI represents queries and documents in a
“latent semantic space”, a transformation of
term/word space
For sparse queries/short documents, LSI
representation captures topical/semantic
similarity better.
Based on SVD analysis of term by document
matrix.

Latent Semantic Indexing

Efficiencies of inverted index (for searching
and index compression) not available. How
can LSI be implemented efficiently?
Impact on retrieval performance (higher
recall, lower precision)
Latent Semantic Indexing applied to a
parallel corpus solves cross-language IR
problem. (but need parallel corpus!)

Detecting index spamming

I.e., this isn’t about the junk you get in your

mailbox every day!

most ranking IR systems use “frequency of use
of words” to determine how good a match a
document is
having lots of terms in an area makes you more
likely to have the ones users use
There’s a whole industry selling tips and
techniques for getting better search engine
rankings from manipulating page content

#3 result on Altavista for “luxury perfume
fragrance” Detecting index spamming

A couple of years ago, lots of “invisible” text in the
background color

There is less of that now, as search engines check for it as
sign of spam

Questions:

Can one use term weighting strategies to make IR system
more resistant to spam?

Can one detect and filter pages attempting index
spamming?

E.g. a language model run over pages

[From the other direction, are there good ways to hide
spam so it can’t be filtered??]

11

Investigating performance of term
weighting functions

Researchers have explored range of families of term

weighting functions

Frequently getting rather more complex than the
simple version of tf.idf which we will explain in class

Investigate some different term weighting functions and

how retrieval performance is affected

One thing that many methods do badly on is correctly
relatively ranking documents of very different lengths

This is a ubiquitous web problem, so that might be a
good focus

A “real world” term weighting
function

“Okapi BM25 weights” are one of the best known
weighting schemes

Robertson et al. TREC-3, TREC-4 reports
Discovered mostly through trial and error

1log

5.0log

avglen
length(d)5.15.0tf

tf6.0
4.0

document of relevance the to termofon contributi theis
document in termoffrequency theis tf

 termcontaining documents ofnumber theis
collection in the documents ofnumber theis

dt,

dt,
,

,

,

+

+

⋅
++

⋅
+=

N
n

N

w

dtw
dt

tn
N

t
dt

dt

dt

t

Investigating performance of term
weighting functions

Using HTML structure:

HTML pages have a good deal of structure (sometimes)
– in terms of elements like titles, headings etc.
Can one incorporate HTML parsing and use of such
tags to significantly improve term weighting, and
hence retrieval performance?
Anchor text, titles, highlighted text, headings etc.
Eg: Google

Language identification

People commonly want to see pages in
languages they can read
But sometimes words (esp. names) are the same
in different languages
And knowing the language has other uses:

For allowing use of segmentation, stemming,
query expansion, …

Write a system that determines the language of
a web page

Language identification

Notes:
There may be a character encoding in the head of the
document, but you often can’t trust it, or it may not
uniquely determine the language
Character n-gram level or function-word based
techniques are often effective
Pages may have content in multiple languages

Google doesn’t do this that well for some
languages (see Advanced Search page)

I searched for pages containing “WWW” [many do, not
really a language hint!] in Indonesian, and here’s what I
got…

12

N-gram Retrieval

Index on n-grams instead of words
Robust for very noisy collections (lots of
typos, low-quality OCR output)
Another possible approach to cross-
language information retrieval
Questions

Compare to word-based indexing
Effect on precision/recall
Effect on index size/response time

