
1

CS276B
Text Retrieval and Mining

Winter 2005

Lecture 15

Plan for today

Vector space approaches to XML retrieval
Evaluating text-centric retrieval

Text-centric XML retrieval

Documents marked up as XML
E.g., assembly manuals, journal issues …

Queries are user information needs 
E.g., give me the Section (element) of the 
document that tells me how to change a 
brake light

Different from well-structured XML queries 
where you tightly specify what you’re 
looking for.

Vector spaces and XML

Vector spaces – tried+tested framework for 
keyword retrieval

Other “bag of words” applications in text: 
classification, clustering …

For text-centric XML retrieval, can we make 
use of vector space ideas?
Challenge: capture the structure of an XML 
document in the vector space.

Vector spaces and XML

For instance, distinguish between the 
following two cases

Book

Title Author

Bill GatesMicrosoft

Book

Title Author

Bill Wulf
The Pearly

Gates

Content-rich XML: representation

Book

Title Author

BillMicrosoft

Book

Title Author

WulfPearlyGates

GatesThe
Bill

Lexicon terms.



2

Encoding the Gates differently

What are the axes of the vector space?
In text retrieval, there would be a single axis 
for Gates
Here we must separate out the two 
occurrences, under Author and Title
Thus, axes must represent not only terms, but 
something about their position in an XML tree

Queries

Before addressing this, let us consider the 
kinds of queries we want to handle

Book

Title

Microsoft

Book

Title Author

Gates Bill

Query types

The preceding examples can be viewed as 
subtrees of the document
But what about?

(Gates somewhere underneath Book)
This is harder and we will return to it later.

Book

Gates

Subtrees and structure

Consider all subtrees of the document that 
include at least one lexicon term:

Book

Title Author

BillMicrosoft Gates

BillMicrosoft Gates

Title

Microsoft

Author

Bill

Author

Gates

Book

Title

Microsoft Bill

Book

Author

Gates

e.g.

…

Structural terms

Call each of the resulting (8+, in the 
previous slide) subtrees a structural term
Note that structural terms might occur 
multiple times in a document
Create one axis in the vector space for each 
distinct structural term
Weights based on frequencies for number of 
occurrences (just as we had tf)
All the usual issues with terms (stemming? 
Case folding?) remain

Example of tf weighting

Here the structural terms containing to or be would 
have more weight than those that don’t

Play

Act

To be or not to be

Play

Act

be

Play

Act

or

Play

Act

not

Play

Act

to

Exercise: How many axes are there in this example?



3

Down-weighting

For the doc on the left: 
in a structural term 
rooted at the node Play, 
shouldn’t Hamlet have 
a higher tf weight than 
Yorick?
Idea: multiply tf
contribution of a term 
to a node k levels up by 
γk, for some γ < 1.

Play

Act

Alas poor Yorick

Scene

Title

Hamlet

Down-weighting example, γ=0.8

For the doc on the previous slide, the tf of
Hamlet is multiplied by 0.8
Yorick is multiplied by 0.64

in any structural term rooted at Play.

The number of structural terms

Can be huge!
Impractical to build a vector space index 
with so many dimensions
Will examine pragmatic solutions to this 
shortly; for now, continue to believe …

Alright, how huge, really?

Structural terms: docs+queries

The notion of structural terms is 
independent of any schema/DTD for the 
XML documents
Well-suited to a heterogeneous collection of 
XML documents
Each document becomes a vector in the 
space of structural terms
A query tree can likewise be factored into 
structural terms

And represented as a vector
Allows weighting portions of the query

Example query

Book

Title Author

Gates Bill

0.6 0.4
Title Author

Gates Bill

0.6 0.4

Book

Title

Gates

0.6
Book

Author

Bill

0.4

…

Weight propagation

The assignment of the weights 0.6 and 0.4 
in the previous example to subtrees was 
simplistic

Can be more sophisticated
Think of it as generated by an application, 
not necessarily an end-user

Queries, documents become normalized 
vectors
Retrieval score computation “just” a matter 
of cosine similarity computation



4

Restrict structural terms?

Depending on the application, we may 
restrict the structural terms
E.g., may never want to return a Title node, 
only Book or Play nodes
So don’t enumerate/index/retrieve/score 
structural terms rooted at some nodes

The catch remains

This is all very promising, but …
How big is this vector space?
Can be exponentially large in the size of the 
document
Cannot hope to build such an index
And in any case, still fails to answer queries 
like

Book

Gates

(somewhere underneath)

Two solutions

Query-time materialization of axes
Restrict the kinds of subtrees to a 
manageable set

Query-time materialization

Instead of enumerating all structural terms 
of all docs (and the query), enumerate only 
for the query

The latter is hopefully a small set

Now, we’re reduced to checking which 
structural term(s) from the query match a 
subtree of any document
This is tree pattern matching: given a text 
tree and a pattern tree, find matches

Except we have many text trees
Our trees are labeled and weighted

Example

Here we seek a doc with 
Hamlet in the title
On finding the match 
we compute the cosine 
similarity score
After all matches are 
found, rank by sorting

Play

Act

Alas poor Yorick

Scene

Text =

Query =

Hamlet

Title

Hamlet

Title

(Still infeasible)

A doc with Yorick somewhere in it:
Query =

Will get to it …

Yorick

Title



5

Restricting the subtrees

Enumerating all structural terms (subtrees) is 
prohibitive, for indexing

Most subtrees may never be used in 
processing any query

Can we get away with indexing a restricted 
class of subtrees

Ideally – focus on subtrees likely to arise in 
queries

JuruXML (IBM Haifa)

Only paths including a 
lexicon term
In this example there 
are only 14 (why?) such 
paths
Thus we have 14 
structural terms in the 
index

Play

Act

To be or not to be

Scene

Title

Hamlet

Why is this far more manageable?
How big can the index be as a function of the text?

Variations

Could have used other 
subtrees – e.g., all 
subtrees with two 
siblings under a node
Which subtrees get 
used: depends on the 
likely queries in the 
application
Could be specified at 
index time – area with 
little research so far

Book

Title Author

BillMicrosoft Gates

Book

Title Author

BillMicrosoft

2 terms

Gates

Variations

Why would this be any 
different from just 
paths?
Because we preserve 
more of the structure 
that a query may seek

Book

Title Author

BillMicrosoft

Title Author

Gates Bill

Book

Title

Gates

Book

Author

Bill

vs.

Descendants

Return to the descendant examples:

Yorick

Play Book

Author

Bill Gates

vs.
Book

Author

Bill Gates

FirstName LastName

No known DTD.
Query seeks Gates under Author.

Handling descendants in the vector 
space

Devise a match function that yields a score in [0,1] 
between structural terms
E.g., when the structural terms are paths, measure 
overlap

The greater the overlap, the higher the match score
Can adjust match for where the overlap occurs

Book

Author

Bill

Book

Author

Bill

LastName

Book

Bill

vs. in



6

How do we use this in retrieval?

First enumerate structural terms in the query
Measure each for match against the 
dictionary of structural terms

Just like a postings lookup, except not 
Boolean (does the term exist)
Instead, produce a score that says “80% close 
to this structural term”, etc.

Then, retrieve docs with that structural term, 
compute cosine similarities, etc.

Example of a retrieval step

ST1 Doc1 (0.7) Doc4 (0.3) Doc9 (0.2)

ST = Structural Term

ST5 Doc3 (1.0) Doc6 (0.8) Doc9 (0.6)

IndexQuery ST

Match
=0.63

Now rank the Doc’s by cosine similarity;
e.g., Doc9 scores 0.578.

Closing technicalities

But what exactly is a Doc?
In a sense, an entire corpus can be viewed as 
an XML document

Corpus

Doc1 Doc2 Doc3 Doc4

What are the Doc’s in the index?

Anything we are prepared to return as an 
answer
Could be nodes, some of their children …

What are queries we can’t handle 
using vector spaces?

Find figures that describe the Corba
architecture and the paragraphs that refer to 
those figures

Requires JOIN between 2 tables

Retrieve the titles of articles published in the 
Special Feature section of the journal IEEE 
Micro

Depends on order of sibling nodes.

Can we do IDF?

Yes, but doesn’t make sense to do it corpus-
wide
Can do it, for instance, within all text under 
a certain element name say Chapter
Yields a tf-idf weight for each lexicon term 
under an element
Issues: how do we propagate contributions 
to higher level nodes.



7

Example

Say Gates has high IDF 
under the Author
element
How should it be tf-idf
weighted for the Book
element?
Should we use the idf
for Gates in Author or 
that in Book?

Book

Author

Bill Gates

INEX: a benchmark for text-
centric XML retrieval

INEX

Benchmark for the evaluation of XML 
retrieval

Analog of TREC (recall CS276A)

Consists of:
Set of XML documents
Collection of retrieval tasks

INEX

Each engine indexes docs 
Engine team converts retrieval tasks into 
queries

In XML query language understood by engine

In response, the engine retrieves not docs, 
but elements within docs

Engine ranks retrieved elements

INEX assessment

For each query, each retrieved element is 
human-assessed on two measures:

Relevance – how relevant is the retrieved 
element
Coverage – is the retrieved element too 
specific, too general, or just right

E.g., if the query seeks a definition of the Fast 
Fourier Transform, do I get the equation (too 
specific), the chapter containing the definition (too 
general) or the definition itself

These assessments are turned into 
composite precision/recall measures

INEX corpus

12,107 articles from IEEE 
Computer Society publications
494 Megabytes 
Average article:1,532 XML nodes

Average node depth = 6.9



8

INEX topics

Each topic is an information need, one 
of two kinds:

Content Only (CO) – free text queries 
Content and Structure (CAS) – explicit 
structural constraints, e.g., 
containment conditions.

Sample INEX CO topic

<Title> computational biology </Title> 
<Keywords> computational biology, bioinformatics, genome, 

genomics, proteomics, sequencing, protein folding 
</Keywords>

<Description> Challenges that arise, and approaches being 
explored, in the interdisciplinary field of computational 
biology</Description>

<Narrative> To be relevant, a document/component must 
either talk in general terms about the opportunities at the 
intersection of computer science and biology, or describe 
a particular problem and the ways it is being attacked. 
</Narrative>

INEX assessment

Each engine formulates the topic as a query
E.g., use the keywords listed in the topic.

Engine retrieves one or more elements and 
ranks them.
Human evaluators assign to each retrieved 
element relevance and coverage scores.

Assessments

Relevance assessed on a scale from Irrelevant 
(scoring 0) to Highly Relevant (scoring 3)
Coverage assessed on a scale with four levels:

No Coverage (N: the query topic does not match 
anything in the element
Too Large (The topic is only a minor theme of the 
element retrieved)
Too Small (S: the element is too small to provide the 
information required)
Exact (E).

So every element returned by each engine has 
ratings from {0,1,2,3} ×{N,S,L,E}

Combining the assessments

Define scores:

⎩
⎨
⎧ =

=
otherwise0

3, if1
),(

Ecovrel
covrelfstrict

{ }
{ }
{ }

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=
∈

∈
∈

=

=

.0 if00.0
1,1 if25.0

2,2,1 if50.0
3,3,2 if75.0

3 if00.1

cov),(

Nrel,cov
LSrel,cov

SLErel,cov
SLErel,cov

Erel,cov

relf dgeneralize

The f-values

Scalar measure of goodness of a retrieved 
elements
Can compute f-values for varying numbers 
of retrieved elements 10, 20 … etc.

Means for comparing engines.



9

From raw f-values to … ?

INEX provides a method for turning these 
into precision-recall curves
“Standard” issue: only elements returned by 
some participant engine are assessed
Lots more commentary (and proceedings 
from previous INEX bakeoffs):

http://inex.is.informatik.uni-duisburg.de:2004/

See also previous years

Resources

Querying and Ranking XML Documents
Torsten Schlieder, Holger Meuss
http://citeseer.ist.psu.edu/484073.html

Generating Vector Spaces On-the-fly for 
Flexible XML Retrieval. 

T. Grabs, H-J Schek
www.cs.huji.ac.il/course/2003/sdbi/Papers/ir
-xml/xmlirws.pdf

Resources

JuruXML - an XML retrieval system at 
INEX'02.

Y. Mass, M. Mandelbrod, E. Amitay, A. Soffer.
http://einat.webir.org/INEX02_p43_Mass_etal
.pdf

See also INEX proceedings online.


