CS2768B

Text Retrieval and Mining
Winter 2005

Lecture 15

Plan for today

= Vector space approaches to XML retrieval
= Evaluating text-centric retrieval

Text-centric XML retrieval

= Documents marked up as XML
= E.g., assembly manuals, journal issues ...
= Queries are user information needs
= E.g., give me the Section (element) of the
document that tells me how to change a
brake light
= Different from well-structured XML queries
where you tightly specify what you’re
looking for.

Vector spaces and XML

= Vector spaces - tried+tested framework for
keyword retrieval
= Other “bag of words” applications in text:

classification, clustering ...

= For text-centric XML retrieval, can we make
use of vector space ideas?

= Challenge: capture the structure of an XML
document in the vector space.

Vector spaces and XML

= For instance, distinguish between the
following two cases

The Pearly
Gates

Content-rich XML: representation

Lexicon terms.

Encoding the Gates differently
]
= What are the axes of the vector space?
= In text retrieval, there would be a single axis
for Gates
= Here we must separate out the two
occurrences, under Author and Title
= Thus, axes must represent not only terms, but
something about their position in an XML tree

Queries

= Before addressing this, let us consider the
kinds of queries we want to handle

(o) Qe) Cauthor
ST &> @

Query types

= The preceding examples can be viewed as
subtrees of the document

= But what about?
Book

= (Gates somewhere underneath Book)
= This is harder and we will return to it later.

Subtrees and structure

= Consider all subtrees of the document that
include at least one lexicon term:

Structural terms
—
= Call each of the resulting (8+, in the
previous slide) subtrees a structural term
= Note that structural terms might occur
multiple times in a document
= Create one axis in the vector space for each
distinct structural term
= Weights based on frequencies for number of
occurrences (just as we had tf)
= All the usual issues with terms (stemming?
Case folding?) remain

Example of tf weighting

= Here the structural terms containing to or be would
have more weight than those that don’t

Exercise: How many axes are there in this example?

Down-weighting

= For the doc on the left:
in a structural term
rooted at the node Play,
shouldn’t Hamlet have
a higher tf weight than
Yorick?

= ldea: multiply tf
contribution of a term
to a node k levels up by
vk, for some y < 1.

Alas poor Yorick

Down-weighting example, y=0.8

= For the doc on the previous slide, the tf of
= Hamlet is multiplied by 0.8
= Yorick is multiplied by 0.64

in any structural term rooted at Play.

The number of structural terms

= Can be huge! <,:“Alright, how huge, reaIIy?‘

= Impractical to build a vector space index
with so many dimensions

= Will examine pragmatic solutions to this
shortly; for now, continue to believe ...

Structural terms: docs+queries
- v ---———
= The notion of structural terms is
independent of any schema/DTD for the
XML documents
= Well-suited to a heterogeneous collection of
XML documents
= Each document becomes a vector in the
space of structural terms
= A query tree can likewise be factored into
structural terms
= And represented as a vector
= Allows weighting portions of the query

Example query

Weight propagation

= The assignment of the weights 0.6 and 0.4
in the previous example to subtrees was
simplistic
= Can be more sophisticated
= Think of it as generated by an application,

not necessarily an end-user

= Queries, documents become normalized
vectors

= Retrieval score computation “just” a matter
of cosine similarity computation

Restrict structural terms?
—
= Depending on the application, we may
restrict the structural terms
= E.g., may never want to return a Title node,
only Book or Play nodes
= So don’t enumerate/index/retrieve/score
structural terms rooted at some nodes

The catch remains

= This is all very promising, but ...
= How big is this vector space?

= Can be exponentially large in the size of the
document

= Cannot hope to build such an index
= And in any case, still fails to answer queries

like

| (somewhere underneath)
|

Two solutions
- _ w--—-—-——
= Query-time materialization of axes

= Restrict the kinds of subtrees to a
manageable set

Query-time materialization

= Instead of enumerating all structural terms
of all docs (and the query), enumerate only
for the query
= The latter is hopefully a small set

= Now, we’re reduced to checking which
structural term(s) from the query match a
subtree of any document

= This is tree pattern matching: given a text
tree and a pattern tree, find matches
» Except we have many text trees
= Our trees are labeled and weighted

= Here we seek a doc with
Hamlet in the title

= On finding the match
we compute the cosine
similarity score

= After all matches are
found, rank by sorting

(Still infeasible)

= A doc with Yorick somewhere in it:
= Query =

= Will gettoit ...

Restricting the subtrees

= Enumerating all structural terms (subtrees) is
prohibitive, for indexing
= Most subtrees may never be used in
processing any query
= Can we get away with indexing a restricted
class of subtrees

= Ideally - focus on subtrees likely to arise in
queries

JuruXML (IBM Haifa)

= Only paths including a
lexicon term

= In this example there
are only 14 (why?) such
paths

= Thus we have 14
structural terms in the
index

To be or not to be

Why is this far more manageable?
How big can the index be as a function of the text?

Variations

= Could have used other
subtrees - e.g., all
@ subtrees with two
siblings under a node

@ @ @ = Which subtrees get
used: depends on the
likely queries in the

application

= Could be specified at
index time - area with

@ little research so far
(o) Caates)

I

Variations

= Why would this be any
@ @ different from just
paths?
= Because we preserve
@ @ more of the structure

Vs. that a query may seek
IT
Caates) (sin) Caates) (am)

Descendants

= Return to the descendant examples:

| VS.
@ @
(Bir) CGates) prstname >

(i) Caares)
- a—

No known DTD.
Query seeks Gates under Author.

@

Handling descendants in the vector
space

= Devise a match function that yields a score in [0,1]
between structural terms

= E.g., when the structural terms are paths, measure
overlap

Craror>
vs. Guined I e
(o) G

= The greater the overlap, the higher the match score
= Can adjust match for where the overlap occurs

How do we use this in retrieval?
—
= First enumerate structural terms in the query

= Measure each for match against the
dictionary of structural terms
= Just like a postings lookup, except not
Boolean (does the term exist)
= Instead, produce a score that says “80% close
to this structural term”, etc.
= Then, retrieve docs with that structural term,
compute cosine similarities, etc.

Example of a retrieval step

index

N
| {ST1 [-+{Docl (0.7) |+ Doc4 (0.3) | Doc9 (0.2)]

Match\\
=0.63 \

[s75|-{Doc3 (1.0)}-{ Doc6 (0.8){Doco (0.6)]

ST = Structural Term

Now rank the Doc’s by cosine similarity;
e.g., Doc9 scores 0.578.

Closing technicalities

= But what exactly is a Doc?

= In a sense, an entire corpus can be viewed as
an XML document

What are the Doc’s in the index?

]
= Anything we are prepared to return as an
answer
= Could be nodes, some of their children ...

What are queries we can’t handle
using vector spaces?

= Find figures that describe the Corba
architecture and the paragraphs that refer to
those figures
= Requires JOIN between 2 tables

= Retrieve the titles of articles published in the
Special Feature section of the journal IEEE
Micro
= Depends on order of sibling nodes.

Can we do IDF?

]

= Yes, but doesn’t make sense to do it corpus-
wide

= Can do it, for instance, within all text under
a certain element name say Chapter

= Yields a tf-idf weight for each lexicon term
under an element

= Issues: how do we propagate contributions
to higher level nodes.

Example

= Say Gates has high IDF
under the Author

element

= How should it be tf-idf

@ weighted for the Book

element?

(o) CGates) = Should we use the idf

for Gatesin Author or
that in Book?

INEX: a benchmark for text-
centric XML retrieval

INEX

= Benchmark for the evaluation of XML
retrieval
= Analog of TREC (recall CS276A)
= Consists of:
= Set of XML documents
= Collection of retrieval tasks

INEX

= Each engine indexes docs
= Engine team converts retrieval tasks into
queries
= In XML query language understood by engine
= In response, the engine retrieves not docs,
but elements within docs
= Engine ranks retrieved elements

INEX assessment

= For each query, each retrieved element is
human-assessed on two measures:
= Relevance - how relevant is the retrieved
element
= Coverage - is the retrieved element too
specific, too general, or just right
= E.g., if the query seeks a definition of the Fast
Fourier Transform, do | get the equation (too
specific), the chapter containing the definition (too
general) or the definition itself
= These assessments are turned into
composite precision/recall measures

INEX corpus

—
= 12,107 articles from IEEE
Computer Society publications
= 494 Megabytes
= Average article:1,532 XML nodes
= Average node depth = 6.9

INEX topics

= Each topic is an information need, one
of two kinds:
= Content Only (CO) - free text queries
= Content and Structure (CAS) - explicit
structural constraints, e.g.,
containment conditions.

Sample INEX CO topic

<Title> computational biology </Title>

<Keywords> computational biology, bioinformatics, genome,
genomics, proteomics, sequencing, protein folding
</Keywords>

<Description> Challenges that arise, and approaches being
explored, in the interdisciplinary field of computational
biology</Description>

<Narrative> To be relevant, a document/component must
either talk in general terms about the opportunities at the
intersection of computer science and biology, or describe
a particular problem and the ways it is being attacked.
</Narrative>

INEX assessment
- _ w--—-—-——
= Each engine formulates the topic as a query
= E.g., use the keywords listed in the topic.
= Engine retrieves one or more elements and

ranks them.
= Human evaluators assign to each retrieved
element relevance and coverage scores.

Assessments

= Relevance assessed on a scale from Irrelevant
(scoring 0) to Highly Relevant (scoring 3)

= Coverage assessed on a scale with four levels:

No Coverage (N: the query topic does not match

anything in the element

Too Large (The topic is only a minor theme of the

element retrieved)

Too Small (S: the element is too small to provide the

information required)

Exact (E).

= So every element returned by each engine has
ratings from {0,1,2,3} %{N,S,L,E}

Combining the assessments

= Define scores:

1 if rel,cov=3E
fstrict(reLcov) :{

0 otherwise

1.00 if rel,cov=3E
0.75 if rel,cov € {2E,3L,3S}
fgeneraiizea (€1, COV) =< 0.50 if rel,cov e {1E,2L,2S}
0.25 if rel,cove {IS,1L}
0.00 if rel,cov=0N.

The f-values

—
= Scalar measure of goodness of a retrieved
elements

= Can compute f-values for varying numbers
of retrieved elements 10, 20 ... etc.

= Means for comparing engines.

From raw f-values to ... ?
]
= INEX provides a method for turning these
into precision-recall curves
= “Standard” issue: only elements returned by
some participant engine are assessed
= Lots more commentary (and proceedings
from previous INEX bakeoffs):
= http://inex.is.informatik.uni-duisburg.de:2004
= See also previous years

Resources
—
= Querying and Ranking XML Documents
= Torsten Schlieder, Holger Meuss
= http://citeseer.ist.psu.edu/484073.html
= Generating Vector Spaces On-the-fly for
Flexible XML Retrieval.
= T. Grabs, H-J Schek
= www.cs.huji.ac.il/course/2003/sdbi/Papers/ir

-xml/xmlirws.pdf

Resources
- ——————
= JuruXML - an XML retrieval system at
INEX'02.
= Y. Mass, M. Mandelbrod, E. Amitay, A. Soffer.
= http://einat.webir.org/INEX02_p43_Mass_etal
.pdf
= See also INEX proceedings online.

