
1

CS276B
Text Retrieval and Mining

Winter 2005

Lecture 12

What is XML?

eXtensible Markup Language
A framework for defining markup languages
No fixed collection of markup tags
Each XML language targeted for application
All XML languages share features
Enables building of generic tools

Basic Structure

An XML document is an ordered, labeled
tree

character data leaf nodes contain the actual
data (text strings)
element nodes, are each labeled with

a name (often called the element type), and
a set of attributes, each consisting of a name
and a value,
can have child nodes

XML Example

XML Example

<chapter id="cmds">
<chaptitle>FileCab</chaptitle> <para>This
chapter describes the commands that
manage the <tm>FileCab</tm>inet
application.</para> </chapter>

Elements

Elements are denoted by markup tags
<foo attr1=“value” … > thetext </foo>
Element start tag: foo
Attribute: attr1
The character data: thetext
Matching element end tag: </foo>

2

XML vs HTML

HTML is a markup language for a specific
purpose (display in browsers)
XML is a framework for defining markup
languages
HTML can be formalized as an XML language
(XHTML)
XML defines logical structure only
HTML: same intention, but has evolved into
a presentation language

XML: Design Goals

Separate syntax from semantics to provide
a common framework for structuring
information
Allow tailor-made markup for any
imaginable application domain
Support internationalization (Unicode) and
platform independence

Be the future of (semi)structured
information (do some of the work now done
by databases)

Why Use XML?

Represent semi-structured data (data that
are structured, but don’t fit relational model)
XML is more flexible than DBs
XML is more structured than simple IR
You get a massive infrastructure for free

Applications of XML

XHTML
CML – chemical markup language
WML – wireless markup language
ThML – theological markup language

<h3 class="s05" id="One.2.p0.2">Having a Humble
Opinion of Self</h3> <p class="First"
id="One.2.p0.3">EVERY man naturally desires
knowledge <note place="foot" id="One.2.p0.4"> <p
class="Footnote" id="One.2.p0.5"><added
id="One.2.p0.6"> <name
id="One.2.p0.7">Aristotle</name>, Metaphysics, i. 1.
</added></p> </note>; but what good is knowledge
without fear of God? Indeed a humble rustic who
serves God is better than a proud intellectual who
neglects his soul to study the course of the stars.
<added id="One.2.p0.8"><note place="foot"
id="One.2.p0.9"> <p class="Footnote"
id="One.2.p0.10"> Augustine, Confessions V. 4. </p>
</note></added> </p>

XML Schemas

Schema = syntax definition of XML language
Schema language = formal language for
expressing XML schemas
Examples

Document Type Definition
XML Schema (W3C)

Relevance for XML IR
Our job is much easier if we have a (one)
schema

XML Tutorial

http://www.brics.dk/~amoeller/XML/index.html

(Anders Møller and Michael Schwartzbach)
Previous (and some following) slides are
based on their tutorial

3

XML Indexing and Search
Native XML Database

Uses XML document as logical unit
Should support

Elements
Attributes
PCDATA (parsed character data)
Document order

Contrast with
DB modified for XML
Generic IR system modified for XML

XML Indexing and Search

Most native XML databases have taken a DB
approach

Exact match
Evaluate path expressions
No IR type relevance ranking

Only a few that focus on relevance ranking

Data vs. Text-centric XML

Data-centric XML: used for messaging
between enterprise applications

Mainly a recasting of relational data

Content-centric XML: used for annotating
content

Rich in text
Demands good integration of text retrieval
functionality
E.g., find me the ISBN #s of Books with at
least three Chapters discussing cocoa
production, ranked by Price

IR XML Challenge 1: Term Statistics

There is no document unit in XML
How do we compute tf and idf?
Global tf/idf over all text context is useless
Indexing granularity

IR XML Challenge 2: Fragments

IR systems don’t store content (only index)
Need to go to document for
retrieving/displaying fragment

E.g., give me the Abstracts of Papers on
existentialism
Where do you retrieve the Abstract from?

Easier in DB framework

4

IR XML Challenges 3: Schemas

Ideally:
There is one schema
User understands schema

In practice: rare
Many schemas
Schemas not known in advance
Schemas change
Users don’t understand schemas

Need to identify similar elements in different
schemas

Example: employee

IR XML Challenges 4: UI

Help user find relevant nodes in schema
Author, editor, contributor, “from:”/sender

What is the query language you expose to
the user?

Specific XML query language? No.
Forms? Parametric search?
A textbox?

In general: design layer between XML and
user

IR XML Challenges 5: using a DB

Why you don’t want to use a DB
Spelling correction
Mid-word wildcards
Contains vs “is about”
DB has no notion of ordering
Relevance ranking

Querying XML

Today:
XQuery
XIRQL

Lecture 15
Vector space approaches

XQuery

SQL for XML
Usage scenarios

Human-readable documents
Data-oriented documents
Mixed documents (e.g., patient records)

Relies on
XPath
XML Schema datatypes

Turing complete
XQuery is still a working draft.

XQuery

The principal forms of XQuery expressions
are:

path expressions
element constructors
FLWR ("flower") expressions
list expressions
conditional expressions
quantified expressions
datatype expressions

Evaluated with respect to a context

5

FLWR

FOR $p IN document("bib.xml")//publisher LET $b :=
document("bib.xml”)//book[publisher = $p] WHERE
count($b) > 100 RETURN $p
FOR generates an ordered list of bindings of
publisher names to $p
LET associates to each binding a further binding of
the list of book elements with that publisher to $b
at this stage, we have an ordered list of tuples of
bindings: ($p,$b)
WHERE filters that list to retain only the desired
tuples
RETURN constructs for each tuple a resulting value

Queries Supported by XQuery

Location/position (“chapter no.3”)
Simple attribute/value

/play/title contains “hamlet”

Path queries
title contains “hamlet”
/play//title contains “hamlet”

Complex graphs
Employees with two managers

Subsumes: hyperlinks
What about relevance ranking?

How XQuery makes ranking
difficult

All documents in set A must be ranked
above all documents in set B.
Fragments must be ordered in depth-first,
left-to-right order.

XQuery: Order By Clause

for $d in document("depts.xml")//deptno
let $e := document("emps.xml")//emp[deptno

= $d]
where count($e) >= 10
order by avg($e/salary) descending
return <big-dept> { $d,

<headcount>{count($e)}</headcount>,
<avgsal>{avg($e/salary)}</avgsal> } </big-
dept>

XQuery Order By Clause

Order by clause only allows ordering by
“overt” criterion

Say by an attribute value

Relevance ranking
Is often proprietary
Can’t be expressed easily as function of set
to be ranked
Is better abstracted out of query formulation
(cf. www)

XIRQL

University of Dortmund
Goal: open source XML search engine

Motivation
“Returnable” fragments are special

E.g., don’t return a <bold> some text </bold>
fragment

Structured Document Retrieval Principle
Empower users who don’t know the schema

Enable search for any person no matter how
schema encodes the data
Don’t worry about attribute/element

6

Atomic Units

Specified in schema
Only atomic units can be returned as result
of search (unless unit specified)
Tf.idf weighting is applied to atomic units
Probabilistic combination of “evidence” from
atomic units

XIRQL Indexing

Structured Document Retrieval
Principle

A system should always retrieve the most
specific part of a document answering a
query.
Example query: xql
Document:
<chapter> 0.3 XQL
<section> 0.5 example </section>
<section> 0.8 XQL 0.7 syntax </section>
</chapter>

Return section, not chapter

Augmentation weights

Ensure that Structured Document Retrieval
Principle is respected.
Assume different query conditions are
disjoint events -> independence.
P(chapter,XQL)=P(XQL|chapter)+P(section|cha
pter)*P(XQL|section) –
P(XQL|chapter)*P(section|chapter)*P(XQL|sect
ion) = 0.3+0.6*0.8-0.3*0.6*0.8 = 0.636
Section ranked ahead of chapter

Datatypes

Example: person_name
Assign all elements and attributes with
person semantics to this datatype
Allow user to search for “person” without
specifying path

XIRQL: Summary

Relevance ranking
Fragment/context selection
Datatypes (person_name)
Semantic relativism

Attribute/element

7

Data structures for XML retrieval

A very basic introduction.

Data structures for XML retrieval

What are the primitives we need?
Inverted index: give me all elements
matching text query Q

We know how to do this – treat each
element as a document

Give me all elements (immediately)
below any instance of the Book
element
Combination of the above

Parent/child links

Number each element
Maintain a list of parent-child relationships

E.g., Chapter:21 ← Book:8
Enables immediate parent

But what about “the word Hamlet under a
Scene element under a Play element?

General positional indexes

View the XML document as a text document
Build a positional index for each element

Mark the beginning and end for each element, e.g.,

Play Doc:1(27) Doc:1(2033)

/Play Doc:1(1122) Doc:1(5790)

Verse Doc:1(431) Doc:4(33)

/Verse Doc:1(867) Doc:4(92)

Term:droppeth Doc:1(720)

Positional containment

Doc:1

27 1122 2033 5790
Play

431 867
Verse

Term:droppeth
720

droppeth under Verse under Play.

Containment can be
viewed as merging
postings.

Summary of data structures

Path containment etc. can essentially be
solved by positional inverted indexes
Retrieval consists of “merging” postings
All the compression tricks etc. from 276A
are still applicable
Complications arise from insertion/deletion
of elements, text within elements

Beyond the scope of this course

8

Resources

Jan-Marco Bremer’s publications on xml and ir:
http://www.db.cs.ucdavis.edu/~bremer
www.w3.org/XML - XML resources at W3C
Ronald Bourret on native XML databases:
http://www.rpbourret.com/xml/ProdsNative.htm
Norbert Fuhr and Kai Grossjohann. XIRQL: A query
language for information retrieval in XML
documents. In Proceedings of the 24th International
ACM SIGIR Conference, New Orleans, Louisiana,
September 2001.
http://www.sciam.com/2001/0501issue/0501berner
s-lee.html

ORDPATHs: Insert-Friendly XML Node Labels.
www.cs.umb.edu/~poneil/ordpath.pdf

