CS276B Text Retrieval and Mining Winter 2005

Lecture 11

This lecture

- Wrap up pagerank
- Anchor text
- HITS
- Behavioral ranking

Pagerank: Issues and Variants

- How realistic is the random surfer model?
 - What if we modeled the back button? [Fagi00]
 Surfer behavior sharply skewed towards short paths [Hube98]
 - Search engines, bookmarks & directories make jumps nonrandom.

Biased Surfer Models

- Weight edge traversal probabilities based on match with topic/query (non-uniform edge selection)
- Bias jumps to pages on topic (e.g., based on personal bookmarks & categories of interest)

Topic Specific Pagerank [Have02]

- Conceptually, we use a random surfer who teleports, with say 10% probability, using the following rule:
 - Selects a category (say, one of the 16 top level ODP categories) based on a query & user -specific distribution over the categories
 - Teleport to a page uniformly at random within the chosen category
 - Sounds hard to implement: can't compute PageRank at query time!

Topic Specific Pagerank [Have02]

Implementation

- offline:Compute pagerank distributions wrt to *individual* categories
 - Query independent model as before Each page has multiple pagerank scores - one for each ODP category, with teleportation only to that category
- online: Distribution of weights over categories computed by query context classification
 Generate a dynamic pagerank score for each page
 - weighted sum of category-specific pageranks

Influencing PageRank ("Personalization")

- Input:
 - Web graph W
 - influence vector v
 - \mathbf{v} : (page \rightarrow degree of influence)
- Output:
 - Rank vector **r**: (page \rightarrow page importance wrt
- $\mathbf{r} = PR(W, \mathbf{v})$

Assumptions Tested

- A link is an endorsement (quality signal)
 - Except when *affiliated*
 - Can we recognize *affiliated links*? [Davi00]
 1536 links manually labeled
 - 59 binary features (e.g., on-domain, meta tag overlap, common outlinks)
 - C4.5 decision tree, 10 fold cross validation showed <u>98.7% accuracy</u>
 - Additional surrounding text has lower probability but can be useful

Assumptions tested

Anchors describe the target

- Topical Locality [Davi00b]
 - ~200K pages (query results + their outlinks)
 - Computed "page to page" similarity (TFIDF measure)
 - Link-to-Same-Domain > Cocited > Link-to-Different-Domain
 - Computed "anchor to page" similarity
 - Mean anchor len = 2.69
 - 0.6 mean probability of an anchor term in target page

Anchor Text WWW Worm - McBryan [Mcbr94] • For [ibm] how to distinguish between: • IBM's home page (mostly graphical) • IBM's copyright page (high term freq. for 'ibm') • Rival's spam page (arbitrarily high term freq.) • Rival's spam page (arbitrarily high term freq.) • Tibm'' "ibm.com' "IBM home page" • www.ibm.com

Indexing anchor text

- Can sometimes have unexpected side effects
 e.g., evil empire.
- Can index anchor text with less weight.

Anchor Text

- Other applications
 - Weighting/filtering links in the graph
 HITS [Chak98], Hilltop [Bhar01]
 - Generating page descriptions from anchor text [Amit98, Amit00]

Hyperlink–Induced Topic Search (HITS) – Klei98

- In response to a query, instead of an ordered list of pages each meeting the query, find two sets of inter-related pages:
 - Hub pages are good lists of links on a subject.
 - e.g., "Bob's list of cancer-related links."
 - Authority pages occur recurrently on good hubs for the subject.
- Best suited for "broad topic" queries rather than for page-finding queries.
- Gets at a broader slice of common *opinion*.

Hubs and Authorities

- Thus, a good hub page for a topic *points* to many authoritative pages for that topic.
- A good authority page for a topic is *pointed* to by many good hubs for that topic.
- Circular definition will turn this into an iterative computation.

- Given text query (say *browser*), use a text index to get all pages containing *browser*.
 - Call this the <u>root set</u> of pages.
- Add in any page that either
 - points to a page in the root set, or
 - is pointed to by a page in the root set.
- Call this the <u>base set</u>.

Assembling the base set [Klei98]

- Root set typically 200-1000 nodes.
- Base set may have up to 5000 nodes.
- How do you find the base set nodes?
 - Follow out-links by parsing root set pages.
 - Get in-links (and out-links) from a connectivity server.
 - (Actually, suffices to text-index strings of the form *href="<u>URL</u>"* to get in-links to <u>URL</u>.)

Distilling hubs and authorities

- Compute, for each page *x* in the base set, a hub score h(x) and an authority score a(x).
- Initialize: for all $x, h(x) \leftarrow 1; a(x) \leftarrow 1;$
- Iteratively update all h(x), a(x);
- After iterations
 - output pages with highest h() scores as top hubs
 - highest *a()* scores as top authorities.

Scaling

- To prevent the *h()* and *a()* values from getting too big, can scale down after each iteration.
- Scaling factor doesn't really matter:
 - we only care about the *relative* values of the scores.

How many iterations?

- Claim: relative values of scores will converge after a few iterations:
 - in fact, suitably scaled, *h()* and *a()* scores settle into a steady state!
 - proof of this comes later.
- We only require the relative orders of the *h()* and *a()* scores – not their absolute values.
- In practice, ~5 iterations get you close to stability.

Japan Elementary Schools

.

Hubs

- schools
- schools LINK Page-13 °ú-{.}Šw Z a‰, -Św Zfz [f fy [fW 100 Schools Home Pages (English) K-12 from Japan 10/...rnet and Education)
- K-12 from Japan 10/...met and Edu http://www...iglobe.ne.jp/~IKESAN .l.f.j →Św ZU/NP,9° CEâ ÔŚ...'→Ş ÔŚ..."Œ →Św Z Koulutus ja oppilaitokset TOYODA HOMEPAGE

- TOYODA HOME⊁ASE Education Cay's Homepage(Japanese) -y'' -Šw Z.Jfz (ƒ fy [ʃW UNIVERSIT %ωJ→ -Św Z DRAGON97-TOP AS# -Św Z TNP.9fz (ƒ fy [ʃW ¶µ*6:/ÅA© ¥4¥E¥a]:/ ¥4¥E¥a]:/

Authorities

- The American School in Japan
- The American School in Japan

 The Link Page

 ‰ª è s.—§'ä'c -ŝw Zfz [f fy [fW

 Kidis Space

 A é s.—§'à é ¼* -ŝw Z

 (é ª ç'â\$w* ® -ŝw Z

 - KEIMEI GAKUEN Home Page (Japanese)
 - Kelinei GAKUEN Horne Page Shiranuma Home Page fuzoku-es.fukui-u.ac.jp welcome to Miasa E&J school

- _"P ICES E‰i+I s--§'† i ¼ ¬Šw Z,Ìfy http://www...p/~m_maru/index.html
- fukui haruvama-es HomePage
- Torisu primary school
- goo Yakumo Elementary,Hokkaido,Japan FUZOKU Home Page
- . Kamishibun Elementary School.

Things to note

- Pulled together good pages regardless of language of page content.
- Use *only* link analysis <u>after</u> base set assembled
 - iterative scoring is query-independent.
- Iterative computation <u>after</u> text index retrieval – significant overhead.

Proof of convergence

- *n*×*n* adjacency matrix A:
 each of the *n* pages in the base set has a row
 - and column in the matrix.
 - Entry $A_{ij} = 1$ if page *i* links to page *j*, else = 0.

Hub/authority vectors • View the hub scores h() and the authority scores a() as vectors with n components. • Recall the iterative updates $h(x) \leftarrow \sum_{x \mapsto y} a(y)$ $a(x) \leftarrow \sum_{y \mapsto x} h(y)$

Issues

Topic Drift

- Off-topic pages can cause off-topic "authorities" to be returned
 - E.g., the neighborhood graph can be about a "super topic"
- Mutually Reinforcing Affiliates
 - Affiliated pages/sites can boost each others' scores
 - Linkage between affiliated pages is not a useful signal

Hilltop [Bhar01]

- Preprocessing: Special index of "expert" hubs
 Select a subset of the web (~ 5%)
 - High out-degree to non-affiliated pages on a theme

At query time compute:

- Expert score (Hub score)
 Based on taxt match between guerry a
- Based on text match between query and expert hubAuthority score
 - Based on scores of non-affiliated experts pointing to the given page
 Also based on match between query and extended anchor-text
- Also based on match between query and extended anchor-text (includes enclosing headings + title)
- Return top ranked pages by authority score

Vector space implementation

- Maintain a term-doc popularity matrix C
 - as opposed to query-doc popularityinitialized to all zeros
- Each column represents a doc *j*
 - If doc *j* clicked on for query **q**, update C_j← C_j +ε **q** (here **q** is viewed as a vector).
- On a query q', compute its cosine proximity to C_i for all *j*.
- Combine this with the regular text score.

Issues

- Normalization of C_i after updating
- Assumption of query compositionality
 "white house" document popularity derived from "white" and "house"
- Updating live or batch?

Basic Assumption

- Relevance can be directly measured by number of click throughs
- Valid?

Validity of Basic Assumption

- Click through to docs that turn out to be non-relevant: what does a click mean?
- Self-perpetuating ranking
- Spam
- All votes count the same

Variants

- Time spent viewing page
 - Difficult session management
 - Inconclusive modeling so far
- Does user back out of page?
- Does user stop searching?
- Does user transact?