
Parametric Search using In-memory Auxiliary Index

Nishant Verman and Jaideep Ravela
Stanford University, Stanford, CA

{nishant, ravela}@stanford.edu

Abstract

In this paper we analyze the performance of
a traditional parametric search system and
compare it to a system using an in memory
auxiliary index. An analysis shows
traditional database-based parametric
systems incur a huge time hit due to disk
accesses. We show that using an in-memory
index in such scenarios results in huge time
savings.

1. Introduction

Parametric searches deal with effectively
combining search over a traditional corpus
with a query over data in a relational
database. Such a capability can extremely
useful in domains consisting of text
documents and some associated metadata.
Each paper has metadata such as the year of
publication, name of author(s), journal of
publication etc. associated with it. A typical
query in such a system might involve a
search over some words in the text as well
as a subset of the metadata. Traditional
systems divide the search text into two
distinct parts – over the text, stored in an
inverted index and the metadata stored in a
relational database. A query received by the
system is then divided appropriately and
sent to the two components. The results
obtained are combined and the final results
presented back to the user. However such a
setup can severely affect query performance.
Since the metadata includes textual data,
searches over such fields involve performing
wildcard string matching. E.g. a query such
as title = “data streams” will get transformed
to either title = “%data stream%” or
title = “%data%” AND title = “%stream%”
to get the matching documents. Relational

databases performance is extremely poor for
such queries. In such a case the database
accesses increases the total query time,
severely affecting system performance.

In this paper, we present an effective
alternative to the above mentioned setup.
Since the total size of the metadata is small
as compared to the actual text, we argue that
it should be stored in an in-memory
auxiliary index. Since memory is cheaper
nowadays, large amounts of metadata can be
effectively indexed. This approach results in
significant savings since all the metadata
gets searched within memory. This avoids
any disk accesses which are much more
expensive than memory reads. Hence now
the querying is done over the inverted index
(as before) and an in-memory metadata
index. The auxiliary index can be further
optimized by using appropriate data
structures to provide optimal performance.
We provide comparative results to show the
system performance in both cases.

The organization of the rest of the paper is
as follows:

•

•

•

•

•

•

Section 2 describes previous work
done in the field
Section 3 describes our architecture
and tools used
In Section 4 we define the methods
used to collect the corpus
Section 5 describes evaluation
methods used to compare system
performance
In Section 6 we discuss the results
obtained.
Section 7 details the conclusions.

• Furthermore, the indexing
component stores a document’s
Meta data into a different Lucene
index (called “metaindex”)

Finally, Section 8 describes possible
extensions to the system and future
work

•

2. Previous work • Iterate over each and every

document in a directory and do the
above.

We found that the Lucene system

provides the capability to index data in main
memory using the RAMDirectory class.
However due to the overhead of additional
Lucene features, we decided to implement
our own in-memory index. This enabled us
to use highly efficient and compact data
structure and hence improved query
performance significantly.

The ParametricIndexer class acts as the
interface to the user. It iterates over each and
every paper (text document) in our
repository and passes that file as an input
into our IndexFiles class. This class takes
care of inserting the document into the
“mainindex”.

 Every document that is indexed is tagged

with a unique document id. This document
id is also added to every record in the
database and every Meta data file so that the
Searching component can easily correlate
the free text document to the Meta data.

3. System Architecture and Tools:

The Parametric Search System has two
primary components:

a) The Indexing System that takes as
input a PS or a text file with associated Meta
data

Finally, there is an AuxillaryIndex class that
takes care of loading the Meta data in the
“metaindex” into memory for the Search
process (This class is actually used in the
Searching component but is conceptually a
part of the indexing process). The
AuxillaryIndexerLoader class gets all the
Meta data stored as fields in the
“metaindex” and puts them into data
structures in memory. Each Meta data item
has a hash of keys and an associated index
into the Vector of document id sets.

b) The Search System that given queries
executes them and prints the results.

The data that is indexed for the Parametric
Search project is in the form of two text
files: 1. a text file with all the free text of a
research paper. 2. A text file with all the
associated Meta data for a particular
research document. (The process of getting
PostScript files from the Citeseer website
and their associated Meta data has been
automated. See tools)

 Fig. 1

a) Indexing Component

The Indexing component takes care of the
following tasks:

• Add a document’s text into the main
Lucene index called as “mainindex”
in this project.

• Add a document’s Meta data (in the
form of another text file with the
same name but a “.meta” file
extension) into the MySQL
database.

b) Searching Component

The searching component takes care of the
following tasks:

• Load the Auxiliary Index into
memory at the start of a search
session.

• Provide a Parser for user queries.
• Send the parsed query in appropriate

data structures to the Individual
Search Components (the Lucene
text index Searcher, the Database
searcher and the Auxiliary Index
Searcher).

• Intersect the results of the individual
searches and print the time taken by
each component

A typical query is of the form:
“text=txt1, txt2 ,txtn;
author=author1,author2,authorn;
title=title1, title2, titlen;
year=year1, year2, yearn”

In the above query, the entry for the text
field is searched in the mainindex. All the
other parameters are searched in the
Database and the memory index. The
QueryParser class can handle an arbitrary
number of parameters (including 0) for each
field.

Each individual search component
(SearchFiles to search Lucene mainindex,
DBquery to search MySQL database,
AuxiliaryIndexLoader to search the in-
memory index) takes in a Vector of the input
query parameters. The component then finds
a union of search results on each of these
components and returns the results.

The results of the “text” query in mainindex
and those of metadata queries through the
database are intersected for the final results.
Similarly, the results of the “text” query and
the in-memory index are intersected to find
the results.
(see Appendices for a diagram of this
process)

Tools

The following tools were coded or
downloaded to aid in data collection:

1) Lucene: The installation in the
cs276/software was used to index
the corpus. Features such as
stemming and stop words were used
in generation of inverted index.

2) MySQL: We installed and ran the
MySQL database. Appropriate
indices were created to speed up
query performance.

3) ParseHTML.java was written to
take in seed pages and extract the
entire postscript file from that page
and parse the metadata from the
same page.

4) Pstotext: This C program was
downloaded from http://research.
compaq.com/SRC/virtualpaper/
pstotext.html to convert postscript
files into text files.

5) QueryGen.pl: Perl script to generate
queries that contain a random
number of fields (1 to 3) with
random number of values for each
field (1 to 9). The queries
themselves are generated from
random records from the database.

4. Corpus collection

The corpus consists of a set of a set of
five thousand PostScript (.ps) documents
along with their metadata fields. The
documents are obtained from the
http://www.citeseer.nj.nec.com website
primarily from the Computer Science field.
The following metadata fields are also
stored for each document:

• Title of research paper
• Author(s)
• Journal in which paper was

published
• Year of publication
• Keywords

http://research. compaq.com/SRC/virtualpaper/ pstotext.html
http://research. compaq.com/SRC/virtualpaper/ pstotext.html
http://research. compaq.com/SRC/virtualpaper/ pstotext.html
http://www.citeseer.nj.nec.com/

It is possible that some metadata fields have
some metadata missing. Additionally it is
also possible for a document not to have any
associated metadata – such a situation may
arise if the data is simply not available or
there is an error with the html page.
However a set of metadata fields cannot
exist without their associated document i.e.
if the document is not present, the metadata
fields will not be indexed in the database.

To obtain the documents, we used a web
crawler and some seed pages of document
links. Due to space constraints, we had to
limit the document size of 6 MB – those
over this were simply skipped. They system
first tries to download a document and if it is
successful, the associated metadata is also
obtained and stored. The first four metadata
fields (title, author, journal, and year) are
present on the website and are copied
verbatim. To obtain keywords for a
document the following procedure is used:

• A list of important keywords is
compiled for a given document
collection – this includes search
words that were used to find the
documents.

• The “abstract” field is obtained from
the document – this is a short
description of the research paper.

• Each keyword (from the previously
generated list) is searched in the
abstract. In case of match, it gets
included in the “Keywords”
metadata field of the document. A
maximum of five such keywords are
searched and included.

• If less than five keywords are found,
a simple heuristic is used – any
word in the abstract of length 6 or
greater is included in the
“Keywords” list till five words have
been obtained.

It is worthwhile to mention that the above
heuristic to collect keywords works
surprisingly well – we observed that most
words obtained in this way were a good

reflection of the corpus. This might be
because most commonly used words are
shorter in length and hence this heuristic
filtering gives good results.

5. Evaluation Methods

To compare the performance of the
database to that of the in-memory index, we
indexed the available metadata in both
MySQL and an auxiliary index. Similar
queries were run against both sources and
the time taken to return the result was
measured. We did not measure the quality of
the results at this time; however some basic
observations are described in the next
section.

The time was measured for the two

systems for two types of queries:
• The number of parameters that

are searched on is varied
• The number of values per

parameter is varied

We also measured the effect of varying the
corpus size from 1000 documents and
incrementing in steps of a 1000.

6. Results

Fig. 2 illustrates the effects of varying the
corpus size on the total query time for the
database. Initially we did not create any
indices on the database.

Database Query time - Increasing corpus size

170

175

180

185

190

195

200

205

210

215

1000 2000 3000 4000 5000
Corpus size

A
vg

. T
im

e
(m

s)

However indices were created on all fields
at a corpus size of 3000 documents. This
explains the sharp drop in query time as
show in the figure above.

Fig. 3 shows the results for same queries on
the in-memory index.

 10

Fig. 3

As shown above, the query performance
improves by a factor of 100-fold compared
to the database query time. As expected, the
query time increases with size of corpus.
The query time for corpus size of 1000 is
unexpectedly higher than that for 2000
probably due to an uneven system load.
Since all test results were performed on
public machines, we were unable to ensure
constant system load.

Next we evaluated the effects of varying the
number of values searched per field e.g. the
search query included two year values. The
searcher gets the results from the database
and in-memory index for all matching
documents containing at least one of the
search terms. This provides a good
emulation of range queries over the year
field.

Fig. 4 shows the results obtained for running
100 range queries over the database. Each
range query had an arbitrary number of
parameters (1 – 3) and up to 9 different
values per parameter. We used the random

number generator package to ensure a
random distribution.

Query times for Database

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9

Max.no. of values per parameter

Ti
m

e
(m

s)

Auxiliary index query time with increasing corpus size

2.29

2.3

2.31

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

2.4

00 2000 3000 4000 5000
Corpus size

A
vg

. T
im

e
(m

s)

 Fig. 4

The general trend is that the query time
increases as the number of values per
parameter increases. This is expected since
the database has to perform increasing
number of queries.

Similar results are obtained for the auxiliary
index as shown in Fig. 5.

Aux. Index query times

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9

Max. num. of values per parameter

Ti
m

e
(m

s)

 Fig. 5

Finally we show a comparison of the time
taken by Lucene to search over the free text
and that taken by the database to search the
metadata terms. The result is show in
Table 1 below. The table represents a small
sample of all the queries run.

Time taken by
Lucene (ms)

Time taken by the
database (ms)

126 132
158 664
40 390

114 79
93 1144

190 1425
106 1640

Table 1

The table conclusively shows that the
database contributes a significant chunk of
time to the total query time.

7. Conclusion

As shown previously, the in-memory
index results in a significant decrease in the
time spent on searching the metadata. Table
1 shows that the database is a bottleneck in
the entire search process. Even in the most
pessimistic scenario where the time taken by
Lucene is similar to that of the database, an
auxiliary index would cut down the total
search time by half. Hence we advocate that
the database be replaced by an in-memory
auxiliary index. We feel that with the
decreasing costs of main memory, an in-
memory auxiliary index is a viable option.

8. Limitations and Future Work

The auxiliary index can result in a
significant saving in time if sufficient
memory is available. In our case, the entire
auxiliary index fit in main memory, hence
the search process did not involve any time-
consuming disk accesses. However, even if
main memory is limited, data compression
techniques can be used to optimize the
search.

Similarly the database access can be sped up
by maintaining a cache of previous ‘n’
searches. This can prove to be especially
useful in the case of a corpus consisting of
research documents since many keywords
are repeatedly searched.

We used a single Lucene index to store all
the free text. This process can be slow and
time consuming. We implemented a naïve
distributed indexing scheme using Lucene –
this had to abandoned due to data corruption
issues. However we feel this can potentially
lead to a significant reduction in total
indexing time.

References

[1] Citeseer: An automatic citation indexing
 system

C.Lee Giles, Kurt D.bollacker, Steve
Lawrence

[2] Using a Relational Database for an
 Inverted Text Index

Steve Putz
Xerox Palo Alto Research Center

