
cs276a SVM Review

SVM – Friend or Foe?

We will go through what SVMs are and why they are good. SVMs are linear classifiers (a
line in 2 dimensions, a plane in 3 dimensions, a n-1 dimensional hyperplane in n dimensions)
and they are good for 3 good reasons and 1 very good reason.

Reason 1
Consider the following labeled training data and a point that we want to classify.

?

We classify the unknown point by fitting a classifier to the labeled training data (e.g. training)
and then having it make the classification decision. Consider the following two classifiers:

This one is linear, everything on the left is classified as class +,
everything on the right class -. It assigns class + to the point we
are trying to classify.

=

This one essentially memorized class +. Everything in the
immediate neighborhood of the + points is considered to be in
the + class, everything outside is class -. It assigns class - to the
point we are classifying.

=

Which one did better is a philosophical question. We will say that the linear one did a better
job, you may agree with that statement, or you may disagree. There is no right answer here,
but in the average case it appears like the linear classifier captured more from the data, we
have higher confidence that if it sees more points from the same distribution it will label more
of them correctly – that it will generalize better. This essentially is Occam’s razor, all things
being equal, we prefer simpler hypothesis; sometimes even if the simpler hypothesis does not
correctly decide our training data – notice that the linear classifier misclassifies one of the +
points.

A bit more formally the linear classifier is simpler since it needs less parameters. Any line

 - 1 -

cs276a SVM Review

can be specified by two parameter m and b (as in y=mx+b), so the linear classifier is entirely
determined by two parameters. The second classifier memorized 5 points, each with 2
coordinates, so it needs at least 10 parameters1. We say that the linear classifier has higher
bias (=lower variance=lower capacity) than the second classifier, or equivalently that the
second classifier has higher variance (=higher capacity= lower bias).

Take the above with a grain of salt, it as true as (and suffers from the same problems as)
Occam’s razor. Nevertheless in machine learning practice over-memorizing your data is a
very common problem (called overtraining); not having your model have enough capacity
does not happen nearly as much, so we’ll go with it and say that:

LLIINNEEAARR CCLLAASSSSIIFFIIEERRSS AARREE GGOOOODD

Reason 2
Let us look at the following 2 dimensional dataset,

x y class
0 0 -
1 1 +

-1 1 +
1 -1 +

-1 -1 +

1 To be honest, due to the author’s laziness, as drawn the circles have different sizes, so the model was also
able to specify a radius for each of the five circles – another 5 parameters for a total of 10+5=15. To be
even more honest, due to even more laziness, some of the circles are really ellipses, so the model was able
to fit 5 ellipses. The equation for an ellipse is 1)()(22

=
+

+
+

b
qy

a
rx , so 4 parameters for each of the 5 ellipses;

thus the model requires at least 4*5=20 parameters.

 - 2 -

cs276a SVM Review

We have 5 points - 4 in class + and 1 in class -. This dataset is not linearly separable, we’ll
never be able to find a line (also called a linear decision surface, or a linear classifier) such
that all the + are on one side and all the - are on the other. In order to try to make the data
linearly separable we can compute more features from the data, for example we can add the
feature x2 to every data point. Our dataset represented in this higher dimensional feature
space is then:

We see that

1) if x2=0, the point is in class -
2) if x2=1, the point is in class +

We have made the decision problem
much simpler; let us consider what
this looks like geometrically.

x y x2 class
0 0 0 -
1 1 1 +

-1 1 1 +
1 -1 1 +

-1 -1 1 +

Here is the surface f(x,y)=x2

Let us plot our feature space points
(x,y,x2); they lie on this surface

The + points lie above the - point, so
the data is now linearly separable (a
linear classifier in 3 dimensions is a
plane).

 - 3 -

cs276a SVM Review

We can draw a plane such that +
points lie above and the - point
below. Our classifier (the plane)
intersects the surface in two lines, we
call this our decision boundary

Class - is all points on the surface
between these lines, class + is all the
other points on the surface. What
does this decision boundary look like
in our original 2d space?

decision
boundary

decision
boundary

In feature space, the points are
(x,y,x2), to go back we drop the z-
coordinate, which geometrically
means to look straight down. Doing
that we see that our decision
boundary becomes

decision
boundary

decision
boundary

Let us do another example, we will pick a different 3rd feature and see what happens. We
select x2+y2 as our new feature. Proceeding as before we compute our new data.

Again we notice

1) if x2+y2=0, then class -;
2) if x2+y2=2, then class +.

So we expect the data to have
become linearly separable when
considered in this higher dimensional
feature space.

x y x2+y2 class
0 0 0 -
1 1 2 +

-1 1 2 +
1 -1 2 +

-1 -1 2 +

 - 4 -

cs276a SVM Review

The surface f(x,y)=x2+y2

Here are our feature space points
(x,y,x2+y2)

They are indeed linearly separable
though our original data is not.

We find a plane (=linear classifier)
such that class + is above and class -
is below

The intersection of the plane with the
bowl-shaped surface is a circle;
everything above that circle on the
bowl is classified class +, everything
below class -. Let us again consider
what this decision boundary is in our
original 2d space.

decision
boundary

As before, we drop the z-coordinate
by looking straight down and so the
decision boundary back in our
original space is a circle.

decision
boundary

 - 5 -

cs276a SVM Review

Thus we have the second reason why SVMs are terrific,

AA HHIIGGHHEERR DDIIMMEESSIIOONNAALL FFEEAATTUURREE SSPPAACCEE IISS GGOOOODD

Because things that were not linearly separable before become linearly separable. Note that
we never know which features will make our data linearly separable, x2 and x2+y2 were lucky
guesses, but if we pick many non-linear features (like xy, sin(x), log(x2y), etc), then there is a
good chance our data will become linearly separable, even though there is no certainty.

A caveat: an SVM does not just choose any plane that separates our data, it picks the one that
maximizes the geometric margin between the data and the plane. In the example above, we
could have picked a plane just a little bit below the + points – it would still separate the data,
but we are better off picking the plane in the middle between the two classes. The task of
finding this unique plane is an optimization problem – out of all possible planes we have to
find the one that maximizes a certain constraint (the geometric margin). It turns out that this
can be cast as a quadratic optimization problem, and we will not worry about it too much
except to say that it can be done.

Reason 3
Consider the following datasets together with their optimal separating plane (which in 2
dimensions is a line)

We can see that only the four point that are alone in the leftmost picture matter in
determining the separating plane. We call these points support vectors.

Let us concentrate on the case where we only have support vectors and let us consider
how precisely we do the classification. The optimal linear classifier (in the geometric
margin sense) that we see in the first picture on the left is the line y=x. This equation,
written as 0=x-y means that any point on the line (like (3,3)) will give zero when we
subtract y from x. However, the function f(x,y)=x-y can gives us more than that, for any
point (x,y), if f(x,y)<0, then the point lies to the left of the plane; if f(x,y)>0, then the
point lies to the right of the plane, so f(x,y) is the classifier. For any point p=(px,py) that
we wish to classify we decide p is in

1) class + if f(px,py)>0
2) class - if f(px,py)<0

 - 6 -

cs276a SVM Review

We’ve seen that our classifier is completely determined by the support vectors, so it must
be the case that the equation x-y is completely determined by our support vectors, but
how? For each support vector we have three pieces of information, its two coordinates,
and its classification, this has to be enough to get x-y. We have 4 support vectors: (-1,0)
and (0,1) in class -; (0,-1) and (1,0) in class +. Let us use +1 for class + and –1 for class -
. Then just summing together all the information from our support vectors we have

- (-1,0) - (0,1) + (0,-1) + (1,0)= -1*(-1,0)-1*(0,1)+1*(0,-1)+1*(1,0)=(2,-2)

and now its obvious that if we just dot product (x,y) with the result we get (x,y)·(2,-
2)=2x-2y. We are off by a constant, but the magic quadratic optimization procedure that
find our optimal plane gives us a constant for each support vector, which in this case we
see is ½, and we have our classifier, which in this particular example is

f(x,y)=(x,y)·[- ½ (-1,0)- ½ (0,1)+ ½ (0,-1)+ ½ (1,0)]=x-y

To recap,
1) We start with our dataset
2) It uniquely determines a plane that best separates the data
3) We feed the data through a quadratic optimization procedure which finds this

plane
4) The procedure tells us what this plane is by giving us a constant for every data

point
a. This constant is zero if the point is not a support vector (it must be zero,

since as we saw before any point that is not a support vector can have no
impact on the plane)

b. Its non-zero for every support vector (in the example above this constant
was ½ for every support vector, in general its going to be a different value
for each)

c. Caveat: if our separating plane does not pass through origin (as it did in
the example above) the procedure will also give us a way to compute an
intercept term as a function of the support vectors, but let us not worry too
much about it here

5) To classify a point p
a. If you are a person

i. you look what side of the separating plane p is on
b. If you are a computer

i. you dot product p with every (support vector * its constant from
the optimization procedure * its class value (+1 or –1)), and sum
everything together. If the result is <0 then you decide p is in class
-, if >0 p is in class + (if the result is 0, then p lies on the
separating plane and you are screwed)

We have reason three:

 - 7 -

cs276a SVM Review

TTHHEE CCLLAASSSSIIFFIICCAATTIIOONN DDEECCIISSIIOONN FFOORR AA PPOOIINNTT PP CCAANN BBEE EEXXPPRREESSSSEEDD AASS
AA FFUUNNCCTTIIOONN OOFF DDOOTT PPRROODDUUCCTTSS OOFF PP WWIITTHH TTHHEE SSUUPPPPOORRTT VVEECCTTOORRSS

If this reason seems a bit dubious, don’t worry, it will come into its own in the next
section.

Reason 4
As we saw above, classification of a new vector is mainly decided by taking dot products
between our support vectors and the new vector we are classifying. Let us take a closer
look at the dot product operation. Suppose our data is one dimensional, we have two
vectors x and z; let us expand to a two dimensional feature space by adding a feature 3x.
Then we have

)3,(
)3,(

space featurein datadata original
expand

zz
xx

z
x ⎯⎯ →⎯

Let us take a dot product in feature space. We do it in the usual manner, multiply
component by component and sum up,

xzxzxz
zz
xx

zzxx,
109

3
3

)3,()3(
=+

×=⋅

Now notice something really important: if we want to compute a dot product between
two vectors in feature space, we can either expand each one and do the dot product in the
usual manner, or we can just compute 10xz, which as we saw above is the same thing.
This does not seem important only because the feature space expansion we’ve chosen
here is trivial.

Consider another example, this time our data is two dimensional, we again have two
vectors (x1,x2) and (z1,z2). We choose the expansion)2,2,,2,,1(21

2
221

2
1 xxxxxx . This is

a very powerful set of features; remember in the examples before simply choosing x2 as a
feature made the data linearly separable, this particular expansion is more powerful, so
we expect even more datasets that were not linearly separable in 2 dimensions to be
linearly separable in this feature space. We have

)2,2,,2,,1(
)2,2,,2,,1(

space featurein data

),(
),(

data original

21
2
221

2
1

21
2
221

2
1

expand

21

21

zzzzzz
xxxxxx

zz
xx ⎯⎯ →⎯

Consider the dot product between two vectors in the feature space:

=⋅)2,2,,2,,1()2,2,,2,,1(21
2
221

2
121

2
221

2
1 zzzzzzxxxxxx

 - 8 -

cs276a SVM Review

2
22112211

2
2

2
22121

2
1

2
1

21
2
221

2
1

21
2
221

2
1

)1(2221
2221
2221

zxzxzxzxzxzzxxzx
zzzzzz
xxxxxx

++=+++++
×

This means we can compute the dot product in this high dimensional feature space either
the hard way - by expanding the vectors and doing the regular dot product, or the easy
way - by computing . Remember that to do the classification in the
feature space all we need is to be able to take dot products. This means we can do the
classification in this 6 dimensional feature space by simply computing
from our original 2 dimensional data.

2
2211)1(zxzx ++

2
2211)1(zxzx ++

Now imagine our feature space is 1,000,000,000,000 dimensional – as long as the dot
product in that huge space is the same as some simple function on our tiny dimensional,
original data, we can extremely cheaply do linear classification in that enormous feature
space.

We call a () 2

22112121)1(),(),,(zxzxzzxxK ++= kernel function. Every function that
corresponds to the dot product in some particular feature space expansion is a kernel
function, and given a kernel function we can do linear classification in that feature space.
For example for any d>1 is a kernel function, and is
called a polynomial kernel

() dzxzxzzxxK)1(),(),,(22112121 ++=
2.

Thus we have our final, very good reason why SVMs are good

WWEE CCAANN RREEPPRREESSEENNTT AA DDOOTT PPRROODDUUCCTT IINN AA HHIIGGHH DDIIMMEENNSSIIOONNAALL
FFEEAATTUURREE SSPPAACCEE AASS AA SSIIMMPPLLEE FFUUNNCCTTIIOONN OONN OOUURR OORRIIGGIINNAALL DDAATTAA

Which means we can classify in that feature space using this simple kernel function.

A recap: SVM classification is a name for the following

1) We take our data
2) We map it to a high dimensional feature space where it will probably become

linearly separable
3) We find an optimal separating plane in the feature space
4) We are able to express the classification decision in the feature space in terms of

dot products of vectors in the feature space

2 Note that our original data can be n-dimensional; the polynomial kernel function is then

. () d
nnnn zxzxzxzzzxxxK)1(),,,(),,,,(22112121 ++++= KKK

 - 9 -

cs276a SVM Review

5) We perform the classification decision by doing the dot products indirectly, using
an equivalent kernel function which is much simpler, and much cheaper to
compute

 - 10 -

	SVM – Friend or Foe?
	Reason 1
	Reason 2
	Reason 3
	Reason 4

