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SVM – Friend or Foe? 

We will go through what SVMs are and why they are good. SVMs are linear classifiers (a 
line in 2 dimensions, a plane in 3 dimensions, a n-1 dimensional hyperplane in n dimensions) 
and they are good for 3 good reasons and 1 very good reason. 
 
Reason 1 
Consider the following labeled training data and a point that we want to classify. 
 

?

 
 
We classify the unknown point by fitting a classifier to the labeled training data (e.g. training) 
and then having it make the classification decision. Consider the following two classifiers:  
 
This one is linear, everything on the left is classified as class +, 
everything on the right class -. It assigns class + to the point we 
are trying to classify. 

=

This one essentially memorized class +. Everything in the 
immediate neighborhood of the + points is considered to be in 
the + class, everything outside is class -. It assigns class - to the 
point we are classifying. 

=

  
Which one did better is a philosophical question. We will say that the linear one did a better 
job, you may agree with that statement, or you may disagree. There is no right answer here, 
but in the average case it appears like the linear classifier captured more from the data, we 
have higher confidence that if it sees more points from the same distribution it will label more 
of them correctly – that it will generalize better. This essentially is Occam’s razor, all things 
being equal, we prefer simpler hypothesis; sometimes even if the simpler hypothesis does not 
correctly decide our training data – notice that the linear classifier misclassifies one of the + 
points. 
 
A bit more formally the linear classifier is simpler since it needs less parameters. Any line 
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can be specified by two parameter m and b (as in y=mx+b), so the linear classifier is entirely 
determined by two parameters. The second classifier memorized 5 points, each with 2 
coordinates, so it needs at least 10 parameters1. We say that the linear classifier has higher 
bias (=lower variance=lower capacity) than the second classifier, or equivalently that the 
second classifier has higher variance (=higher capacity= lower bias). 
 
Take the above with a grain of salt, it as true as (and suffers from the same problems as) 
Occam’s razor. Nevertheless in machine learning practice over-memorizing your data is a  
very common problem (called overtraining); not having your model have enough capacity 
does not happen nearly as much, so we’ll go with it and say that: 
 

LLIINNEEAARR  CCLLAASSSSIIFFIIEERRSS  AARREE  GGOOOODD     
 
Reason 2 
Let us look at the following 2 dimensional dataset, 

 

x y class
0 0 - 
1 1 + 

-1 1 + 
1 -1 + 

-1 -1 +  

                                                 
1 To be honest, due to the author’s laziness, as drawn the circles have different sizes, so the model was also 
able to specify a radius for each of the five circles – another 5 parameters for a total of 10+5=15. To be 
even more honest, due to even more laziness, some of the circles are really ellipses, so the model was able 
to fit 5 ellipses. The equation for an ellipse is 1)()( 22

=
+

+
+

b
qy

a
rx , so 4 parameters for each of the 5 ellipses; 

thus the model requires at least 4*5=20 parameters.   
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We have 5 points - 4 in class + and 1 in class -. This dataset is not linearly separable, we’ll 
never be able to find a line (also called a linear decision surface, or a linear classifier) such 
that all the + are on one side and all the - are on the other. In order to try to make the data 
linearly separable we can compute more features from the data, for example we can add the 
feature x2 to every data point. Our dataset represented in this higher dimensional feature 
space is then: 
 

We see that 
 

1) if x2=0, the point is in class - 
2) if x2=1, the point is in class +  

 
We have made the decision problem 
much simpler; let us consider what 
this looks like geometrically. 
 

x y x2 class 
0 0 0 - 
1 1 1 + 

-1 1 1 + 
1 -1 1 + 

-1 -1 1 +  

Here is the surface f(x,y)=x2

 
Let us plot our feature space points 
(x,y,x2); they lie on this surface   
 
The + points lie above the - point, so 
the data is now linearly separable (a 
linear classifier in 3 dimensions is a 
plane). 
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We can draw a plane such that + 
points lie above and the - point 
below. Our classifier (the plane) 
intersects the surface in two lines, we 
call this our decision boundary   
 
Class - is all points on the surface 
between these lines, class + is all the 
other points on the surface. What 
does this decision boundary look like 
in our original 2d space? 
 

decision
boundary

decision
boundary

 

In feature space, the points are 
(x,y,x2), to go back we drop the z-
coordinate, which geometrically 
means to look straight down. Doing 
that we see that our decision 
boundary becomes  

decision
boundary

decision
boundary

 
Let us do another example, we will pick a different 3rd feature and see what happens. We 
select x2+y2 as our new feature. Proceeding as before we compute our new data. 

Again we notice 
 

1) if x2+y2=0, then class -; 
2) if x2+y2=2, then class +. 

 
So we expect the data to have 
become linearly separable when 
considered in this higher dimensional 
feature space. 
 

x y x2+y2 class 
0 0 0 - 
1 1 2 + 

-1 1 2 + 
1 -1 2 + 

-1 -1 2 +  
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The surface f(x,y)=x2+y2

 
Here are our feature space points 
(x,y,x2+y2)   
 
They are indeed linearly separable 
though our original data is not. 

 
We find a plane (=linear classifier) 
such that class + is above and class - 
is below   
 
The intersection of the plane with the 
bowl-shaped surface is a circle; 
everything above that circle on the 
bowl is classified class +, everything 
below class -. Let us again consider 
what this decision boundary is in our 
original 2d space. 

decision
boundary

 
As before, we drop the z-coordinate 
by looking straight down and so the 
decision boundary back in our 
original space is a circle. 

decision
boundary
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Thus we have the second reason why SVMs are terrific, 
 

AA  HHIIGGHHEERR  DDIIMMEESSIIOONNAALL  FFEEAATTUURREE  SSPPAACCEE  IISS  GGOOOODD   
 
Because things that were not linearly separable before become linearly separable. Note that 
we never know which features will make our data linearly separable, x2 and x2+y2 were lucky 
guesses, but if we pick many non-linear features (like xy, sin(x), log(x2y), etc), then there is a 
good chance our data will become linearly separable, even though there is no certainty. 
 
 
A caveat: an SVM does not just choose any plane that separates our data, it  picks the one that 
maximizes the geometric margin between the data and the plane. In the example above, we 
could have picked a plane just a little bit below the + points – it would still separate the data, 
but we are better off picking the plane in the middle between the two classes. The task of 
finding this unique plane is an optimization problem – out of all possible planes we have to 
find the one that maximizes a certain constraint (the geometric margin). It turns out that this 
can be cast as a quadratic optimization problem, and we will not worry about it too much 
except to say that it can be done. 

Reason 3 
Consider the following datasets together with their optimal separating plane (which in 2 
dimensions is a line) 
 

 
 
We can see that only the four point that are alone in the leftmost picture matter in 
determining the separating plane. We call these points support vectors. 
 
Let us concentrate on the case where we only have support vectors and let us consider 
how precisely we do the classification. The optimal linear classifier (in the geometric 
margin sense) that we see in the first picture on the left is the line y=x. This equation, 
written as 0=x-y means that any point on the line (like (3,3)) will give zero when we 
subtract y from x. However, the function f(x,y)=x-y can gives us more than that, for any 
point (x,y), if f(x,y)<0, then the point lies to the left of the plane; if f(x,y)>0, then the 
point lies to the right of the plane, so f(x,y) is the classifier. For any point p=(px,py) that 
we wish to classify we decide p is in 

 
1) class + if f(px,py)>0 
2) class -  if f(px,py)<0 
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We’ve seen that our classifier is completely determined by the support vectors, so it must 
be the case that the equation x-y is completely determined by our support vectors, but 
how? For each support vector we have three pieces of information, its two coordinates, 
and its classification, this has to be enough to get x-y. We have 4 support vectors: (-1,0) 
and (0,1) in class -;  (0,-1) and (1,0) in class +. Let us use +1 for class + and –1 for class -
. Then just summing together all the information from our support vectors we have 
 

- (-1,0) - (0,1) + (0,-1) + (1,0)= -1*(-1,0)-1*(0,1)+1*(0,-1)+1*(1,0)=(2,-2) 
 

and now its obvious that if we just dot product (x,y) with the result we get (x,y)·(2,-
2)=2x-2y. We are off by a constant, but the magic quadratic optimization procedure that 
find our optimal plane gives us a constant for each support vector, which in this case we 
see is ½, and we have our classifier, which in this particular example is 
 

f(x,y)=(x,y)·[- ½ (-1,0)- ½ (0,1)+ ½ (0,-1)+ ½ (1,0)]=x-y 
 

To recap, 
1) We start with our dataset 
2) It uniquely determines a plane that best separates the data 
3) We feed the data through a quadratic optimization procedure which finds this 

plane 
4) The procedure tells us what this plane is by giving us a constant for every data 

point 
a. This constant is zero if the point is not a support vector (it must be zero, 

since as we saw before any point that is not a support vector can have no 
impact on the plane) 

b. Its non-zero for every support vector (in the example above this constant 
was ½ for every support vector, in general its going to be a different value 
for each) 

c. Caveat: if our separating plane does not pass through origin (as it did in 
the example above) the procedure will also give us a way to compute an 
intercept term as a function of the support vectors, but let us not worry too 
much about it here 

5) To classify a point p 
a. If you are a person 

i. you look what side of the separating plane p is on 
b. If you are a computer 

i. you dot product p with every (support vector * its constant from 
the optimization procedure * its class value (+1 or –1)), and sum 
everything together. If the result is <0 then you decide p is in class 
-, if >0 p is in class + (if the result is 0, then p lies on the 
separating plane and you are screwed) 

 
We have reason three: 
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TTHHEE  CCLLAASSSSIIFFIICCAATTIIOONN  DDEECCIISSIIOONN  FFOORR  AA  PPOOIINNTT  PP  CCAANN  BBEE  EEXXPPRREESSSSEEDD  AASS  
AA  FFUUNNCCTTIIOONN  OOFF  DDOOTT  PPRROODDUUCCTTSS  OOFF  PP  WWIITTHH  TTHHEE  SSUUPPPPOORRTT  VVEECCTTOORRSS   
 
If this reason seems a bit dubious, don’t worry, it will come into its own in the next 
section. 
 
Reason 4 
As we saw above, classification of a new vector is mainly decided by taking dot products 
between our support vectors and the new vector we are classifying. Let us take a closer 
look at the dot product operation. Suppose our data is one dimensional, we have two 
vectors x and z; let us expand to a two dimensional feature space by adding a feature 3x. 
Then we have 

)3,(
)3,(

space featurein  datadata original
expand

zz
xx

z
x ⎯⎯ →⎯  

Let us take a dot product in feature space. We do it in the usual manner, multiply 
component by component and sum up, 

xzxzxz
zz
xx

zzxx,
109

3
3

    )3,()3(
=+

×=⋅  

 
Now notice something really important: if we want to compute a dot product between 
two vectors in feature space, we can either expand each one and do the dot product in the 
usual manner, or we can just compute 10xz, which as we saw above is the same thing. 
This does not seem important only because the feature space expansion we’ve chosen 
here is trivial. 
 
Consider another example, this time our data is two dimensional, we again have two 
vectors (x1,x2) and (z1,z2). We choose the expansion )2,2,,2,,1( 21

2
221

2
1 xxxxxx . This is 

a very powerful set of features; remember in the examples before simply choosing x2 as a 
feature made the data linearly separable, this particular expansion is more powerful, so 
we expect even more datasets that were not linearly separable in 2 dimensions to be 
linearly separable in this feature space. We have 
 

)2,2,,2,,1(
)2,2,,2,,1(

space featurein  data
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data original
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Consider the dot product between two vectors in the feature space: 
 

=⋅ )2,2,,2,,1()2,2,,2,,1( 21
2
221

2
121

2
221

2
1 zzzzzzxxxxxx  

 - 8 - 



cs276a  SVM Review 

2
22112211

2
2

2
22121

2
1

2
1

21
2
221

2
1

21
2
221

2
1

)1(2221
2221
2221

zxzxzxzxzxzzxxzx
zzzzzz
xxxxxx

++=+++++
×  

 
This means we can compute the dot product in this high dimensional feature space either 
the hard way - by expanding the vectors and doing the regular dot product, or the easy 
way - by computing . Remember that to do the classification in the 
feature space all we need is to be able to take dot products. This means we can do the 
classification in this 6 dimensional feature space by simply computing  
from our original 2 dimensional data. 

2
2211 )1( zxzx ++

2
2211 )1( zxzx ++

 
Now imagine our feature space is 1,000,000,000,000 dimensional – as long as the dot 
product in that huge space is the same as some simple function on our tiny dimensional, 
original data, we can extremely cheaply do linear classification in that enormous feature 
space.  
 
We call  a ( ) 2

22112121 )1(),(),,( zxzxzzxxK ++= kernel function. Every function that 
corresponds to the dot product in some particular feature space expansion is a kernel 
function, and given a kernel function we can do linear classification in that feature space. 
For example  for any d>1 is a kernel function, and is 
called a polynomial kernel

( ) dzxzxzzxxK )1(),(),,( 22112121 ++=
2. 

 
Thus we have our final, very good reason why SVMs are good 
 

WWEE  CCAANN  RREEPPRREESSEENNTT  AA  DDOOTT  PPRROODDUUCCTT  IINN  AA  HHIIGGHH  DDIIMMEENNSSIIOONNAALL  
FFEEAATTUURREE  SSPPAACCEE  AASS  AA  SSIIMMPPLLEE  FFUUNNCCTTIIOONN  OONN  OOUURR  OORRIIGGIINNAALL  DDAATTAA  

 
 
Which means we can classify in that feature space using this simple kernel function. 
 
A recap: SVM classification is a name for the following 
 

1) We take our data 
2) We map it to a high dimensional feature space where it will probably become 

linearly separable 
3) We find an optimal separating plane in the feature space 
4) We are able to express the classification decision in the feature space in terms of 

dot products of vectors in the feature space 

                                                 
2 Note that our original data can be n-dimensional; the polynomial kernel function is then 

. ( ) d
nnnn zxzxzxzzzxxxK )1(),,,(),,,,( 22112121 ++++= KKK
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5) We perform the classification decision by doing the dot products indirectly, using 
an equivalent kernel function which is much simpler, and much cheaper to 
compute 
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