
cs276a PS2 Review

1. Relevance Feedback

a. In addition to the query, the user tells which of the documents returned are

relevant. How can we use this new information?

b. Example

i. Query “fishing equipment”

ii. Every relevant document contains the word “boat”

iii. Then “fishing equipment boat” would be a better query

c. In the example above, formally, how do we get “boat” into query?

i. Original query vector q0: q0[“fishing”]=1, q0[“equipment”]=1, all

other q0 components =0

ii. Let d be one of the relevant documents, then d is a vector, and

d[“boat”]=1 (ignore other components of d for now)

iii. qm=q0+d and we get qm[“boat”]=1

1. But d has lots of words, now they are all in qm, we’ve

completely drawn out the original query. That is why we

need to scale down the contribution from d with β, eg

qm=q0+ βd

2. But there are several relevant documents d1,…,dn, not just

one. So average them first:

documentsrelevant of #
21

00
n

avgm
dddqdqq +++

+=+=
Lββ

d. What about non-relevant documents?

i. Suppose every non-relevant document contains “equipment”

ii. Now we want to downplay “equipment” in the query

iii. Same as before, but now we subtract, if d non-relevant, then

d[“equipment”]=1, then for qm=q0-d, qm[“equipment”]=0. Success.

iv. Then average and scale just like for relevant documents.

e. The Formula (Rocchio Algorithm)

i. Now we are ready for the full formula, call the set of relevant

documents Cr, non-relevant Cnr; add a scale factor α for q0 to be

 - 1 -

able to control tradeoff between the original query and the

relevant/non-relevant docs, and we get

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= ∑∑

∈∈ nrnrrr Cd
nr

nrCd
r

r
m d

C
d

C
qq 11

0 γβα

2. Probabilities, Language Models and Naïve Bayes

a. Example

i. Have document with 1,000 words, D=w1,…,w1,000

ii. P(D)=P(w1,…w1,000)=P(w1)*P(w2|w1)*P(w3|w1,w2)*…*P(w1,000,

|w1,w2,…w999)

1. The Chain Rule of Probability

2. Always true, like 2=2, based on the axioms of probability

iii. Consider P(w1,000, |w1,w2,…w999), lets say w1,000=”toys”

1. P(“toys”|w1=”A”, w2,…,w999) vs

P(“toys”|w1=”Today”,w2,…,w999)

2. Would not expect them to be very different

3. Thus P(w1,000, |w1,w2,…w999)≈P(w1,000, | w2,…w999)

iv. How about P(w1,000, |w1,…w999)≈P(w1,000, | w3,…w999)?

P(w1,000, |w1,…w999)≈P(w1,000, | w100,…w999)?

v. Why not P(w1,000, |w1,…w999)≈P(w1,000)?

1. Why not indeed, this is precisely the Naïve Bayes

assumption, and it can work pretty well.

2. Note that almost certainly P(w1,000, |w1,…w999)≠P(w1,000),

but if it is close, we’ll be ok.

b. Language Model

i. Unigram: P(wn, |w1,…wn-1)≈P(wn)= wordsof # total
occurs w timesof # n

1. makes the Naïve Bayes assumption

ii. Bigram: P(wn, |w1,…wn-1)≈P(wn|wn-1)=
occurs w timesof #

 wfollows w timesof #

1

1-nn

−n

1. According to a bigram model, and the chain rule of

probability, P(w1,w2,w3)=…?

 - 2 -

c. Naïve Bayes classification

i. Before wanted to know P(D)=P(w1,…w1,000)

ii. Now want to know P(D|c)=P(w1,…w1,000|c), where c is some class

of documents

1. eg c=”su.class.cs276a”, if D is in this newsgroup how

likely of a document is it (for this newsgroup)? A

somewhat weird quantity, but hang on.

2. Or could think about it generationally: if I was randomly

writing a document based on other documents I’ve seen in

c, with what probability would I write D?

iii. Structurally identical to what we did above for language models,

still comes apart via the chain rule

1. P(D|c)=P(w1,…w1,000|c)=P(w1|c)*P(w2|w1,c)*P(w3|w1,w2,c)

*…*P(w1,000, |w1,w2,…w999,c)

2. Apply the Naïve Bayes assumption, then for any wk,

P(wk|w1,w2,…wk-1,c)=P(wk|c), and we have

P(w1,…w1,000|c)=P(w1|c)*P(w2|c)*…*P(w1,000|c)

3. What precisely is P(wk|c)?

a. How likely you are to see the word wk in a

document from class c

b. If wk=”homework” and c=”su.class.cs276a”

newsgroup, then

s276a"su.class.c"in wordsof#
s.276a"su.class.c"in appears homework"" timesof #

)s276a"su.class.c" newsgroup|homework""(

=

P

c. This is the training, P(wk|c) is a parameter of our

model

iv. Why did we want to compute P(D|c)? Recall, it is a rather weird

quantity. We did it to get to P(c|D).

1. P(c|D) tells us for class c, how likely it is that D is in it

 - 3 -

a. Not clear how to compute directly, so we flip it with

Bayes Rule,
)(

)()|()|(
DP

cPcDPDcP = .

2. If we can compute P(c|D) then we can find the most likely

class
)(

)()|(argmax)|(argmax
DP

cPcDPDcPc
cc

MAP == .

a. Called maximum a posteriori class, eg after we

see the document as opposed to prior P(c), eg

before we see the document. If I pick a newsgroup,

and ask you to guess which one I picked, you best

bet is to go with the biggest one, one that

maximizes P(c), but if I then give you a document

D from the newsgroup I picked and D is about

fishing, then you best bet is pick some fishing

related newsgroup, the one that will maximize

P(c|D).

3. How do we compute
)(

)()|(
DP

cPcDP ?

a. P(c) is easy

i. eg for newsgroups it is

newsgroups all of size totalcombined
c newsgroup of size

b. P(D) drops out since it is the same for every class,

and won’t effect selection of cMAP, so

)|()(argmax cDPcPc
c

MAP =

c. P(D|c) we’ve seen how to compute, so

())|()|()|()(argmax 000,121 cwPcwPcwPcPc
c

MAP ∗∗= L

4. Now given D, we can figure its most likely class cMAP (eg

what newsgroup it belongs to, is it spam or not, etc.

whatever classes we’ve trained on)

 - 4 -

3. Probability vs Similarity

a. Given a query q, P(user is looking for document D)=P(document D is

relevant for query q)=P(document D is relevant | q)=P(relevant | D,

q)=P(R|D,q)

i. You hope it is proportional to similarity(q,D)

1. if D is very similar to q, P(relevant | D,q) should be high

2. if not, you hope P(relevant | D,q) is low

ii. If it is like similarity, then we can rank by it, if P(R|D1,q) >

P(R|D2,q), then D1 is more relevant, return it higher on the list –

Probability Ranking Principle

b. Why are we replacing similarity with probability?

i. It has advantages – firmer theoretical foundation, easier to

integrate in other sources of information, maybe it will work much

better (this last one hasn’t happened)

c. How to compute P(R|D,q)? Remember R and NR (not relevant) are just

classes, like newsgroups, or spam and not spam, apply the same

machinery as before

i. First figure out how to represent D and q with some numbers

1. Binary representation – D represented by x=(x1,…,xn); xi=1

if word i (eg “boat”) occurs in D, otherwise xi=0

ii. Now we want to compute P(R|x,q). Apply Bayes Rule whenever

you can, so
)|(

),|()|(),|(
qxP

qRxPqRPqxRP =

iii. Would be nice not to compute P(x|q). How do we avoid it?

1. We are not really interested in P(R|x,q) as a number, only

want to know given another document y, which should be

higher in the ranking, eg is it P(R|x,q) > P(R|y,q) or

P(R|x,q) <P(R|y,q)?

a. If P(R|x,q) > P(R|y,q)

 - 5 -

i. Then
),|(1

),|(
),|(1

),|(
qyRP

qyRP
qxRP

qxRP
−

>
−

since
),|(),|(

),|(),|(),|(),|(),|(),|(
),|(1)(,|(),|(1)(,|(

qyRPqxRP
qxRPqyRPqyRPqyRPqxRPqxRP

qxRPqyRPqyRPqxRP

>
−>−
−>−

b. That last one, while true, is a bit weird, why would

we want to do that? Because 1-P(R|x,q)=P(NR|x,q)

(NR=not relevant)

c. So
),|(

),|(
),|(

),|(
qyNRP

qyRP
qxNRP

qxRP
> iff P(R|x,q) > P(R|y,q)

i. Aha, we can use
),|(

),|(
qxNRP

qxRP instead of

P(R|x,q) to do ranking

ii. Flip with Bayes Rule and get
),|(

),|(
qxNRP

qxRP

),|()|(
),|()|(

q)|P(x
),|()|(

q)|P(x
),|()|(

qNRxPqNRP
qRxPqRP

qRNRPqNRP

qRxPqRP

==

iii. Voila, we don’t need P(x|q), this is called

the odds ratio (odds like in Vegas, 2 to 1,

etc)
),|()|(

),|()|(),|(
qNRxPqNRP

qRxPqRPqxRO =

iv. Again, not interested in O(R|x,q) as a number, only for ranking

versus some other document y, eg is it O(R|x,q)>O(R|y,q) or

O(R|x,q)<O(R|y,q)? Therefore the
)|(

)|(
qNRP

qRP term drops out, and

we are left computing
),|(

),|(
qNRxP

qRxP

d. Recap: want P(user is looking for document D)= P(document D is relevant

| q)=P(R|D,q) change to binary representation P(R|x,q) get rid of

the need to compute P(x|q) O(R|x,q) drop P(R|q)
),|(

),|(
qNRxP

qRxP .

 - 6 -

e. How do we compute P(x|R,q)=P(x1,…,xn|R,q)?

i. Same as before, remember R is just a class, like a newsgroup,

make the Naïve Bayes Assumption, then P(x1,…,xn|R,q)=

P(x1|R,q)*…* P(xn|R,q)

ii. P(x|NR,q) splits apart in the same way

iii. All that is left is to train, and estimate each individual parameter

(eg P(xk|R,q)) by counting frequencies. See Lecture 10 for

specifics

f. The model above (binary data representation + Naïve Bayes assumption)

is called Binary Independence Model

4. Feature Representation

a. A feature is a piece of information that we represent numerically

i. eg whether a word k is in document D – if it is, then we set wk=1,

otherwise wk=0, wk is a feature

ii. We could have had wk={# of times k appears in D}, or wk={#

number of pigeons in California}. This last one is probably less

informative for text retrieval then the first two. In the same way,

the second one – the frequency of k in D – may be more

informative than just knowing whether k occurred in D or not

b. Once the feature set is selected, we can churn it through all of our

formulas above, and make a classifier (or a probabilistic ranker given

some query)

c. Suppose we have a document D=”the sunny sunny sky”, and a

lexicon={“bright”, “sunny”, “sky”, “the”}. How to represent D?

i. Lets do it like in Binary Independence Model

1.)1,1,1,0(
theskysunnybright

=D

2. eg D=(w1,…,wn), wk=1 iff word k occurs in D

3. We call this representation Multivariate Binomial

ii. Lets do another model, assign a number to every word:

 }the"",sky"",sunny"",bright""{
4321

 - 7 -

1.)3,2,2,4(
skysunnysunnythe

=D

2. eg D=(w1,…,wn), wi=k iff word k occurs at position i

3. Call this one Multinomial

d. Under any of the representations, we can still churn through all of our

Bayes Rule/Naïve Bayes math, so what is different?

i. The parameters are very different

1. Multivariate Binomial: P(wk|c)={how likely we are to

observe word k in a document from class c}

2. Multinomial: P(wi=k|c)={how likely we are to observe

word k in position i in a document from class c}

3. All parameters still estimated with frequencies during

training

ii. Multinomial keeps position and frequency information

 - 8 -

