cs276a PS2 Review
1. Relevance Feedback
a. In addition to the query, the user tells which of the documents returned are relevant. How can we use this new information?

b. Example

i. Query “fishing equipment”

ii. Every relevant document contains the word “boat”

iii. Then “fishing equipment boat” would be a better query

c. In the example above, formally, how do we get “boat” into query?

i. Original query vector q0: q0[“fishing”]=1, q0[“equipment”]=1, all other q0 components =0

ii. Let d be one of the relevant documents, then d is a vector, and d[“boat”]=1 (ignore other components of d for now)

iii. qm=q0+d and we get qm[“boat”]=1

1. But d has lots of words, now they are all in qm, we’ve completely drawn out the original query. That is why we need to scale down the contribution from d with β, eg qm=q0+ βd

2. But there are several relevant documents d1,…,dn, not just one. So average them first:
[image: image1.wmf]documents

relevant

of

#

2

1

0

0

n

avg

m

d

d

d

q

d

q

q

+

+

+

+

=

+

=

L

b

b

d. What about non-relevant documents?

i. Suppose every non-relevant document contains “equipment”

ii. Now we want to downplay “equipment” in the query

iii. Same as before, but now we subtract, if d non-relevant, then d[“equipment”]=1, then for qm=q0-d, qm[“equipment”]=0. Success.

iv. Then average and scale just like for relevant documents.

e. The Formula (Rocchio Algorithm)
i. Now we are ready for the full formula, call the set of relevant documents Cr, non-relevant Cnr; add a scale factor α for q0 to be able to control tradeoff between the original query and the relevant/non-relevant docs, and we get
[image: image2.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

÷

÷

ø

ö

ç

ç

è

æ

+

=

å

å

Î

Î

nr

nr

r

r

C

d

nr

nr

C

d

r

r

m

d

C

d

C

q

q

1

1

0

g

b

a

2. Probabilities, Language Models and Naïve Bayes

a. Example

i. Have document with 1,000 words, D=w1,…,w1,000
ii. P(D)=P(w1,…w1,000)=P(w1)*P(w2|w1)*P(w3|w1,w2)*…*P(w1,000, |w1,w2,…w999)

1. The Chain Rule of Probability
2. Always true, like 2=2, based on the axioms of probability

iii. Consider P(w1,000, |w1,w2,…w999), lets say w1,000=”toys”

1. P(“toys”|w1=”A”, w2,…,w999) vs P(“toys”|w1=”Today”,w2,…,w999)

2. Would not expect them to be very different

3. Thus P(w1,000, |w1,w2,…w999)(P(w1,000, | w2,…w999)

iv. How about P(w1,000, |w1,…w999)(P(w1,000, | w3,…w999)? P(w1,000, |w1,…w999)(P(w1,000, | w100,…w999)?

v. Why not P(w1,000, |w1,…w999)(P(w1,000)?

1. Why not indeed, this is precisely the Naïve Bayes assumption, and it can work pretty well.

2. Note that almost certainly P(w1,000, |w1,…w999)(P(w1,000), but if it is close, we’ll be ok.

b. Language Model

i. Unigram: P(wn, |w1,…wn-1)(P(wn)=
[image: image3.wmf] words

of

#

total

occurs

 w

 times

of

#

n

1. makes the Naïve Bayes assumption

ii. Bigram: P(wn, |w1,…wn-1)(P(wn|wn-1)=
[image: image4.wmf]occurs

 w

 times

of

#

 w

follows

 w

 times

of

#

1

1

-

n

n

-

n

1. According to a bigram model, and the chain rule of probability, P(w1,w2,w3)=…?

c. Naïve Bayes classification

i. Before wanted to know P(D)=P(w1,…w1,000)

ii. Now want to know P(D|c)=P(w1,…w1,000|c), where c is some class of documents

1. eg c=”su.class.cs276a”, if D is in this newsgroup how likely of a document is it (for this newsgroup)? A somewhat weird quantity, but hang on.
2. Or could think about it generationally: if I was randomly writing a document based on other documents I’ve seen in c, with what probability would I write D?
iii. Structurally identical to what we did above for language models, still comes apart via the chain rule
1. P(D|c)=P(w1,…w1,000|c)=P(w1|c)*P(w2|w1,c)*P(w3|w1,w2,c)*…*P(w1,000, |w1,w2,…w999,c)

2. Apply the Naïve Bayes assumption, then for any wk, P(wk|w1,w2,…wk-1,c)=P(wk|c), and we have P(w1,…w1,000|c)=P(w1|c)*P(w2|c)*…*P(w1,000|c)

3. What precisely is P(wk|c)?

a. How likely you are to see the word wk in a document from class c

b. If wk=”homework” and c=”su.class.cs276a” newsgroup, then
[image: image5.wmf]s276a"

su.class.c

"

in

 words

of

#

s.276a"

su.class.c

"

in

appears

homework"

"

 times

of

#

)

s276a"

su.class.c

"

newsgroup

|

homework"

"

(

=

P

c. This is the training, P(wk|c) is a parameter of our model

iv. Why did we want to compute P(D|c)? Recall, it is a rather weird quantity. We did it to get to P(c|D).
1. P(c|D) tells us for class c, how likely it is that D is in it

a. Not clear how to compute directly, so we flip it with Bayes Rule,
[image: image6.wmf])

(

)

(

)

|

(

)

|

(

D

P

c

P

c

D

P

D

c

P

=

.

2. If we can compute P(c|D) then we can find the most likely class
[image: image7.wmf])

(

)

(

)

|

(

argmax

)

|

(

argmax

D

P

c

P

c

D

P

D

c

P

c

c

c

MAP

=

=

.
a. Called maximum a posteriori class, eg after we see the document as opposed to prior P(c), eg before we see the document. If I pick a newsgroup, and ask you to guess which one I picked, you best bet is to go with the biggest one, one that maximizes P(c), but if I then give you a document D from the newsgroup I picked and D is about fishing, then you best bet is pick some fishing related newsgroup, the one that will maximize P(c|D).
3. How do we compute
[image: image8.wmf])

(

)

(

)

|

(

D

P

c

P

c

D

P

?

a. P(c) is easy

i. eg for newsgroups it is
[image: image9.wmf]newsgroups

all

of

size

 total

combined

c

newsgroup

of

size

b. P(D) drops out since it is the same for every class, and won’t effect selection of cMAP, so
[image: image10.wmf])

|

(

)

(

argmax

c

D

P

c

P

c

c

MAP

=

c. P(D|c) we’ve seen how to compute, so
[image: image11.wmf](

)

)

|

(

)

|

(

)

|

(

)

(

argmax

000

,

1

2

1

c

w

P

c

w

P

c

w

P

c

P

c

c

MAP

*

*

=

L

4. Now given D, we can figure its most likely class cMAP (eg what newsgroup it belongs to, is it spam or not, etc. whatever classes we’ve trained on)

3. Probability vs Similarity

a. Given a query q, P(user is looking for document D)=P(document D is relevant for query q)=P(document D is relevant | q)=P(relevant | D, q)=P(R|D,q)

i. You hope it is proportional to similarity(q,D)

1. if D is very similar to q, P(relevant | D,q) should be high

2. if not, you hope P(relevant | D,q) is low

ii. If it is like similarity, then we can rank by it, if P(R|D1,q) > P(R|D2,q), then D1 is more relevant, return it higher on the list – Probability Ranking Principle
b. Why are we replacing similarity with probability?

i. It has advantages – firmer theoretical foundation, easier to integrate in other sources of information, maybe it will work much better (this last one hasn’t happened)

c. How to compute P(R|D,q)? Remember R and NR (not relevant) are just classes, like newsgroups, or spam and not spam, apply the same machinery as before
i. First figure out how to represent D and q with some numbers
1. Binary representation – D represented by x=(x1,…,xn); xi=1 if word i (eg “boat”) occurs in D, otherwise xi=0
ii. Now we want to compute P(R|x,q). Apply Bayes Rule whenever you can, so
[image: image12.wmf])

|

(

)

,

|

(

)

|

(

)

,

|

(

q

x

P

q

R

x

P

q

R

P

q

x

R

P

=

iii. Would be nice not to compute P(x|q). How do we avoid it?

1. We are not really interested in P(R|x,q) as a number, only want to know given another document y, which should be higher in the ranking, eg is it P(R|x,q) > P(R|y,q) or P(R|x,q) <P(R|y,q)?

a. If P(R|x,q) > P(R|y,q)
i. Then
[image: image13.wmf])

,

|

(

1

)

,

|

(

)

,

|

(

1

)

,

|

(

q

y

R

P

q

y

R

P

q

x

R

P

q

x

R

P

-

>

-

 since
[image: image14.wmf])

,

|

(

)

,

|

(

)

,

|

(

)

,

|

(

)

,

|

(

)

,

|

(

)

,

|

(

)

,

|

(

)

,

|

(

1

)(

,

|

(

)

,

|

(

1

)(

,

|

(

q

y

R

P

q

x

R

P

q

x

R

P

q

y

R

P

q

y

R

P

q

y

R

P

q

x

R

P

q

x

R

P

q

x

R

P

q

y

R

P

q

y

R

P

q

x

R

P

>

-

>

-

-

>

-

b. That last one, while true, is a bit weird, why would we want to do that? Because 1-P(R|x,q)=P(NR|x,q) (NR=not relevant)

c. So
[image: image15.wmf])

,

|

(

)

,

|

(

)

,

|

(

)

,

|

(

q

y

NR

P

q

y

R

P

q

x

NR

P

q

x

R

P

>

iff P(R|x,q) > P(R|y,q)
i. Aha, we can use
[image: image16.wmf])

,

|

(

)

,

|

(

q

x

NR

P

q

x

R

P

 instead of P(R|x,q) to do ranking

ii. Flip with Bayes Rule and get
[image: image17.wmf])

,

|

(

)

,

|

(

q

x

NR

P

q

x

R

P

[image: image18.wmf])

,

|

(

)

|

(

)

,

|

(

)

|

(

q)

|

P(x

)

,

|

(

)

|

(

q)

|

P(x

)

,

|

(

)

|

(

q

NR

x

P

q

NR

P

q

R

x

P

q

R

P

q

R

NR

P

q

NR

P

q

R

x

P

q

R

P

=

=

iii. Voila, we don’t need P(x|q), this is called the odds ratio (odds like in Vegas, 2 to 1, etc)
[image: image19.wmf])

,

|

(

)

|

(

)

,

|

(

)

|

(

)

,

|

(

q

NR

x

P

q

NR

P

q

R

x

P

q

R

P

q

x

R

O

=

iv. Again, not interested in O(R|x,q) as a number, only for ranking versus some other document y, eg is it O(R|x,q)>O(R|y,q) or O(R|x,q)<O(R|y,q)? Therefore the
[image: image20.wmf])

|

(

)

|

(

q

NR

P

q

R

P

term drops out, and we are left computing
[image: image21.wmf])

,

|

(

)

,

|

(

q

NR

x

P

q

R

x

P

d. Recap: want P(user is looking for document D)= P(document D is relevant | q)=P(R|D,q) (change to binary representation (P(R|x,q) (get rid of the need to compute P(x|q) (O(R|x,q) (drop P(R|q) (
[image: image22.wmf])

,

|

(

)

,

|

(

q

NR

x

P

q

R

x

P

.
e. How do we compute P(x|R,q)=P(x1,…,xn|R,q)?
i. Same as before, remember R is just a class, like a newsgroup, make the Naïve Bayes Assumption, then P(x1,…,xn|R,q)= P(x1|R,q)*…* P(xn|R,q)

ii. P(x|NR,q) splits apart in the same way

iii. All that is left is to train, and estimate each individual parameter (eg P(xk|R,q)) by counting frequencies. See Lecture 10 for specifics

f. The model above (binary data representation + Naïve Bayes assumption) is called Binary Independence Model
4. Feature Representation

a. A feature is a piece of information that we represent numerically

i. eg whether a word k is in document D – if it is, then we set wk=1, otherwise wk=0, wk is a feature

ii. We could have had wk={# of times k appears in D}, or wk={# number of pigeons in California}. This last one is probably less informative for text retrieval then the first two. In the same way, the second one – the frequency of k in D – may be more informative than just knowing whether k occurred in D or not

b. Once the feature set is selected, we can churn it through all of our formulas above, and make a classifier (or a probabilistic ranker given some query)

c. Suppose we have a document D=”the sunny sunny sky”, and a lexicon={“bright”, “sunny”, “sky”, “the”}. How to represent D?

i. Lets do it like in Binary Independence Model

1.
[image: image23.wmf])

1

,

1

,

1

,

0

(

the

sky

sunny

bright

=

D

2. eg D=(w1,…,wn), wk=1 iff word k occurs in D

3. We call this representation Multivariate Binomial
ii. Lets do another model, assign a number to every word:
[image: image24.wmf]}

the"

"

,

sky"

"

,

sunny"

"

,

bright"

"

{

4

3

2

1

1.
[image: image25.wmf])

3

,

2

,

2

,

4

(

sky

sunny

sunny

the

=

D

2. eg D=(w1,…,wn), wi=k iff word k occurs at position i

3. Call this one Multinomial
d. Under any of the representations, we can still churn through all of our Bayes Rule/Naïve Bayes math, so what is different?

i. The parameters are very different

1. Multivariate Binomial: P(wk|c)={how likely we are to observe word k in a document from class c}

2. Multinomial: P(wi=k|c)={how likely we are to observe word k in position i in a document from class c}

3. All parameters still estimated with frequencies during training

ii. Multinomial keeps position and frequency information

- 1 -

_1161768032.unknown

_1161785479.unknown

_1161785968.unknown

_1161786639.unknown

_1161786693.unknown

_1161786038.unknown

_1161785543.unknown

_1161770063.unknown

_1161775386.unknown

_1161775958.unknown

_1161775235.unknown

_1161775273.unknown

_1161768563.unknown

_1161770010.unknown

_1161768597.unknown

_1161768549.unknown

_1161764423.unknown

_1161765093.unknown

_1161767757.unknown

_1161765059.unknown

_1161714684.unknown

_1161717041.unknown

_1161718338.unknown

_1161713961.unknown

