
 1

CS 276a Problem Set #1 
 
Assigned: Tuesday, October 5, 2004 
 
Due: Thursday, October 14, 2004 by 5:30 p.m. 
 
Review session: Friday, October 8, 2004, 3:15-4:05 p.m. in Gates B01 
 
Delivery: Local students should hand their solutions to Louis in class or leave them in 
the box by Professor Manning’s office. SCPD students should use the SCPD courier 
system. 
 
Late policy: Refer to the course webpage. 
 
Honor code: Please review the collaboration and honor code policy on the course 
webpage. Also note: because some questions may be drawn from previous years’ 
problem sets or exams, students are forbidden to consult solution sets from previous years 
unless we explicitly provide them. 
 
7 questions and 70 points total. 
 
 
#1. Integer coding (5 points) 
 
Identify the set of all positive integers (show each integer using decimal, unary, and 
gamma coding) that: 
 
a. have smaller length using unary coding than using gamma coding. (A correct 
specification of the set is sufficient for this part.) 
 
b. have the same length using unary coding and using gamma coding. Prove that no 
integer outside your set has this property. 
 
 
#2. Positional indexing (10 points) 
 
Consider the following fragment of a positional index with the format 
word: document: position, position … document: position … 
 
Gates: 1:3 2:6 3:2,17 4:1 
IBM:  4:3 7:14 
Microsoft: 1:1 2:1,21 3:3 5:16,22,51 
 
The NEAR/x operator in text retrieval has the following syntax: Word1 NEAR/x 



 2

Word2 finds occurrences of Word1 within x words of Word2, where x is a positive 
integer argument. Thus x = 1 demands that Word1 be adjacent to Word2 (but not 
necessarily in that order). 
 
a. Describe the set of documents that satisfy the query Gates NEAR/2 Microsoft. 
 
b. Describe each set of values for which the query Gates NEAR/x Microsoft has a 
different set of documents as answers. 
 
c. Consider the general procedure for “merging” two positional postings for a given 
document, to determine where the document satisfies a NEAR/x clause (since in general 
there will be many positions at which each term occurs in a document). We begin with a 
pointer to the position of occurrence of each term and move each pointer along the list of 
occurrences in the document, checking as we do so whether we have a hit for NEAR/x. 
Each move of either pointer counts as a step. Let L denote the total number of 
occurrences of the two terms in the document. What is the big-O complexity of the merge 
procedure, if we wish to have postings for the result? 
 
d. Suppose we wish to use the general “merging” procedure to determine whether the 
document satisfies a NEAR/x clause. Which of the following is true? Justify your answer. 
 

i. The merge can be accomplished in a number of steps linear in L regardless of x, 
and we can ensure that each pointer moves only to the right. 

 
ii. The merge can be accomplished in a number of steps linear in L, but a pointer 
may be forced to move non-monotonically (i.e., sometimes “back up”). 

 
iii. The merge can require xL steps in some cases. 

 
 
#3. Postings lists (10 points) 
 
We have a two-word query. For one term the postings list consists of the following 16 
entries: [4,6,10,12,14,16,18,20,22,32,47,81,120,122,157,180]. 
 
For the other term it is the one-entry postings list [47]. 
 
a. Work out how many comparisons would be done to intersect the two postings lists with 
the following two strategies. Briefly justify your answers: 
 

i) using standard postings lists 
 

ii) using postings lists stored with skip pointers, with a skip length of sqrt(length), 
as recommended in class. 

 



 3

b. Explain briefly how skip pointers could be made to work if we wanted to make use of 
gamma-encoding on the gaps between successive docIDs. 
 
 
#4. Index size computation (15 points) 
 
Consider an index for 1 million documents each having a length of 1,000 words. Say 
there are 100K distinct terms in total. We do not wish to keep track of term-frequency 
information. 
 
a. What is the space requirement for an uncompressed term-document incidence matrix 
that does not exploit sparsity? 
 
b. Assuming a Zipf's Law distribution of terms, as in class, what is the space required for 
the postings in an inverted index that encodes each docID with fixed-length binary codes 
(without the use of gaps or gamma encoding)? 
 
c. Under the same assumptions, but with gamma encoding of the gaps between 
successive docIDs in the postings lists? 
 
  
#5. Dictionary storage (15 points) 
 
Consider a lexicon (dictionary) in which there are no words of length 1 or 2. Assume the 
probability of a word in this lexicon having length i is proportional to 1/i2, for i > 2. 
Assume that the distribution is truncated so that the longest possible word length is 25. 
Further, the lexicon has 50,000 words in it.  
 
a. Assume each character requires a byte of storage. Although inefficient, we could safely 
use 25 bytes per word for the dictionary, as in the first cut approach in class. How much 
storage is required for storing all the words in this fashion? 
  
Now let us analyze a more efficient scheme. 
  
b. What is the expected number of distinct words (types) of length i as a function of i? 
  
c. From (b), infer the expected total number of characters to write down all words of 
length i as a function of i. 
  
d. Now consider storing the words as one contiguous string, with a term pointer to the 
beginning of each word. How much space is used in total, including storage for the entire 
string as well as for the pointers that resolve the beginning of each word? Show a 
formula, and estimate the total as a number of bytes needed. 
 
e. Next consider "blocking" the dictionary string so we point to the beginning of each 
eighth word rather than every word, storing the length of each word in one byte 



 4

immediately preceding its appearance in the string. What is the total space used now? 
Show the formula, your estimates, and an estimated number of bytes. 
 
  
#6. Stemming (5 points) 
 
Which (if any) of the following pairs that are stemmed to the same form by the Porter 
stemmer definitely shouldn't be conflated? Explain your answers. 
 
a. abandon/abandonment 
b. absorbency/absorbent 
c. marketing/markets 
d. university/universe 
e. volume/volumes 
  
  
#7. More stemming (10 points) 
 
The following is part of the beginning step of the stemming algorithm developed by 
Porter (1980). Porter's algorithm consists of a set of rules, in the form of S1 -> S2, which 
means that if a word ends with the suffix S1, then S1 is replaced by S2. If S2 is empty, 
then S1 is deleted: 
  
IES -> I 
SS -> SS 
S -> 
 
In a grouped set of rules written beneath each other (as above), only one is applied, and 
this will be the one with the longest matching S1 for the given word. 
 
a. What is the purpose of including an identity rule such as SS -> SS? 
  
Given the above set of rules, what do the following words map to? 
 
b. PONIES 
c. TIES 
d. CARESS 
 
What rules should you add to correctly stem the following? 
 
e. CARESSES 
f. PONY 
  
g. The stemming for (b) (and hence (f)) given above might seem strange. Does it have a 
deleterious effect on retrieval? 


