
cs276a PE2 Review 
Dimensionality Reduction 
 
Assume you have your data in a (m x N) term incidence matrix X, where N is the number 
of documents and m is the number of terms. Thus each document is represented by a 
column of X.  Let X(i) denote the i-th column of X (e.g. the vector representing document 
i). 
 
For the purposes of the k-means algorithm, each column of X (e.g. each document) is 
considered to be a point in m-dimensional space. The algorithm produces sensible results 
because the distance between the columns of X represents the similarity between the 
documents. Looking at it very simply, given documents i and j, k-means uses the distance 
||X(i)-X(j)|| to decide whether i and j should be in the same cluster. If they are close (as 
compared to other documents), then they’ll likely end up in the same cluster, and a 
human looking at the clustering will agree with this assignment, because small distance 
means that the documents are similar. 
 
The running time of this algorithm is highly dependent on m, and m can be quite large. 
Dimensionality reduction allows us to run k-means on a (d x N) matrix R which we 
derive from X, where d<m, and get a clustering that is as “good” as the one we would 
have gotten had we run it on the original (m x N) matrix X, in much less time. 
 
To do so we need to construct the (d x N) matrix R from the (m x N) X. The definition of 
matrix multiplication tells us that given any (d x m) matrix P, we can construct a (d x N) 

matrix simply by matrix multiplication
NmmdNd

XPR
×××

∗= . Let some such P be given, and 
consider what happens when we run k-means on R. It will be highly dependent on P. For 
example if P is the zero matrix, then R is the zero matrix; for any documents i and j, 
whatever the distance ||X(i)-X(j)||, ||R(i)-R(j)||=0, and so we have a degenerate case where 
the k-means algorithm, looking only at R, will consider all documents the same, and will 
not give us a sensible answer, certainly nothing like we would get by running it on X. 
 
Let us now suppose we were given a P such that for any pair of documents i and j, we 
were told that ||X(i)-X(j)||=||R(i)-R(j)||. In this case, our notion of similarity is completely 
preserved, and we can expect k-means on R to produce a clustering as “good” as the one 
it would produce on X. In general such a P does not exist, however there are many 
matrices P which will get us close, so that for any pair of documents i and j, ||X(i)-
X(j)||≈||R(i)-R(j)||. How well the distances are preserved, will determine how sensible the 
clustering we get from k-means on R will be, and this is directly dependent on P. 
 
Constructing P 
 
As mentioned above there are many possible matrices P that can work, and there are 
many methods to construct them [2]. We present a few below, they are ordered by 
computation speed. Each one works harder than the ones before it to construct P, but 
gives more assurances that the distances between documents - our notion of similarity - 



will be preserved, and thus that the clustering we get by running k-means (or some other 
clustering algorithm) on R (=PX) will be reasonable. 
 

1. P is a completely random matrix, every element of the matrix, Pij, is drawn from 

some zero mean, unit variance distribution. 

a. The cheapest way that can work is to simply have 

6
1
3
2
6
1

y probabilit    with 
y probabilit    with 
y probabilit    with 

1
0
1

3
⎪
⎩

⎪
⎨

⎧

−

+
∗=ijP .   

b. A little more expensive is to have every element of P be Gaussian 

distributed, Pij=N(0,1) (in matlab do P=randn(d, m)). 

c. Constructing P as above is very easy, but you get few assurances that it 

will preserve distances between documents, though [1] suggests that it 

may. 

2. First construct P randomly as above, and then orthogonalize it. 

a. P is called orthogonal if every row of P is perpendicular to every other 

row, and also every row, when interpreted as a vector, has length 1. The 

reason why we want to do this, is that if P is orthogonal, R=PX has a 

simple geometric interpretation -- R is a projection of X from a m-

dimensional space, to a d-dimensional one, where the the rows of P are the 

d directions we’ve selected to project down to. 

i. Example: we have 3 documents a,b, and c, each a 2 dimensional 

vector: . If we cluster in the original 2 dimensions, we 

would expect a and b to be clustered together, and c to be in its 

own cluster: . Let us first do a dimensionality reduction 

to 1 dimension, d=1. 

c
b
a

c
b
a



1. First we pick a direction to reduce to and project down: 

, getting , and doing the 

clustering we get . We’ve just expressed 

geometrically what R=PX means, in this case we picked [1 

0] as our projection direction, so P=[1 0], if we denote by 

(ax, ay) the coordinates of a, similarly for b and c, then we 

can write the above as   

c
b

[ ] [ ] ⎥
⎦

⎤
⎢
⎣

⎡

=

=

yyy

xxx

xxx
cba
cba

XP

cba

R

01

ach 

2. We were lucky in picking a projection direction which 

preserved our clustering; let’s see what happens when we 

are not so lucky. 

a. With a different direction: , we get the 

projection , and with everything on top of e

other, when we do k-means for 2 clusters we get 

random results.  

ii. In higher dimensions, everything proceeds similarly, except we 

pick more than one direction to project down to - we pick d of 

them. If the directions we pick are not perpendicular to each other, 

in other words P is not orthogonal, as with the first scheme when P 

is completely random, then the geometric interpretation of what 

we’ve done is not only project down to a d-dimensional space, but 

also stretch things in various directions; no reason to do that if we 

can avoid it. 

cab

c
b
a 

ba c

ba ca 



b. There are many algorithms to orthogonalize a matrix, such as Gram-

Schmidt and Householder transform (in matlab do P=orth(P')') 

i. Note that the hashes (“ ' “) are important! They transpose the 

matrix; if you wanted to orthogonalize the columns of P, you 

would just say P=orth(P), but we want the rows, so we first 

transpose P -- P=P’, which makes its rows into columns, 

orthogonalize, and then transpose back to get them as rows. 

3. In the last method, we will construct a P that is optimal, meaning that R=PX will 

preserve distances between documents better than any other possible (d x m) P. 

We use a singular value decomposition (SVD) to find matrices U, S, and V such 

that get X=USVT, we set P={first d columns of U}T, and compute R=PX as 

before (in matlab do [U,S,V]=svd(X); P=U(:,1:d)'). 

a. SVD is expensive to compute. Can use iterative methods to only get the 

first d columns of U that we actually end up using (in matlab do 

[U,S,V]=svds(X,d); P=U’); even so, still expensive. 

b. Why does it work? 

c
b

i. Consider our earlier example , the best projection 

direction would be the one that best preserves the distances 

between points, this one: . This is precisely the one we 

find with the SVD method, it is the eigenvector of AAT 

corresponding to the largest eigenvalue; U contains these 

eigenvectors in its columns, sorted by eigenvalue, so when we take 

the first d columns, we are taking the eigenvectors corresponding 

to the biggest d eigenvalues. 

 

a

c
b
a

A word on SVD 

For any matrix X, SVD gives us a decomposition of X into three matrices U, S (often 
called ), and V such that X=USVΣ T. All three matrices are very specific and special for 



X (see lecture 15). Because S is diagonal (eg ), if we perform 

the multiplication symbolically, we get 

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

00

01

1

r

S
σ

σ
σ

O

∑= i
T
iii vuX σ , where ui is the i-th column of U, 

and vi is the i-th column of V. Every uivi
T

 is a (m x N) matrix just like X, so 

. 

Recall that SVD sorts the sigmas by magnitude, so 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
++

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= T

mmm
TTT vuvuvuvuX σσσσ L333222111

ji σσ ≥  when , in other words 
we have 

ji ≥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
++

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= T

mm
TTT vuvuvuvuX mσσσσ L332211 321

We see that the last terms of this sum are probably not significant compared with the first 
ones, and we can ignore them (though in the worst case we have mσσσ === L21 , and 
then we can’t ignore them). This is precisely what LSI does, for example when we 
compute the approximation for k=2, we have 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= TT vuvuX 22112 21 σσ . 

 

Matrix Rank 

Let X represent a set of points as before, and suppose the points look like this: 

 

then X will look something like . Even though X represents the 

points in two dimensions, we see that all the points lie on a line. This means that our 
dataset, even though we’ve represented it in two dimensions, is one dimensional, and we 
say that the row rank of X is 1. In a similar way, in higher dimensions, X may have m 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
5.225.15.0
5.225.15.0

rows, but the data is really d-dimensional (eg the row rank of X is d), in which case we 



are better off projecting the data to d-dimensions with SVD; we lose no information and
we have fewer numbers to deal with. Note that if we don’t project with SVD, but do so 
randomly, then we may still lose information - in the example above if we project down 
to a line perpendicular to the line the points lie on, then we end up with all the points 
being the same and so we’ve lost all distance information; using SVD guarantees that we 
will project down to the line the points lie on. 
 

 

atlab 

est you consider using Matlab in your project, it is one of the best packages for 

lve 

se 

] D. Achlioptas. Database-friendly random projections. In Proc. ACM Symp. on the 

[2] ensionality Reduction: 
ce on 

[3] f/project/logos/olh/Math/Matlab/Matlab.html

M

We sugg
numerical computation and is easy to learn (see [3] for tutorial). All of the more 
sophisticated methods of constructing P, at least one of which you should try invo
some amount of numerical computation. Java has some native linear algebra libraries 
such as [4], but they may turn out to be too slow for our purposes. If you do decide to u
Matlab, you’ll need to write your data out to files, and then read them into Matlab for 
processing (do help fscanf in the matlab command window to see how to do file IO). 
  

[1

Principles of Database Systems, pages 274-281, 2001. 

Bingham, E. and Mannila, H. Random Projection in Dim
Applications to Image and Text Data. 7th ACM SIGKDD International Conferen
Knowledge Discovery and Data Mining (KDD-2001), San Francisco, CA, USA, 
August 26-29, 2001. pp. 245-250. 
http://web.mit.edu/afs/.athena/astaf

[4] http://math.nist.gov/javanumerics/jama/ 


	Dimensionality Reduction

