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CS 276A Practical Exercise #2 
 

Assigned: Tuesday, November 16, 2004 
 
Due: Tuesday, November 30, 2004 by 11:59 p.m. 
 
Review session: Friday, November 19, 2004, 3:15-4:05 p.m. in Gates B01 
 
Delivery: All students should submit their work electronically. See below for details. 
 
Late policy: Refer to the course webpage. 
 
Group work: We encourage you to work in pairs for this assignment. Teams of two 
should only submit one copy of their work. Please note that the requirements for teams of 
two are slightly more demanding. 
 
 
Overview 
 
In this assignment, you will conduct an exercise in unsupervised classification by 
producing clusters of Usenet newsgroup messages. We provide you with a data set and 
starter code that reads in the messages and converts them into normalized tf.idf vectors. 
Your task is to cluster the messages by first employing a dimensionality reduction 
technique, then running a clustering algorithm such as k-means. The provided code will 
also evaluate the success of your clustering by computing the purity of your clusters. 
 
This assignment might be a bit more challenging than practical exercise #1, but it should 
also be more conceptually interesting. It also offers greater opportunity for creativity and 
extra credit.  
 
 
Before you start 
 
This assignment requires competence in both Java and linear algebra. If you’re not 
comfortable with either of those, we strongly recommend that you find a partner who is. 
 
You should probably complete the assignment using one of the Leland Unix machines 
such as the elaines or trees. You’re free to use any platform you choose – but the course 
staff can’t promise any help with non-Unix platform-specific difficulties you may 
encounter. 
 
 
Supplied files 
 
The starter code is located in /usr/class/cs276a/pe2. Make a new directory and copy 
everything into it. 
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Data set: We’re using the 20 Newsgroups collection, an archive of 1000 messages from 
each of 20 different Usenet newsgroups. The version we selected for this assignment 
excludes cross-posts (messages that were posted to more than one of the 20 newsgroups), 
so the actual number of messages is slightly below 1000 per group. For more information, 
please visit http://people.csail.mit.edu/people/jrennie/20Newsgroups/. The data is located 
in /afs/ir/data/linguistic-data/TextCat/20Newsgroups/20news-18828/, with each 
newsgroup in a subdirectory containing one file per message. Don’t bother making your 
own copy of it – your program can just read it from its current location. To avoid the 
possibility of running into memory and CPU limitations, we’re going to limit ourselves to 
100 messages per group. 
 
Files: 

- english.stop: list of stop words 
- Stemmer.java: Porter stemmer implementation 
- messages2vectors.java: Reads in the messages (100 per group) to produce 

vectors. Creates separate features for the subject and body fields, employs the 
stop words and the Porter stemmer and calculates tf.idf values, then 
normalizes each vector and outputs a file containg the vectors, plus a separate 
file with the newsgroup labels for those vectors. You shouldn’t need to 
modify this code. 

- clusterer.java: Reads in a file of vectors and its corresponding label file, then 
performs clustering and calculates the purity values. Contains a partial 
implementation of k-means that you can use if you like. 

 
 
What you have to do 
 
You have two main tasks: dimensionality reduction and clustering. 
 
Clustering tends to be more successful (not to mention faster) in lower-dimensional 
spaces. Even with stop words and stemming, our document vectors exist in a space with 
tens of thousands of features. Thus some type of dimensionality reduction is essential. 
Two popular approaches to this problem are random projection and singular value 
decomposition (SVD).  You may choose either of these strategies (or any other legitimate 
dimensionality reduction approach). Whichever one you choose, we request that you 
project your vectors into a 200-dimensional space. Please do not expend effort trying to 
determine the optimal number of dimensions, as this is beyond the scope of the 
assignment. 
 
To perform random projection, you can implement a standard orthogonalization 
algorithm to generate your projection matrix. For SVD, you can use the JAMA package 
(http://math.nist.gov/javanumerics/jama/) or Matlab. We will distribute a separate 
handout on dimensionality reduction and we will cover both random projection and SVD 
in more detail at the review session on Friday. 
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Once you’ve flattened your documents into 200 dimensions, you need to cluster them. 
You can employ any clustering algorithm you like; we recommend k-means (lecture 13) 
or agglomerative clustering (lecture 14). Though we would like you to be generally aware 
of efficiency concerns in writing your code, we will not penalize you for choosing an 
inherently less efficient algorithm (read: you don’t have to do k-means).  
 
Since the dataset can also be partitioned into broader topic groups (see the 20 
Newsgroups link above), you should try clustering with both k=6 and k=20. And to test 
whether dimensionality reduction is actually beneficial, you should also trying clustering 
the original, non-reduced vectors. 
 
Some considerations for your clustering algorithms: 
 

- The initial seeding step of k-means, in which you choose the centroids for the 
first iteration, is essential to producing a good clustering. 

- Though it is supposed to be guaranteed to converge, k-means occasionally 
seems to get stuck oscillating between two nearly identical points. You may 
want to detect this in your code or set a maximum number of iterations (100 is 
plenty). 

- Clusters that are very large or very small are not generally desirable. After 
your clustering algorithm completes, you may want to “massage” the clusters 
by somehow eliminating these outliers. For example, if among your k clusters 
you have one very large cluster, you could split it into two, then take the 
members of your smallest cluster and redistribute them among the other 
clusters – thus preserving the total number of clusters at k. 

- Agglomerative clustering presents various options for measuring intercluster 
distances, including centroid-centroid, single-link, complete-link and average-
link. Refer to slides 11-22 of lecture 14. 

 
 
Write-up and deliverables 
 
In addition to your code, please submit a brief report (1-2 pages) summarizing your work. 
Describe what you implemented and report the success of your clustering effort for both 
k=6 and k=20, with and without dimensionality reduction. If you tried multiple 
approaches, briefly compare/contrast them. Be sure to mention anything you did that 
merits extra credit. 
 
Your submission should include: 

- any code necessary to compile your program 
- your write-up in Word or PDF format (please call it results.pdf or results.doc) 
- if necessary, a README file that lists any special information about your code 

that we should know 
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Make sure your code compiles cleanly on Leland computers! When you’re ready to 
submit, change to the directory where all of your files are located and run the submission 
script: /usr/class/cs276a/bin/submit-pe2. 
 
 
Grading criteria 
 
To earn full credit on this assignment, a group of two must: 
 

1. implement two reasonable dimensionality reduction algorithms 
2. implement a reasonable clustering algorithm (if you choose k-means, this must 

include an initial seeding step that is more sophisticated than random selection) 
3. produce clusters with k=6 and k=20, with each of the dimensionality reduction 

techniques and without any dimensionality reduction 
4. achieve decent purity measures 

 
Students working alone only have to implement one type of dimensionality reduction. 
 
Extra credit will be awarded for exceeding the above requirements by: 
 

- trying additional dimensionality reduction techniques such as principal 
component analysis or another random projection algorithm 

- trying multiple clustering algorithms 
- enhancing your clustering algorithm with features such as a particularly clever 

initialization or a “massaging” step 
- achieving especially good purity 

 
If you have other ideas that you think might be worthy of extra credit, please ask the 
course staff before investing your time and effort. 
 
This assignment designed by Louis Eisenberg with assistance from Dan Gindikin, Chris Manning and Prabhakar Raghavan. 
 


