
Louis Eisenberg
10-15-04

CS 276A: Review session for practical exercise #1

Our goal: improve “top 10 precision” of search engine. For the average query, how many of our
search engine’s top 10 results are actually relevant?

Lucene:

index stores information about Documents
each Document has Fields
each Field has a name and a value

IndexWriter: you parse your corpus, add Documents to the IndexWriter, then write out the index
to binary files. IndexWriter uses:

- Analyzer: “represents a policy for extracting index terms from text.” Uses a Tokenizer
and various TokenFilters. You apply this to the corpus when you index it and to your
queries when you parse them. It handles:

o tokenizing
o stop words
o stemming
o lowercase
o other minor details (remove dots from acronyms, remove ‘s from words, etc.)

- Similarity: defines the scoring function for search, i.e. how we decide which documents
to return for a given query and how to rank them.

o score(q,d) =
∑
∈ qt

queryNormcoordlengthNormfieldtgetBoostidftf ***).(**

o tf: term frequency. DefaultSimilarity has sqrt(freq). In class we mentioned wf = 1
+ log tf as an option. There are probably others you should try.

o idf: inverse document frequency. DefaultSimilarity has 1 + log (n/(df+1)). This is
almost the same as what we saw in class, log (n/df). Again, look for other
possibilities.

o getBoost: you can give certain fields increased weight. In this assignment you
should try changing the relative weights of the title and contents fields.

o lengthNorm: tries to normalize for field length. Area of recent interest in IR – see
http://citeseer.ist.psu.edu/singhal96pivoted.html. “Matches in longer fields are
less precise, so implemenations of this method usually return smaller values when
numTokens is large, and larger values when numTokens is small.” Might not be
especially helpful with this corpus since we only have two fields and their lengths
don’t vary a lot from doc to doc, but maybe it can be helpful.

o coord: multiply score by factor based on how many terms match from the query.
Seems to duplicate part of what tf.idf is trying to accomplish, but this is more
direct.

o queryNorm: ignore it. It doesn’t affect ranking.

Now your index is built and you run queries on it.
A QueryParser parses your free text queries. Use the same Analyzer that you used to build the
index. An IndexSearcher searches the index and returns a Hits object. You can iterate through
the Hits and get the top results, then compare them to the qrels lists.

