
Louis Eisenberg, 10-22-04
CS 276A midterm review session notes

Postings vector space

Say we have n docs and m terms in the lexicon.

For each term wi:

compute idf, e.g. idfi =)log(
idf

n .

 for each document dj:
 count tfi,j or compute wf, e.g. wfi,j = 0 if tfi,j = 0 or 1 + log tfi,j if tfi,j > 0.
 wi,j = tfi,j * idfi or wfi,j * idfi

Now each document is a vector d in m dimensions, where di = wi,j.

Often want to normalize: divide each component by the vector’s length, e.g. the L2 norm:

di =

∑
=

m

1k

2
k

ji,

d

w

We can do the same with queries (treating them as small documents).

Matching queries to docs (or docs to docs): cosine similarity. For normalized vectors, just
the dot product.

Recall, precision, F measure

Precision: % of retrieved docs that are relevant
Recall: % of relevant docs that are retrieved

How do you maximize precision?

How do you maximize recall?

If a system is doing a decent job of ranking its results, you would generally expect
precision to decrease as the number of docs retrieved increases. Recall can only go up as
numDocs increases.

Interpolated precision: precisioni = max precisionk such that k ≥ i, where precisioni means
the precision when i docs are retrieved.

F measure combines precision and recall.

F =
RP
PR

+Β
+

2

2)1(β . Balanced F is just F1 =
RP

PR
+

.

So the numDocs for which you have peak F measure value probably represents a
compromise between precision and recall – you increase numDocs to increase recall, but
at the expense of precision.

Random projection

Reduce vector space from m dimensions down to k.
Not choosing k terms randomly and eliminating all the other axes – rather, choosing k
random directions (i.e. linear combinations of the m axes) that are all orthogonal to each
other.

kxm projection matrix R, mxn term-doc matrix A, random projection W = RxA.

Other topics to think about

- types of indices, their strengths and weaknesses, what they can and can’t do:

basic inverted, n-word, n-gram, positional, permuterm
- data structures for indices: trees (binary trees, B-trees) vs. hashtables
- linear zone combinations
- spell correction (edit distance, context-sensitive, n-grams, soundex…)
- index mergesort
- Zipf’s law and block estimates for postings lists
- consequences of stemming – potential benefits and drawbacks

