CS276A

Information Retrieval

Lecture 8

Recap of the last lecture
]
= Vector space scoring
= Efficiency considerations
= Nearest neighbors and approximations

This lecture
-
= Results summaries
= Evaluating a search engine
= Benchmarks
= Precision and recall

Results summaries

Summaries
I

= Having ranked the documents matching a query,
we wish to present a results list

= Typically, the document title plus a short
summary

= Title — typically automatically extracted

= What about the summaries?

Summaries
]
= Two basic kinds:
= Static and
= Query-dependent (Dynamic)
= A static summary of a document is always the
same, regardless of the query that hit the doc

= Dynamic summaries attempt to explain why the
document was retrieved for the query at hand

Static summaries

= In typical systems, the static summary is a subset
of the document
= Simplest heuristic: the first 50 (or so — this can be
varied) words of the document
= Summary cached at indexing time
= More sophisticated: extract from each document
a set of “key” sentences
= Simple NLP heuristics to score each sentence
= Summary is made up of top-scoring sentences.
= Most sophisticated, seldom used for search
results: NLP used to synthesize a summary

Dynamic summaries

]
= Present one or more “windows” within the
document that contain several of the query terms
= Generated in conjunction with scoring

= If query found as a phrase, the occurrences of the
phrase in the doc
= If not, windows within the doc that contain multiple
query terms
= The summary itself gives the entire content of the
window — all terms, not only the query terms —
how?

Generating dynamic summaries

= If we have only a positional index, cannot (easily)
reconstruct context surrounding hits
= If we cache the documents at index time, can run
the window through it, cueing to hits found in the
positional index
= E.g., positional index says “the query is a phrase
in position 4378” so we go to this position in the
cached document and stream out the content
= Most often, cache a fixed-size prefix of the doc
= Cached copy can be outdated

Evaluating search engines

Measures for a search engine

= How fast does it index
= Number of documents/hour
= (Average document size)
= How fast does it search
= Latency as a function of index size
= Expressiveness of query language
= Speed on complex queries

Measures for a search engine

= All of the preceding criteria are measurable: we
can quantify speed/size; we can make
expressiveness precise

= The key measure: user happiness
= What is this?
= Speed of response/size of index are factors
= But blindingly fast, useless answers won’t make a

user happy
= Need a way of quantifying user happiness

Measuring user happiness

= Issue: who is the user we are trying to make
happy?
= Depends on the setting
= Web engine: user finds what they want and
return to the engine
= Can measure rate of return users
= eCommerce site: user finds what they want and
make a purchase
= s it the end-user, or the eCommerce site, whose
happiness we measure?
= Measure time to purchase, or fraction of searchers
who become buyers?

Measuring user happiness

= Enterprise (company/govt/academic): Care about
“user productivity”
= How much time do my users save when looking
for information?
= Many other criteria having to do with breadth of
access, secure access ... more later

Happiness: elusive to measure
e ———]
= Commonest proxy: relevance of search results
= But how do you measure relevance?
= Will detail a methodology here, then examine its
issues
= Requires 3 elements:
1. A benchmark document collection
2. A benchmark suite of queries

3. A binary assessment of either Relevant or
Irrelevant for each query-doc pair

Evaluating an IR system
]

= Note: information need is translated into a
query

= Relevance is assessed relative to the
information need not the query

= E.g., Information need: I'm looking for information
on whether drinking red wine is more effective at
reducing your risk of heart attacks than white
wine.

= Query: wine red white heart attack effective

Standard relevance benchmarks
—
= TREC - National Institute of Standards and
Testing (NIST) has run large IR test bed for many
years
= Reuters and other benchmark doc collections
used
= “Retrieval tasks” specified
= sometimes as queries
= Human experts mark, for each query and for
each doc, Relevant or [rrelevant

= or at least for subset of docs that some system
returned for that query

Precision and Recall
—
= Precision: fraction of retrieved docs that are
relevant = P(relevant|retrieved)
= Recall: fraction of relevant docs that are
retrieved = P(retrieved|relevant)

Relevant Not Relevant
Retrieved tp fp
Not Retrieved |fn tn

= Precision P = tp/(tp + fp)
= Recall R=tp/(tp+fn)

Accuracy

= Given a query an engine classifies each doc as
“Relevant” or “Irrelevant”.

= Accuracy of an engine: the fraction of these
classifications that is correct.

Why not just use accuracy?

= How to build a 99.9999% accurate search engine
on a low budget....

5n600 [G.Co m
Searchfor: []

0 matching results found.

= People doing information retrieval want to find
something and have a certain tolerance for junk.

Precision/Recall

= Can get high recall (but low precision) by retrieving
all docs for all queries!

= Recall is a non-decreasing function of the number
of docs retrieved

= Precision usually decreases (in a good system)

Difficulties in using precision/recall
]

= Should average over large corpus/query
ensembles

= Need human relevance assessments
= People aren't reliable assessors

= Assessments have to be binary
= Nuanced assessments?

= Heavily skewed by corpus/authorship

= Results may not translate from one domain to
another

A combined measure: F

= Combined measure that assesses this tradeoff is
F measure (weighted harmonic mean):

1 _(B*+1PR

F= =
A?P+R

1 1
a—+1-a)=
P R
= People usually use balanced F, measure
= ie,withp=1lora=%
= Harmonic mean is conservative average
= See CJ van Rijsbergen, Information Retrieval

F, and other averages

Combined Measures

100 %
80 / ——Minimum
—— Maximum

Arithmetic
40 Geometric

60

—— Harmonic

20 +—

T T T T
0 20 40 60 80 100

Precision (Recall fixed at 70%)

Ranked results
—
= Evaluation of ranked results:
= You can return any number of results

= By taking various numbers of returned documents
(levels of recall), you can produce a precision-
recall curve

Precision-recall curves

Precision

Recsll

e 71 The eeisiv-recell caves o o0 g The audinds e
the Al O congal P e A

Interpolated precision

= [If you can increase precision by increasing recall,
then you should get to count that...

- _ -
precision | interpolated
[| precsio
M I
. \ | I
al | 1 | | |.. 0| | | .
! recall ° recall

Evaluation

= There are various other measures

= Precision at fixed recall
= Perhaps most appropriate for web search: all people
want are good matches on the first one or two results
pages
= 11-point interpolated average precision
= The standard measure in the TREC competitions: you
take the precision at 11 levels of recall varying from 0 to
1 by tenths of the documents, using interpolation (the
value for 0 is always interpolated!), and average them

Creating Test Collections
for IR Evaluation

Test Corpora

TABLE 4.3 Comamon Test Corpora

Collection | NDoes | Nonw 1D Feldss
..-\D[| 82 | 35

'..\rr | 2109 | 4 2 | 400 = 10,000
lcace | 3204 | e 2| 4.5

400 250 16,140

2000 85.3543 » 100,000

From corpora to test collections
]

= Still need

= Test queries

= Relevance assessments
= Test queries

= Must be germane to docs available

= Best designed by domain experts

= Random query terms generally not a good idea
= Relevance assessments

= Human judges, time-consuming

= Are human panels perfect?

Kappa measure for inter-judge

(dis)agreement

= Kappa measure
= Agreement among judges

= Designed for categorical judgments

= Corrects for chance agreement

Kappa = [P(A) - P(E)]/[1 - P(E)]

P(A) - proportion of time coders agree

P(E) - what agreement would be by chance

Kappa = 0 for chance agreement, 1 for total agreement.

P(A)? P(E)?
Kappa Measure: Example

Number of docs Judge 1 Judge 2

300 Relevant Relevant

70 Nonrelevant Nonrelevant
20 Relevant Nonrelevant
10 Nonrelevant relevant

Kappa Example

= P(A) = 370/400 = 0.925
P(nonrelevant) = (10+20+70+70)/800 = 0.2125

P(relevant) = (10+20+300+300)/800 = 0.7878
P(E) = 0.2125"2 + 0.7878"2 = 0.665
Kappa = (0.925 - 0.665)/(1-0.665) = 0.776

= For >2 judges: average pairwise kappas

Kappa Measure

= Kappa > 0.8 = good agreement

= 0.67 < Kappa < 0.8 -> “tentative conclusions” (Carletta
96)

= Depends on purpose of study

Interjudge Agreement: TREC 3

Analysis of Consistency of Relevance Judgments

Topic | Judged | Diir | ™ R
I NR [R
N Y
|62'4EH1|157 149 | g |

67 | am | g
70 25 | 2
400 | 114 | 97 | p7/

|
I“ 366 | 97 | 57 |10

78 283 | 23 | 2|

8 1 400 | 10 | 92 | i:;a
[84 [308 | 95 | 03 zl

95 | 400 | 110 | 108 | 3 |
IR

11 | 400 76 | 59 | l7|

122] iz | 60 | 43 | 17|

127 400 -lﬂﬁ|12|w!
|12‘-‘ 00 | 28 |15 |13
[B 28 | 2 o[zn|

Impact of Inter-judge Agreement

= Impact on absolute performance measure can be
significant (0.32 vs 0.39)

= Little impact on ranking of different systems or relative
performance

Unit of Evaluation

= We can compute precision, recall, F, and ROC
curve for different units.
= Possible units
= Documents (most common)
= Facts (used in some TREC evaluations)
= Entities (e.g., car companies)
= May produce different results. Why?

Critique of pure relevance
]
= Relevance vs Marginal Relevance

= A document can be redundant even if it is highly
relevant

= Duplicates
= The same information from different sources

= Marginal relevance is a better measure of utility for
the user.

= Using facts/entities as evaluation units more
directly measures true relevance.

= But harder to create evaluation set
= See Carbonell reference

Can we avoid human judgment?
]
= Not really
= Makes experimental work hard
= Especially on a large scale
= In some very specific settings, can use proxies

= Example below, approximate vector space
retrieval

Approximate vector retrieval

= Given n document vectors and a query, find the k
doc vectors closest to the query.

= Exact retrieval — we know of no better way than
to compute cosines from the query to every doc

= Approximate retrieval schemes — such as cluster
pruning in lecture 6

= Given such an approximate retrieval scheme,
how do we measure its goodness?

Approximate vector retrieval

= Let G(q) be the “ground truth” of the actual k
closest docs on query q

= Let A(q) be the k docs returned by approximate
algorithm A on query q

= For precision and recall we would measure A(q)

N G(a)
= Is this the right measure?

Alternative proposal

= Focus instead on how A(g) compares to G(q).

= Goodness can be measured here in cosine
proximity to g: we sum up qed over d e A(Q).

= Compare this to the sum of ged over d e G(q).

Yields a measure of the relative “goodness” of A

vis-a-vis G.

Thus A may be 90% “as good as” the ground-truth

G, without finding 90% of the docs in G.

For scored retrieval, this may be acceptable:

Most web engines don'’t always return the same
answers for a given query.

Resources for this lecture

= MIR Chapter 3
= MG 4.5

