CS276A Information Retrieval Lecture 8

Recap of the last lecture

- Vector space scoring
- Efficiency considerations
 - Nearest neighbors and approximations

This lecture

- Results summaries
- Evaluating a search engine
 - Benchmarks
 - Precision and recall

Results summaries

Summaries

- Having ranked the documents matching a query, we wish to present a results list
- Typically, the document title plus a short summary
- Title typically automatically extracted
- What about the summaries?

Summaries

- Two basic kinds:
 - Static and
 - Query-dependent (Dynamic)
- A static summary of a document is always the same, regardless of the query that hit the doc
- Dynamic summaries attempt to explain why the document was retrieved for the query at hand

Static summaries

- In typical systems, the static summary is a subset of the document
- Simplest heuristic: the first 50 (or so this can be varied) words of the document
 - Summary cached at indexing time
- More sophisticated: extract from each document a set of "key" sentences
 - Simple NLP heuristics to score each sentence
 - Summary is made up of top-scoring sentences.
- Most sophisticated, seldom used for search results: NLP used to synthesize a summary

Dynamic summaries

- Present one or more "windows" within the document that contain several of the query terms
- Generated in conjunction with scoring
 - If query found as a phrase, the occurrences of the phrase in the doc
 - If not, windows within the doc that contain multiple query terms
- The summary itself gives the entire content of the window – all terms, not only the query terms – how?

Generating dynamic summaries

- If we have only a positional index, cannot (easily) reconstruct context surrounding hits
- If we cache the documents at index time, can run the window through it, cueing to hits found in the positional index
 - E.g., positional index says "the query is a phrase in position 4378" so we go to this position in the cached document and stream out the content
- Most often, cache a fixed-size prefix of the doc
 - Cached copy can be outdated

Evaluating search engines

Measures for a search engine

- How fast does it index
 - Number of documents/hour
 - (Average document size)
- How fast does it search
- Latency as a function of index size
- Expressiveness of query language
 - Speed on complex queries

Measures for a search engine

- All of the preceding criteria are *measurable*: we can quantify speed/size; we can make expressiveness precise
- The key measure: user happiness
 - What is this?
 - Speed of response/size of index are factors
 - But blindingly fast, useless answers won't make a user happy
- Need a way of quantifying user happiness

Measuring user happiness

- Issue: who is the user we are trying to make happy?
 - Depends on the setting
- <u>Web engine</u>: user finds what they want and return to the engine
 - Can measure rate of return users
- <u>eCommerce site</u>: user finds what they want and make a purchase
 - Is it the end-user, or the eCommerce site, whose happiness we measure?
 - Measure time to purchase, or fraction of searchers who become buyers?

Measuring user happiness

- <u>Enterprise</u> (company/govt/academic): Care about "user productivity"
 - How much time do my users save when looking for information?
 - Many other criteria having to do with breadth of access, secure access ... more later

Happiness: elusive to measure

- Commonest proxy: *relevance* of search results
- But how do you measure relevance?
- Will detail a methodology here, then examine its issues
- Requires 3 elements:
 - 1. A benchmark document collection
 - 2. A benchmark suite of queries
 - 3. A binary assessment of either <u>Relevant</u> or <u>Irrelevant</u> for each query-doc pair

Evaluating an IR system

- Note: information need is translated into a query
- Relevance is assessed relative to the information need not the query
- E.g., <u>Information need</u>: I'm looking for information on whether drinking red wine is more effective at reducing your risk of heart attacks than white wine.
- Query: wine red white heart attack effective

Standard relevance benchmarks

- TREC National Institute of Standards and Testing (NIST) has run large IR test bed for many years
- Reuters and other benchmark doc collections used
- "Retrieval tasks" specified
 sometimes as queries
- Human experts mark, for each query and for each doc, <u>Relevant</u> or <u>Irrelevant</u>
 - or at least for subset of docs that some system returned for that query

Precision and Recall

- Precision: fraction of retrieved docs that are relevant = P(relevant|retrieved)
- Recall: fraction of relevant docs that are retrieved = P(retrieved|relevant)

	Relevant	Not Relevant
Retrieved	tp	fp
Not Retrieved	fn	tn

- Precision P = tp/(tp + fp)
- Recall R = tp/(tp + fn)

Accuracy

- Given a query an engine classifies each doc as "Relevant" or "Irrelevant".
- Accuracy of an engine: the fraction of these classifications that is correct.

Why not just use accuracy?

 How to build a 99.9999% accurate search engine on a low budget....

> Smoogle.com Search for: ______ 0 matching results found.

 People doing information retrieval want to find something and have a certain tolerance for junk.

Precision/Recall

- Can get high recall (but low precision) by retrieving all docs for all queries!
- Recall is a non-decreasing function of the number of docs retrieved
 - Precision usually decreases (in a good system)

Difficulties in using precision/recall

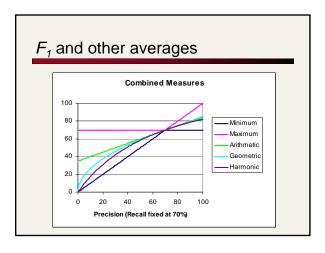
- Should average over large corpus/query ensembles
- Need human relevance assessments
 People aren't reliable assessors
- Assessments have to be binary
 Nuanced assessments?
- Heavily skewed by corpus/authorship
 - Results may not translate from one domain to another

A combined measure: F

• Combined measure that assesses this tradeoff is F measure (weighted harmonic mean):

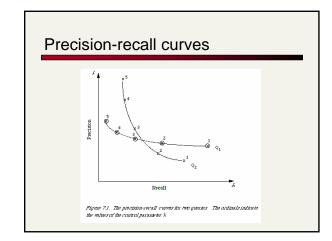
$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

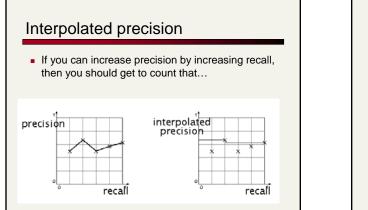
- People usually use balanced F₁ measure
 i.e., with β = 1 or α = ½
- Harmonic mean is conservative average
 - See CJ van Rijsbergen, Information Retrieval

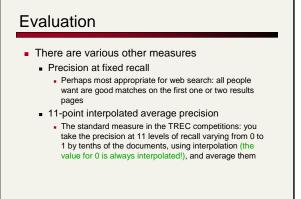


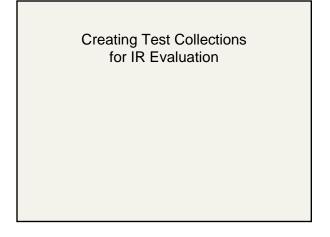
Ranked results

- Evaluation of ranked results:
 - You can return any number of results
 - By taking various numbers of returned documents (levels of recall), you can produce a precisionrecall curve









Test Corpora									
		TAB	LE 4.3 C	ommon Test	Corpora				
	Collection	NDocs	NQ174	Size (MB)	Term/Doc	Q-D RelAss			
	ADI	82	35						
	AIT	2109	14	2	400	>10,000			
	CACM	3204	64	2	24.5				
	CISI	1460	112	2	46.5				
	Cranfield	1400	225	2	53.1				
	LISA	5872	35	3					
	Medline	1033	30	1					
	NPL	11,429	93	3					
	OSHMED	34,8566	106	400	250	16,140			
	Reuters	21,578	672	28	131				
	TREC	740,000	200	2000	89-3543	» 100,000			

From corpora to test collections

- Still need
 - Test queries
 - Relevance assessments
- Test queries
 - Must be germane to docs available
 - Best designed by domain experts
 - Random query terms generally not a good idea
- Relevance assessments
 - Human judges, time-consuming
 - Are human panels perfect?

Kappa measure for inter-judge (dis)agreement

- Kappa measure
 - Agreement among judges
 - Designed for categorical judgments
 - Corrects for chance agreement
- Kappa = [P(A) P(E)] / [1 P(E)]
- P(A) proportion of time coders agree
- P(E) what agreement would be by chance
- Kappa = 0 for chance agreement, 1 for total agreement.

Kappa Mea	asure: Exa	P(A)? P(E)?
Number of docs	Judge 1	Judge 2
300	Relevant	Relevant
70	Nonrelevant	Nonrelevant
10	Nomelevant	Nonielevant
20	Relevant	Nonrelevant
10	Nonrelevant	relevant

Kappa Example

- P(A) = 370/400 = 0.925
- P(nonrelevant) = (10+20+70+70)/800 = 0.2125
- P(relevant) = (10+20+300+300)/800 = 0.7878
- P(E) = 0.2125² + 0.7878² = 0.665
- Kappa = (0.925 0.665)/(1-0.665) = 0.776
- For >2 judges: average pairwise kappas

Kappa Measure

- Kappa > 0.8 = good agreement
- 0.67 < Kappa < 0.8 -> "tentative conclusions" (Carletta 96)
- Depends on purpose of study

Interjudge Agreement: TREC 3 Analysis of Consistency of Relevance Judgments Topic Judged Diff NR R 62 400 157 149 8 67 400 68 37 31 70 235 29 25 4 71 400 114 97 170 78 283 25 22 3 83 400 110 92 18 95 400 110 108 2 105 225 60 4 56 111 400 76 59 17 122 320 60 4 56 1111 400 76 59 17 122 320 60 4 56 131 328 25 13 13 131 328 25 13 13 </tabula

Impact of Inter-judge Agreement

- Impact on absolute performance measure can be significant (0.32 vs 0.39)
- Little impact on ranking of different systems or relative performance

Unit of Evaluation

- We can compute precision, recall, F, and ROC curve for different units.
- Possible units
 - Documents (most common)
 - Facts (used in some TREC evaluations)
 - Entities (e.g., car companies)
- May produce different results. Why?

Critique of pure relevance

- Relevance vs Marginal Relevance
 - A document can be redundant even if it is highly relevant
 - Duplicates
 - The same information from different sources
 - Marginal relevance is a better measure of utility for the user.
- Using facts/entities as evaluation units more directly measures true relevance.
- But harder to create evaluation set
- See Carbonell reference

Can we avoid human judgment?

- Not really
- Makes experimental work hard
 - Especially on a large scale
- In some very specific settings, can use proxies
- Example below, approximate vector space retrieval

Approximate vector retrieval

- Given *n* document vectors and a query, find the *k* doc vectors closest to the query.
- Exact retrieval we know of no better way than to compute cosines from the query to every doc
- Approximate retrieval schemes such as cluster pruning in lecture 6
- Given such an approximate retrieval scheme, how do we measure its goodness?

Approximate vector retrieval

- Let *G*(*q*) be the "ground truth" of the actual *k* closest docs on query *q*
- Let *A*(*q*) be the *k* docs returned by approximate algorithm *A* on query *q*
- For precision and recall we would measure A(q)

 G(q)
 - Is this the right measure?

Alternative proposal

- Focus instead on how A(q) compares to G(q).
- Goodness can be measured here in cosine proximity to *q*: we sum up *q*•*d* over *d*∈ *A*(*q*).
- Compare this to the sum of *q*•*d* over *d*∈ *G*(*q*).
 Yields a measure of the relative "goodness" of *A*
 - vis-à-vis G.
 The second s
 - Thus *A* may be 90% "as good as" the ground-truth *G*, without finding 90% of the docs in *G*.
 - For scored retrieval, this may be acceptable:
 - Most web engines don't always return the same answers for a given query.

Resources for this lecture

- MIR Chapter 3
- MG 4.5