CS276A

Information Retrieval

Lecture 7

Recap of the last lecture
]
= Parametric and field searches
= Zones in documents
= Scoring documents: zone weighting
= Index support for scoring
= tfxidf and vector spaces

This lecture
—————————————]
= Vector space scoring
= Efficiency considerations
= Nearest neighbors and approximations

Documents as vectors
e ——]

= At the end of Lecture 6 we said:

= Each doc j can now be viewed as a vector of
wfxidf values, one component for each term

= So we have a vector space
= terms are axes
= docs live in this space

= even with stemming, may have 20,000+
dimensions

Why turn docs into vectors?

= First application: Query-by-example
= Given a doc D, find others “like” it.

= Now that D is a vector, find vectors (docs) “near”
it.

Intuition

dy
d

Postulate: Documents that are “close together”
in the vector space talk about the same things.

The vector space model
]
Query as vector:
= We regard query as short document

= We return the documents ranked by the
closeness of their vectors to the query, also
represented as a vector.

Desiderata for proximity

= [f d, is near d,, then d, is near d,.

= If d, near d,, and d, near d, then d, is not far
from dj.

= No doc is closer to d than d itself.

First cut

= Distance between d, and d, is the length of the
vector |d; —d,|.
= Euclidean distance

= Why is this not a great idea?

= We still haven't dealt with the issue of length
normalization
= Long documents would be more similar to each

other by virtue of length, not topic

= However, we can implicitly normalize by looking

at angles instead

Cosine similarity

mMmrmem————
= Distance between vectors d, and d, captured by
the cosine of the angle x between them.
= Note — this is similarity, not distance
= No triangle inequality for similarity.

Cosine similarity

= A vector can be normalized (given a length of 1)
by dividing each of its components by its length —

here we use the L, norm =
HXH2 = %

= This maps vectors onto the unit sphere:

= Then, ‘aj‘:m:l

= Longer documents don’t get more weight

Cosine similarity

n
K Do W Wi

]
]

i
|

B noo2 noo2
k‘ i:lWivi i:lWi-k

= Cosine of angle between two vectors
= The denominator involves the lengths of the

vectors. =
Normalization

sim(d;, d,) =

oo

Normalized vectors
I

= For normalized vectors, the cosine is simply the
dot product:

cos(d,,d,)=d;-d,

]

Cosine similarity exercises
]

= Exercise: Rank the following by decreasing
cosine similarity:
= Two docs that have only frequent words (the, a,
an, of) in common.
= Two docs that have no words in common.

= Two docs that have many rare words in common
(wingspan, tailfin).

Exercise

= Euclidean distance between vectors:

‘dj _dk‘ = \/zin:l(di,j —d;,

= Show that, for normalized vectors, Euclidean
distance gives the same proximity ordering as
the cosine measure

Example

= Docs: Austen's Sense and Sensibility, Pride and
Prejudice; Bronte's Wuthering Heights
Sas PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6

SaS PaP WH
affection 0.996 0.993 0.847
jealous 0.087 0.120 0.466
gossip 0.017 0.000 0.254
= COS(SAS, PAP) = .996 x .993 + .087 x .120 + .017 x 0.0 = 0.999
= COS(SAS, WH) = .996 x .847 + .087 X .466 + .017 x .254 = 0.929

Digression: spamming indices

= This was all invented before the days when

people were in the business of spamming web

search engines:

= Indexing a sensible passive document collection
VS.

= An active document collection, where people (and

indeed, service companies) are shaping
documents in order to maximize scores

Summary: What's the real point of
using vector spaces?

= Key: A user’s query can be viewed as a (very)
short document.

= Query becomes a vector in the same space as
the docs.

= Can measure each doc’s proximity to it.

= Natural measure of scores/ranking — no longer
Boolean.
= Queries are expressed as bags of words

= Other similarity measures: see
http://www.lans.ece.utexas.edu/~strehl/diss/node52.html
for a survey

Interaction: vectors and phrases

= Phrases don't fit naturally into the vector space
world:

= “tangerine trees” “marmalade skies”

= Positional indexes don’t capture tf/idf information
for “tangerine trees”

= Biword indexes (lecture 2) treat certain phrases
as terms
= For these, can pre-compute tf/idf.

= A hack: we cannot expect end-user formulating
queries to know what phrases are indexed

Vectors and Boolean queries

= Vectors and Boolean queries really don’t work
together very well

= In the space of terms, vector proximity selects by
spheres: e.g., all docs having cosine similarity
>0.5 to the query

= Boolean queries on the other hand, select by
(hyper-)rectangles and their uniohs/intersections

= Round peg - square hole

Vectors and wild cards
e —]
= How about the query tan* marm*?
= Can we view this as a bag of words?

= Thought: expand each wild-card into the matching
set of dictionary terms.

= Danger — unlike the Boolean case, we now have
tfs and idfs to deal with.

= Net — not a good idea.

Vector spaces and other operators

= Vector space queries are apt for no-syntax, bag-
of-words queries
= Clean metaphor for similar-document queries

= Not a good combination with Boolean, wild-card,
positional query operators

= But...

Query language vs. scoring

= May allow user a certain query language, say
= Freetext basic queries
= Phrase, wildcard etc. in Advanced Queries.
= For scoring (oblivious to user) may use all of the
above, e.g. for a freetext query
= Highest-ranked hits have query as a phrase
= Next, docs that have all query terms near each
other
= Then, docs that have some query terms, or all of
them spread out, with tfxidf weights for scoring

Exercises

]
= How would you augment the inverted index built
in lectures 1-3 to support cosine ranking
computations?
= Walk through the steps of serving a query.
= The math of the vector space model is quite

straightforward, but being able to do cosine
ranking efficiently at runtime is nontrivial

Efficient cosine ranking
]
= Find the k docs in the corpus “nearest” to
the query = k largest query-doc cosines.
= Efficient ranking:
= Computing a single cosine efficiently.

= Choosing the k largest cosine values
efficiently.

= Can we do this without computing all n
cosines?

Efficient cosine ranking

]
= What we’re doing in effect: solving the k-nearest
neighbor problem for a query vector
= In general, do not know how to do this efficiently
for high-dimensional spaces
= But it is solvable for short queries, and standard
indexes are optimized to do this

Computing a single cosine

= For every term i, with each doc j, store term
frequency tf;.
= Some tradeoffs on whether to store term count,
term weight, or weighted by idf;.
= At query time, accumulate component-wise sum
.z m
sim(d:.d)= W .xw.
1"k i=1 1] |,k

= If you're indexing 5 billion documents (web

search) an array of accumulators is infeasible

Encoding document frequencies

7,3
5,1
8,2

83,1
13,1
40,1

87,2
17,1
97,3

aargh [2 [4+ 1,2

abacus| 8 —'{1,1
acacia (35| -
\.{ 7.1

= Add tf, ; to postings lists
= Almost always as frequency — scale at runtime
= Unary code is very effective here
= y code (Lecture 3) is an even better choice
= Overall, requires little additional space

Computing the k largest cosines:
selection vs. sorting

= Typically we want to retrieve the top k docs (in
the cosine ranking for the query)
= not totally order all docs in the corpus
= can we pick off docs with k highest cosines?

Use heap for selecting top k

= Binary tree in which each node’s value > values
of children

= Takes 2n operations to construct, then each of k
log n “winners” read off in 2log n steps.

= For n=1M, k=100, this is about 10% of the cost of
sorting.

Bottleneck
I

= Still need to first compute cosines from query to
each of n docs — several seconds for n = 1M.
= Can select from only non-zero cosines

= Need union of postings lists accumulators (<<1M): on
the query aargh abacus would only do accumulators
1,5,7,13,17,83,87 (below).

aargh [2 —__1,2]7,3]83,1[87,2] ...
abacus| 8 +—11]51]131]17,1] ..]
acacia 35 =T——{7,1[8,2[40,1[97,3]...|

Removing bottlenecks
]

= Can further limit to documents with non-zero
cosines on rare (high idf) words
= Enforce conjunctive search (a la Google): non-
zero cosines on all words in query
» Get # accumulators down to {min of postings lists
sizes}
= But still potentially expensive
= Sometimes have to fall back to (expensive) soft-
conjunctive search:
= If no docs match a 4-term query, look for 3-term
subsets, etc.

Can we avoid this?
|

= Yes, but may occasionally get an answer wrong
= a doc not in the top k may creep into the answer.

Best m candidates
|

= Preprocess: Pre-compute, for each term, its m
nearest docs.
= (Treat each term as a 1-term query.)
= lots of preprocessing.
= Result: “preferred list” for each term.
= Search:

= For a t-term query, take the union of their t
preferred lists — call this set S, where |S| <mt.

= Compute cosines from the query to only the docs
in' S, and choose the top k.

Need to pick m>k to work well empirically.

Exercises
]
= Fill in the details of the calculation:
= Which docs go into the preferred list for a term?
= Devise a small example where this method gives
an incorrect ranking.

Cluster pruning: preprocessing

= Pick Vn docs at random: call these
leaders
= For each other doc, pre-compute
nearest leader
= Docs attached to a leader: its
followers;

= Likely: each leader has ~ \n
followers.

Cluster pruning: query processing

= Process a query as follows:

= Given query Q, find its nearest leader
L.

= Seek k nearest docs from among L’s
followers.

Visualization
(../' '\‘\
\\%‘, A
[] *\ ./
° / —_—
°$ ®ouery
¢ (]
() .‘..
.. ‘ .0
[}
(X J
@Leader @Follower

Why use random sampling

= Fast
= Leaders reflect data distribution

General variants

e ————————]
= Have each follower attached to a=3 (say) nearest
leaders.

= From query, find b=4 (say) nearest leaders and
their followers.

= Can recur on leader/follower construction.

Exercises

= To find the nearest leader in step 1, how many
cosine computations do we do?

= Why did we have Vn in the first place?

= What is the effect of the constants a,b on the
previous slide?

= Devise an example where this is likely to fail —
i.e., we miss one of the k nearest docs.
= Likely under random sampling.

Dimensionality reduction
]
= What if we could take our vectors and “pack”
them into fewer dimensions (say 50,000—100)
while preserving distances?
= (Well, almost.)
= Speeds up cosine computations.
= Two methods:
= Random projection.
= “Latent semantic indexing”.

Random projection onto k<<m
axes

= Choose a random direction x, in the vector
space.
= Fori=2tok,
= Choose a random direction x; that is orthogonal to
Xgs Xgy oon Xiqe
= Project each document vector into the subspace
spanned by {X;, X,, ..., X}.

E.g., from 3 to 2 dimensions

X, is a random direction in (t,,t,,t;) space.
X, is chosen randomly but orthogonal to X,.

[Dot product of x, and x, is zero.

Guarantee

e mw————
= With high probability, relative distances are
(approximately) preserved by projection.
= Pointer to precise theorem in Resources.

Computing the random projection

= Projecting n vectors from m dimensions down to
k dimensions:

= Start with m x n matrix of terms x docs, A.
= Find random k x m orthogonal projection matrix R.
= Compute matrix product W = R x A.

= jh column of W is the vector corresponding to doc
j, but now in k << m dimensions.

Cost of computation

= This takes a total of kmn multiplications.

= Expensive — see Resources for ways to do
essentially the same thing, quicker.

= Question: by projecting from 50,000 dimensions
down to 100, are we really going to make each
cosine computation faster?

Latent semantic indexing (LSI)
]
= Another technique for dimension reduction
= Random projection was data-independent
= LSl on the other hand is data-dependent
= Eliminate redundant axes
= Pull together “related” axes — hopefully
« car and automobile
= More on LS| when studying clustering, later in
this course.

Resources
I

= MG Ch. 4.4-4.6; MIR 2.5, 2.7.2; FSNLP 15.4

= Random projection theorem — Dasgupta and Gupta. An
elementary proof of the Johnson-Lindenstrauss Lemma (1999).

= Faster random projection - A.M. Frieze, R. Kannan, S. Vempala.
Fast Monte-Carlo Algorithms for finding low-rank
approximations. IEEE Symposium on Foundations of Computer
Science, 1998.

