

#### This lecture

- Vector space scoring
- Efficiency considerations
  - Nearest neighbors and approximations

#### Documents as vectors

- At the end of Lecture 6 we said:
- Each doc j can now be viewed as a vector of wfxidf values, one component for each term
- So we have a vector space
  - terms are axes
  - docs live in this space
  - even with stemming, may have 20,000+ dimensions

# Why turn docs into vectors?

- First application: Query-by-example
  Given a doc D, find others "like" it.
- Now that D is a vector, find vectors (docs) "near" it.



#### The vector space model

#### Query as vector:

- We regard query as short document
- We return the documents ranked by the closeness of their vectors to the query, also represented as a vector.

## Desiderata for proximity

- If  $d_1$  is near  $d_2$ , then  $d_2$  is near  $d_1$ .
- If d<sub>1</sub> near d<sub>2</sub>, and d<sub>2</sub> near d<sub>3</sub>, then d<sub>1</sub> is not far from d<sub>3</sub>.
- No doc is closer to *d* than *d* itself.

#### First cut

- Distance between  $d_1$  and  $d_2$  is the length of the vector  $|d_1 d_2|$ .
  - Euclidean distance
- Why is this not a great idea?
- We still haven't dealt with the issue of length normalization
  - Long documents would be more similar to each other by virtue of length, not topic
- However, we can implicitly normalize by looking at angles instead



## Cosine similarity

• A vector can be *normalized* (given a length of 1) by dividing each of its components by its length – here we use the  $L_2$  norm

$$\left\|\mathbf{x}\right\|_2 = \sqrt{\sum_i x_i}$$

This maps vectors onto the unit sphere:

• Then, 
$$|\vec{d}_j| = \sqrt{\sum_{i=1}^n w_{i,j}} = 1$$

Longer documents don't get more weight



#### Normalized vectors

 For normalized vectors, the cosine is simply the dot product:

$$\cos(\vec{d}_i, \vec{d}_k) = \vec{d}_i \cdot \vec{d}_k$$

## Cosine similarity exercises

- Exercise: Rank the following by decreasing cosine similarity:
  - Two docs that have only frequent words (*the, a, an, of*) in common.
  - Two docs that have no words in common.
  - Two docs that have many rare words in common (wingspan, tailfin).

#### Exercise

• Euclidean distance between vectors:

$$\left| d_{j} - d_{k} \right| = \sqrt{\sum_{i=1}^{n} \left( d_{i,j} - d_{i,k} \right)^{2}}$$

 Show that, for normalized vectors, Euclidean distance gives the same proximity ordering as the cosine measure

| Example                                                                                                                                                    |           |       |       |       |   |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|-------|-------|---|--|--|
| <ul> <li>Docs: Austen's Sense and Sensibility, Pride and<br/>Prejudice: Bronte's Wuthering Heights</li> </ul>                                              |           |       |       |       |   |  |  |
| .,                                                                                                                                                         | ,         | SaS   | PaP   | WH    | 0 |  |  |
|                                                                                                                                                            | affection | 115   | 58    | 20    |   |  |  |
|                                                                                                                                                            | jealous   | 10    | 7     | 11    |   |  |  |
|                                                                                                                                                            | gossip    | 2     | 0     | 6     |   |  |  |
|                                                                                                                                                            |           | SaS   | PaP   | wн    |   |  |  |
|                                                                                                                                                            | affection | 0.996 | 0.993 | 0.847 |   |  |  |
|                                                                                                                                                            | jealous   | 0.087 | 0.120 | 0.466 |   |  |  |
|                                                                                                                                                            | gossip    | 0.017 | 0.000 | 0.254 |   |  |  |
| <ul> <li>cos(SAS, PAP) = .996 x .993 + .087 x .120 + .017 x 0.0 = 0.999</li> <li>cos(SAS, WH) = .996 x .847 + .087 x .466 + .017 x .254 = 0.929</li> </ul> |           |       |       |       |   |  |  |

# Digression: spamming indices

- This was all invented before the days when people were in the business of spamming web search engines:
  - Indexing a sensible passive document collection vs.
  - An active document collection, where people (and indeed, service companies) are shaping documents in order to maximize scores

# Summary: What's the real point of using vector spaces?

- Key: A user's query can be viewed as a (very) short document.
- Query becomes a vector in the same space as the docs.
- Can measure each doc's proximity to it.
- Natural measure of scores/ranking no longer Boolean.
- Queries are expressed as bags of words
   Other similarity measures: see
   <u>http://www.lans.ece.utexas.edu/~strehl/diss/node52.html</u>
   for a survey

#### Interaction: vectors and phrases

- Phrases don't fit naturally into the vector space world:
  - "tangerine trees" "marmalade skies"
  - Positional indexes don't capture tf/idf information for "tangerine trees"
- Biword indexes (lecture 2) treat certain phrases as terms
  - For these, can pre-compute tf/idf.
- A hack: we cannot expect end-user formulating queries to know what phrases are indexed

## Vectors and Boolean queries

- Vectors and Boolean queries really don't work together very well
- In the space of terms, vector proximity selects by <u>spheres</u>: e.g., all docs having cosine similarity ≥0.5 to the query
- Boolean queries on the other hand, select by (hyper-)rectangles and their uniohs/intersections
- Round peg square hole



## Vectors and wild cards

- How about the query tan\* marm\*?
  - Can we view this as a bag of words?
  - Thought: expand each wild-card into the matching set of dictionary terms.
- Danger unlike the Boolean case, we now have tfs and idfs to deal with.
- Net not a good idea.

# Vector spaces and other operators

- Vector space queries are apt for no-syntax, bagof-words queries
  - Clean metaphor for similar-document queries
- Not a good combination with Boolean, wild-card, positional query operators
- But …

# Query language vs. scoring

- May allow user a certain query language, say
   Freetext basic queries
  - Phrase, wildcard etc. in Advanced Queries.
- For scoring (oblivious to user) may use all of the above, e.g. for a freetext query
  - Highest-ranked hits have query as a phrase
  - Next, docs that have all query terms near each other
  - Then, docs that have some query terms, or all of them spread out, with tfxidf weights for scoring

# Exercises

- How would you augment the inverted index built in lectures 1–3 to support cosine ranking computations?
- Walk through the steps of serving a query.
- The math of the vector space model is quite straightforward, but being able to do cosine ranking efficiently at runtime is nontrivial

### Efficient cosine ranking

- Find the k docs in the corpus "nearest" to the query ⇒ k largest query-doc cosines.
- Efficient ranking:
  - Computing a single cosine efficiently.
  - Choosing the *k* largest cosine values efficiently.
    - Can we do this without computing all *n* cosines?

#### Efficient cosine ranking

- What we're doing in effect: solving the *k*-nearest neighbor problem for a query vector
- In general, do not know how to do this efficiently for high-dimensional spaces
- But it is solvable for short queries, and standard indexes are optimized to do this

### Computing a single cosine

- For every term *i*, with each doc *j*, store term frequency *tf<sub>ii</sub>*.
  - Some tradeoffs on whether to store term count, term weight, or weighted by idf<sub>i</sub>.
- At query time, accumulate component-wise sum

$$sim(\vec{d}_j, \vec{d}_k) = \sum_{i=1}^m w_{i,j} \times w_{i,k}$$

 If you're indexing 5 billion documents (web search) an array of accumulators is infeasible



# Computing the *k* largest cosines: selection vs. sorting

- Typically we want to retrieve the top *k* docs (in the cosine ranking for the query)
  - not totally order all docs in the corpus
  - can we pick off docs with k highest cosines?



| Bottleneck                                                                                                                                                                                                                |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| <ul> <li>Still need to first compute cosines from query to<br/>each of <i>n</i> docs → several seconds for <i>n</i> = 1M.</li> </ul>                                                                                      |  |  |  |  |  |  |
| <ul> <li>Can select from only non-zero cosines</li> <li>Need union of postings lists accumulators (&lt;&lt;1M): on<br/>the query <i>aargh abacus</i> would only do accumulators<br/>1,5,7,13,17,83,87 (below).</li> </ul> |  |  |  |  |  |  |
| aargh 2 - 1,2 7,3 83,1 87,2                                                                                                                                                                                               |  |  |  |  |  |  |
| acacia 35                                                                                                                                                                                                                 |  |  |  |  |  |  |



## Can we avoid this?

Yes, but may occasionally get an answer wrong
a doc *not* in the top *k* may creep into the answer.

### Best m candidates

- <u>Preprocess</u>: Pre-compute, for each term, its *m* nearest docs.
  - (Treat each term as a 1-term query.)
  - lots of preprocessing.
  - Result: "preferred list" for each term.
- Search:
  - For a *t*-term query, take the union of their *t* preferred lists call this set *S*, where |*S*| ≤ *mt*.
  - Compute cosines from the query to only the docs in *S*, and choose the top *k*.

Need to pick *m>k* to work well empirically.

## Exercises

- Fill in the details of the calculation:Which docs go into the preferred list for a term?
- Devise a small example where this method gives an incorrect ranking.

# Cluster pruning: preprocessing

- Pick √n docs at random: call these leaders
- For each other doc, pre-compute nearest leader
  - Docs attached to a leader: its followers;
  - <u>Likely</u>: each leader has  $\sim \sqrt{n}$  followers.

# Cluster pruning: query processing

- Process a query as follows:
  - Given query Q, find its nearest *leader L*.
  - Seek *k* nearest docs from among *L*'s followers.



# Why use random sampling

Fast

Leaders reflect data distribution

# General variants

- Have each follower attached to *a*=3 (say) nearest leaders.
- From query, find *b*=4 (say) nearest leaders and their followers.
- Can recur on leader/follower construction.

#### **Exercises**

- To find the nearest leader in step 1, how many cosine computations do we do?
  - Why did we have √n in the first place?
- What is the effect of the constants *a*,*b* on the previous slide?
- Devise an example where this is *likely to* fail i.e., we miss one of the *k* nearest docs.
  - Likely under random sampling.

# **Dimensionality reduction**

- What if we could take our vectors and "pack" them into fewer dimensions (say 50,000→100) while preserving distances?
- (Well, almost.)
- Speeds up cosine computations.
- Two methods:
  - Random projection.
  - "Latent semantic indexing".

# Random projection onto *k*<<*m* axes

- Choose a random direction x<sub>1</sub> in the vector space.
- For *i* = 2 to *k*,
  - Choose a random direction x<sub>i</sub> that is orthogonal to x<sub>1</sub>, x<sub>2</sub>, ... x<sub>i-1</sub>.
- Project each document vector into the subspace spanned by {x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>k</sub>}.



## Guarantee

- With high probability, relative distances are (approximately) preserved by projection.
- Pointer to precise theorem in Resources.

# Computing the random projection

- Projecting *n* vectors from *m* dimensions down to *k* dimensions:
  - Start with  $m \times n$  matrix of terms  $\times$  docs, A.
  - Find random k × m orthogonal projection matrix R.
    Compute matrix product W = R × A.
- *j*<sup>th</sup> column of *W* is the vector corresponding to doc *j*, but now in *k* << *m* dimensions.

# Cost of computation

- This takes a total of *kmn* multiplications.
- Expensive see Resources for ways to do essentially the same thing, quicker.
- Question: by projecting from 50,000 dimensions down to 100, are we really going to make each cosine computation faster?

Why?

# Latent semantic indexing (LSI)

- Another technique for dimension reduction
- Random projection was data-independent
- LSI on the other hand is data-dependent
  - Eliminate redundant axes
  - Pull together "related" axes hopefully
     car and automobile
- More on LSI when studying clustering, later in this course.

#### Resources

- MG Ch. 4.4-4.6; MIR 2.5, 2.7.2; FSNLP 15.4
   <u>Random projection theorem</u> Dasgupta and Gupta. An elementary proof of the Johnson-Lindenstrauss Lemma (1999).
- Faster random projection A.M. Frieze, R. Kannan, S. Vempala. Fast Monte-Carlo Algorithms for finding low-rank approximations. IEEE Symposium on Foundations of Computer Science, 1998.