
1

CS276A
Information Retrieval

Lecture 7

Recap of the last lecture

Parametric and field searches
Zones in documents

Scoring documents: zone weighting
Index support for scoring

tf×idf and vector spaces

This lecture

Vector space scoring
Efficiency considerations

Nearest neighbors and approximations

Documents as vectors

At the end of Lecture 6 we said:
Each doc j can now be viewed as a vector of
wf×idf values, one component for each term
So we have a vector space

terms are axes
docs live in this space
even with stemming, may have 20,000+
dimensions

Why turn docs into vectors?

First application: Query-by-example
Given a doc D, find others “like” it.

Now that D is a vector, find vectors (docs) “near”
it.

Intuition

Postulate: Documents that are “close together”
in the vector space talk about the same things.

t1

d2

d1

d3

d4

d5

t3

t2

θ
φ

2

The vector space model

Query as vector:
We regard query as short document
We return the documents ranked by the
closeness of their vectors to the query, also
represented as a vector.

Desiderata for proximity

If d1 is near d2, then d2 is near d1.
If d1 near d2, and d2 near d3, then d1 is not far
from d3.
No doc is closer to d than d itself.

First cut

Distance between d1 and d2 is the length of the
vector |d1 – d2|.

Euclidean distance
Why is this not a great idea?
We still haven’t dealt with the issue of length
normalization

Long documents would be more similar to each
other by virtue of length, not topic

However, we can implicitly normalize by looking
at angles instead

Cosine similarity

Distance between vectors d1 and d2 captured by
the cosine of the angle x between them.
Note – this is similarity, not distance

No triangle inequality for similarity.

t 1

d 2

d 1

t 3

t 2

θ

Cosine similarity

A vector can be normalized (given a length of 1)
by dividing each of its components by its length –
here we use the L2 norm

This maps vectors onto the unit sphere:

Then,

Longer documents don’t get more weight
1

1 , == ∑ =

n

i jij wd
r

∑=
i ix2

2
x

Cosine similarity

Cosine of angle between two vectors
The denominator involves the lengths of the
vectors.

∑∑
∑

==

==
⋅

=
n

i ki
n

i ji

n

i kiji

kj

kj
kj

ww

ww

dd

dd
ddsim

1
2
,1

2
,

1 ,,),(rr

rr

Normalization

3

Normalized vectors

For normalized vectors, the cosine is simply the
dot product:

kjkj dddd
rrrr
⋅=),cos(

Cosine similarity exercises

Exercise: Rank the following by decreasing
cosine similarity:

Two docs that have only frequent words (the, a,
an, of) in common.
Two docs that have no words in common.
Two docs that have many rare words in common
(wingspan, tailfin).

Exercise

Euclidean distance between vectors:

Show that, for normalized vectors, Euclidean
distance gives the same proximity ordering as
the cosine measure

()∑ =
−=−

n

i kijikj dddd
1

2
,,

Example

Docs: Austen's Sense and Sensibility, Pride and
Prejudice; Bronte's Wuthering Heights

cos(SAS, PAP) = .996 x .993 + .087 x .120 + .017 x 0.0 = 0.999
cos(SAS, WH) = .996 x .847 + .087 x .466 + .017 x .254 = 0.929

SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6

SaS PaP WH
affection 0.996 0.993 0.847
jealous 0.087 0.120 0.466
gossip 0.017 0.000 0.254

Digression: spamming indices

This was all invented before the days when
people were in the business of spamming web
search engines:

Indexing a sensible passive document collection
vs.
An active document collection, where people (and
indeed, service companies) are shaping
documents in order to maximize scores

Summary: What’s the real point of
using vector spaces?

Key: A user’s query can be viewed as a (very)
short document.
Query becomes a vector in the same space as
the docs.
Can measure each doc’s proximity to it.
Natural measure of scores/ranking – no longer
Boolean.

Queries are expressed as bags of words
Other similarity measures: see
http://www.lans.ece.utexas.edu/~strehl/diss/node52.html
for a survey

4

Interaction: vectors and phrases

Phrases don’t fit naturally into the vector space
world:

“tangerine trees” “marmalade skies”
Positional indexes don’t capture tf/idf information
for “tangerine trees”

Biword indexes (lecture 2) treat certain phrases
as terms

For these, can pre-compute tf/idf.
A hack: we cannot expect end-user formulating
queries to know what phrases are indexed

Vectors and Boolean queries

Vectors and Boolean queries really don’t work
together very well
In the space of terms, vector proximity selects by
spheres: e.g., all docs having cosine similarity
≥0.5 to the query
Boolean queries on the other hand, select by
(hyper-)rectangles and their unions/intersections
Round peg - square hole

Vectors and wild cards

How about the query tan* marm*?
Can we view this as a bag of words?
Thought: expand each wild-card into the matching
set of dictionary terms.

Danger – unlike the Boolean case, we now have
tfs and idfs to deal with.
Net – not a good idea.

Vector spaces and other operators

Vector space queries are apt for no-syntax, bag-
of-words queries

Clean metaphor for similar-document queries
Not a good combination with Boolean, wild-card,
positional query operators
But …

Query language vs. scoring

May allow user a certain query language, say
Freetext basic queries
Phrase, wildcard etc. in Advanced Queries.

For scoring (oblivious to user) may use all of the
above, e.g. for a freetext query

Highest-ranked hits have query as a phrase
Next, docs that have all query terms near each
other
Then, docs that have some query terms, or all of
them spread out, with tfxidf weights for scoring

Exercises

How would you augment the inverted index built
in lectures 1–3 to support cosine ranking
computations?
Walk through the steps of serving a query.
The math of the vector space model is quite
straightforward, but being able to do cosine
ranking efficiently at runtime is nontrivial

5

Efficient cosine ranking

Find the k docs in the corpus “nearest” to
the query ⇒ k largest query-doc cosines.
Efficient ranking:

Computing a single cosine efficiently.
Choosing the k largest cosine values
efficiently.

Can we do this without computing all n
cosines?

Efficient cosine ranking

What we’re doing in effect: solving the k-nearest
neighbor problem for a query vector
In general, do not know how to do this efficiently
for high-dimensional spaces
But it is solvable for short queries, and standard
indexes are optimized to do this

Computing a single cosine

For every term i, with each doc j, store term
frequency tfij.

Some tradeoffs on whether to store term count,
term weight, or weighted by idfi.

At query time, accumulate component-wise sum

If you’re indexing 5 billion documents (web
search) an array of accumulators is infeasible

∑
=

×=
m

i kiwjiwddsim kj 1 ,,)(,
rr

Ideas?

Encoding document frequencies

Add tft,d to postings lists
Almost always as frequency – scale at runtime
Unary code is very effective here
γ code (Lecture 3) is an even better choice
Overall, requires little additional space

abacus 8
aargh 2

acacia 35

1,2 7,3 83,1 87,2 …

1,1 5,1 13,1 17,1 …

7,1 8,2 40,1 97,3 …

Why?

Computing the k largest cosines:
selection vs. sorting

Typically we want to retrieve the top k docs (in
the cosine ranking for the query)

not totally order all docs in the corpus
can we pick off docs with k highest cosines?

Use heap for selecting top k

Binary tree in which each node’s value > values
of children
Takes 2n operations to construct, then each of k
log n “winners” read off in 2log n steps.
For n=1M, k=100, this is about 10% of the cost of
sorting.

1

.9 .3

.8.3

.1

.1

6

Bottleneck

Still need to first compute cosines from query to
each of n docs → several seconds for n = 1M.
Can select from only non-zero cosines

Need union of postings lists accumulators (<<1M): on
the query aargh abacus would only do accumulators
1,5,7,13,17,83,87 (below).

abacus 8
aargh 2

acacia 35

1,2 7,3 83,1 87,2 …

1,1 5,1 13,1 17,1 …

7,1 8,2 40,1 97,3 …

Removing bottlenecks

Can further limit to documents with non-zero
cosines on rare (high idf) words
Enforce conjunctive search (a la Google): non-
zero cosines on all words in query

Get # accumulators down to {min of postings lists
sizes}

But still potentially expensive
Sometimes have to fall back to (expensive) soft-
conjunctive search:
If no docs match a 4-term query, look for 3-term
subsets, etc.

Can we avoid this?

Yes, but may occasionally get an answer wrong
a doc not in the top k may creep into the answer.

Best m candidates
Preprocess: Pre-compute, for each term, its m
nearest docs.

(Treat each term as a 1-term query.)
lots of preprocessing.
Result: “preferred list” for each term.

Search:
For a t-term query, take the union of their t
preferred lists – call this set S, where |S| ≤ mt.
Compute cosines from the query to only the docs
in S, and choose the top k.

Need to pick m>k to work well empirically.

Exercises

Fill in the details of the calculation:
Which docs go into the preferred list for a term?

Devise a small example where this method gives
an incorrect ranking.

Cluster pruning: preprocessing

Pick √n docs at random: call these
leaders
For each other doc, pre-compute
nearest leader

Docs attached to a leader: its
followers;
Likely: each leader has ~ √n
followers.

7

Cluster pruning: query processing

Process a query as follows:
Given query Q, find its nearest leader
L.
Seek k nearest docs from among L’s
followers.

Visualization

Query

Leader Follower

Why use random sampling

Fast
Leaders reflect data distribution

General variants

Have each follower attached to a=3 (say) nearest
leaders.
From query, find b=4 (say) nearest leaders and
their followers.
Can recur on leader/follower construction.

Exercises

To find the nearest leader in step 1, how many
cosine computations do we do?

Why did we have √n in the first place?
What is the effect of the constants a,b on the
previous slide?
Devise an example where this is likely to fail –
i.e., we miss one of the k nearest docs.

Likely under random sampling.

Dimensionality reduction

What if we could take our vectors and “pack”
them into fewer dimensions (say 50,000→100)
while preserving distances?
(Well, almost.)

Speeds up cosine computations.
Two methods:

Random projection.
“Latent semantic indexing”.

8

Random projection onto k<<m
axes

Choose a random direction x1 in the vector
space.
For i = 2 to k,

Choose a random direction xi that is orthogonal to
x1, x2, … xi–1.

Project each document vector into the subspace
spanned by {x1, x2, …, xk}.

E.g., from 3 to 2 dimensions

d2

d1

x1

t 3

x2

t 2

t 1
x1

x2
d2

d1

x1 is a random direction in (t1,t2,t3) space.
x2 is chosen randomly but orthogonal to x1.

Dot product of x1 and x2 is zero.

Guarantee

With high probability, relative distances are
(approximately) preserved by projection.
Pointer to precise theorem in Resources.

Computing the random projection

Projecting n vectors from m dimensions down to
k dimensions:

Start with m × n matrix of terms × docs, A.
Find random k × m orthogonal projection matrix R.
Compute matrix product W = R × A.

jth column of W is the vector corresponding to doc
j, but now in k << m dimensions.

Cost of computation

This takes a total of kmn multiplications.
Expensive – see Resources for ways to do
essentially the same thing, quicker.
Question: by projecting from 50,000 dimensions
down to 100, are we really going to make each
cosine computation faster?

Why?

Latent semantic indexing (LSI)

Another technique for dimension reduction
Random projection was data-independent
LSI on the other hand is data-dependent

Eliminate redundant axes
Pull together “related” axes – hopefully

car and automobile

More on LSI when studying clustering, later in
this course.

9

Resources
MG Ch. 4.4-4.6; MIR 2.5, 2.7.2; FSNLP 15.4
Random projection theorem – Dasgupta and Gupta. An
elementary proof of the Johnson-Lindenstrauss Lemma (1999).
Faster random projection - A.M. Frieze, R. Kannan, S. Vempala.
Fast Monte-Carlo Algorithms for finding low-rank
approximations. IEEE Symposium on Foundations of Computer
Science, 1998.

