

This lecture

- **Vector space scoring**
- **Efficiency considerations**
	- Nearest neighbors and approximations

Documents as vectors

- At the end of Lecture 6 we said:
- **Each doc** *j* can now be viewed as a vector of *wf*×*idf* values, one component for each term
- So we have a vector space
	- terms are axes
	- docs live in this space
	- even with stemming, may have 20,000+ dimensions

Why turn docs into vectors?

- First application: Query-by-example Given a doc D, find others "like" it.
- Now that D is a vector, find vectors (docs) "near" it.

The vector space model

Query as vector:

- We regard query as short document
- We return the documents ranked by the closeness of their vectors to the query, also represented as a vector.

Desiderata for proximity

- If d_1 is near d_2 , then d_2 is near d_1 .
- If d_1 near d_2 , and d_2 near d_3 , then d_1 is not far from d_3 .
- No doc is closer to *d* than *d* itself.

First cut

- Distance between d_1 and d_2 is the length of the vector $|d_1 - d_2|$.
	- **Euclidean distance**
- Why is this not a great idea?
- We still haven't dealt with the issue of length normalization
	- **Long documents would be more similar to each** other by virtue of length, not topic
- **However, we can implicitly normalize by looking** at *angles* instead

Cosine similarity A vector can be *normalized* (given a length of 1) by dividing each of its components by its length – here we use the L_2 norm **This maps vectors onto the unit sphere: Then, Longer documents don't get more weight** $\vec{d}_j = \sqrt{\sum_{i=1}^n w_{i,j}} = 1$ $\mathbf{x}\right\|_2 = \sqrt{\sum_i x_i^2}$

Normalized vectors

For normalized vectors, the cosine is simply the dot product:

$$
\cos(\vec{d}_j, \vec{d}_k) = \vec{d}_j \cdot \vec{d}_k
$$

Cosine similarity exercises

- *Exercise: Rank the following by decreasing cosine similarity:*
	- Two docs that have only frequent words *(the, a, an, of)* in common.
	- Two docs that have no words in common.
	- Two docs that have many rare words in common *(wingspan, tailfin).*

Exercise

Euclidean distance between vectors:

$$
|d_j - d_k| = \sqrt{\sum_{i=1}^n (d_{i,j} - d_{i,k})^2}
$$

Show that, for normalized vectors, Euclidean distance gives the same proximity ordering as the cosine measure

Digression: spamming indices

- **This was all invented before the days when** people were in the business of spamming web search engines:
	- \blacksquare Indexing a sensible passive document collection vs.
	- An active document collection, where people (and indeed, service companies) are shaping documents in order to maximize scores

Summary: What's the real point of using vector spaces?

- Key: A user's query can be viewed as a (very) short document.
- Query becomes a vector in the same space as the docs.
- Can measure each doc's proximity to it.
- Natural measure of scores/ranking no longer Boolean.
- Queries are expressed as bags of words **Other similarity measures: see** http://www.lans.ece.utexas.edu/~strehl/diss/node52.html for a survey

Interaction: vectors and phrases

- **Phrases don't fit naturally into the vector space** world:
	- *"tangerine trees" "marmalade skies"*
	- Positional indexes don't capture tf/idf information for *"tangerine trees"*
- Biword indexes (lecture 2) treat certain phrases as terms
	- For these, can pre-compute tf/idf.
- A hack: we cannot expect end-user formulating queries to know what phrases are indexed

Vectors and Boolean queries

- Vectors and Boolean queries really don't work together very well
- \blacksquare In the space of terms, vector proximity selects by spheres: e.g., all docs having cosine similarity ≥0.5 to the query
- Boolean queries on the other hand, select by (hyper-)rectangles and their unions/intersections
- Round peg square hole

Vectors and wild cards

- How about the query *tan^{*} marm^{*}?*
	- Can we view this as a bag of words?
	- Thought: expand each wild-card into the matching set of dictionary terms.
- Danger unlike the Boolean case, we now have *tf*s and *idf*s to deal with.
- \blacksquare Net not a good idea.

Vector spaces and other operators

- Vector space queries are apt for no-syntax, bagof-words queries
	- Clean metaphor for similar-document queries
- Not a good combination with Boolean, wild-card, positional query operators
- But ...

Query language vs. scoring

- May allow user a certain query language, say Freetext basic queries
	- Phrase, wildcard etc. in Advanced Queries.
- For scoring (oblivious to user) may use all of the above, e.g. for a freetext query
	- Highest-ranked hits have query as a phrase
	- Next, docs that have all query terms near each other
	- Then, docs that have some query terms, or all of them spread out, with tfxidf weights for scoring

Exercises

- How would you augment the inverted index built in lectures 1–3 to support cosine ranking computations?
- **Walk through the steps of serving a query.**
- *The math of the vector space model is quite straightforward, but being able to do cosine ranking efficiently at runtime is nontrivial*

Efficient cosine ranking

- Find the *k* docs in the corpus "nearest" to the query \Rightarrow *k* largest query-doc cosines.
- **Efficient ranking:**
	- Computing a single cosine efficiently.
	- **Choosing the** *k* largest cosine values efficiently.
		- Can we do this without computing all *n* cosines?

Efficient cosine ranking

- What we're doing in effect: solving the *k*-nearest neighbor problem for a query vector
- In general, do not know how to do this efficiently for high-dimensional spaces
- But it is solvable for short queries, and standard indexes are optimized to do this

Computing a single cosine

- **For every term** *i*, with each doc *j*, store term frequency *tfij*.
	- Some tradeoffs on whether to store term count, term weight, or weighted by idf_i.
- At query time, accumulate component-wise sum

$$
sim(\vec{d}_j, \vec{d}_k) = \sum_{i=1}^{m} w_{i,j} \times w_{i,k}
$$

If you're indexing 5 billion documents (web search) an array of accumulators is infeasible <a>
digital
search) an array of accumulators is infeasible

Computing the *k* largest cosines: selection vs. sorting

- Typically we want to retrieve the top *k* docs (in the cosine ranking for the query)
	- not totally order all docs in the corpus
	- can we pick off docs with *k* highest cosines?

Can we avoid this?

 Yes, but may occasionally get an answer wrong a doc *not* in the top *k* may creep into the answer.

Best *m* candidates

- Preprocess: Pre-compute, for each term, its *m* nearest docs.
	- (Treat each term as a 1-term query.)
	- **lots of preprocessing.**
	- Result: "preferred list" for each term.
- Search:
	- For a *t*-term query, take the union of their *t* preferred lists – call this set *S,* where |*S*| [≤] *mt*.
	- Compute cosines from the query to only the docs in *S*, and choose the top *k*.

Need to pick *m>k* to work well empirically.

Exercises

- Fill in the details of the calculation: Which docs go into the preferred list for a term?
- Devise a small example where this method gives an incorrect ranking.

Cluster pruning: preprocessing

- Pick \sqrt{n} *docs* at random: call these *leaders*
- For each other doc, pre-compute nearest leader
	- Docs attached to a leader: its *followers;*
	- Likely: each leader has $\sim \sqrt{n}$ followers.

Cluster pruning: query processing

- **Process a query as follows:**
	- Given query *Q*, find its nearest *leader L.*
	- Seek *k* nearest docs from among *L*'s followers.

Why use random sampling

Fast

Leaders reflect data distribution

General variants

- Have each follower attached to $a=3$ (say) nearest leaders.
- From query, find *b*=4 (say) nearest leaders and their followers.
- **Can recur on leader/follower construction.**

Exercises

- To find the nearest leader in step 1, how many cosine computations do we do?
	- Why did we have \sqrt{n} in the first place?
- What is the effect of the constants *a,b* on the previous slide?
- Devise an example where this is *likely to* fail i.e., we miss one of the *k* nearest docs.
	- *Likely* under random sampling.

Dimensionality reduction

- What if we could take our vectors and "pack" them into fewer dimensions (say 50,000→100) while preserving distances?
- (Well, almost.)
	- Speeds up cosine computations.
- **Two methods:**
	- Random projection.
	- "Latent semantic indexing".

Random projection onto *k<<m* axes

- Choose a random direction $x₁$ in the vector space.
- For $i = 2$ to k ,
	- **Choose a random direction x**_i that is orthogonal to $x_1, x_2, ... x_{i-1}.$
- Project each document vector into the subspace spanned by $\{x_1, x_2, ..., x_k\}$.

Guarantee

- With high probability, relative distances are (approximately) preserved by projection.
- **Pointer to precise theorem in Resources.**

Computing the random projection

- Projecting *n* vectors from *m* dimensions down to *k* dimensions:
	- Start with $m \times n$ matrix of terms \times docs, A.
	- Find random $k \times m$ orthogonal projection matrix R . **Compute matrix product** $W = R \times A$ **.**
	-
- **F** fth column of *W* is the vector corresponding to doc \ddot{j} , but now in $k \ll m$ dimensions.

Cost of computation

- This takes a total of *kmn* multiplications.
- **Expensive see Resources for ways to do** essentially the same thing, quicker.

 Question: by projecting from 50,000 dimensions down to 100, are we really going to make each cosine computation faster?

Latent semantic indexing (LSI)

- **Another technique for dimension reduction**
- Random projection was data-*independent*
- LSI on the other hand is data-*dependent*
	- **Eliminate redundant axes**
	- Pull together "related" axes hopefully *car* and *automobile*
- **More on LSI when studying clustering, later in** this course.

Resources

- MG Ch. 4.4-4.6; MIR 2.5, 2.7.2; FSNLP 15.4
- Random projection theorem Dasgupta and Gupta. An elementary proof of the Johnson-Lindenstrauss Lemma (1999).
- **Faster random projection** A.M. Frieze, R. Kannan, S. Vempala.
Fast Monte-Carlo Algorithms for finding low-rank
approximations. IEEE Symposium on Foundations of Computer
Science, 1998.