CS276A

Information Retrieval

Lecture 6

Plan
e —]
» Last lecture
= Index construction
= This lecture
= Parametric and field searches
= Zones in documents
= Scoring documents: zone weighting
= Index support for scoring
= Term weighting

Parametric search

= Each document has, in addition to text, some
“meta-data” in fields e.g.,
= Language = French
ormat = pdf
= Subject = Physics etc.
= Date = Feb 2000
= A parametric search interface allows the user to
combine a full-text query with selections on these
field values e.g.,
= language, date range, etc.

Parametric search example

CarFinder.com e

frami
Chonse your seanch critie i fFom e crop dawn frenus; arstar of remty o dogiay: [50 2
e 2l e [SSones =] Cotgery [Bny = veur [#1 2]
tolee [Amy =] peiwa [From $10.100 0 $15000 =]
["‘.".‘;9) Notice that the output is a (large) table.

Various parameters in the table (column
ot Fitwes Fuannt Sads headings) may be clicked on to effect a sort.
Mk Mk o cry 5 * |Canory | Dwrpon Coler

Hrver depvery e corndum B varh
S B 14100 w100 ey s ki b rv, S sy ared smcusdy Showe
festures. This s n bargen
Geeat st e or you been-aged b, Sobd,
deperatia, atforchale wih 0% dosan arl cemer Dhm

San Pyancien 16600 (e iy
"

Ubgraced scurs pystam reaky roc. Cutorioed
Prihay i g g o
e st Pomes I, ks, 19OIPS
P Tem
Safchesce or a youeny Py 485, kv sreh
- srsverem o g, Bokrey e e s
S W0 M i, Low eage b bbbk ared TP
forthto secom,
The bay's ot £ of: poser sheerng, cuse
SanPrancecn 16300 nem umry S oo Brown

S Franciscn 14000 [t ey

o TS IS

Parametric search example

CarFinder.com &=

Chie your warch critera from B drop dawn e

| We can add text search. | =3
[R———

[y i T PRI oty 2y =] vou [1997
ey catee [y 2] o [From IO IE000 5] passiptien |
T ==
Faet Fitery. Feet Sorm
i (s e e [[o o o
[T pap——
oo TR Swforcio 100 13100 Lunsy res, wekmantannd by mechanic onn, Coth | whos
ey ari
= 1 e Fow vl Vo bt € . Py Bsad
o Swes Sefiecss 140 DI Ly S o R KN Bege
10 s o 0 1N Ly ar
e ——
e St i Sefiree 10 NID luey eentheg MObG e sdhddety Geen
fostures. Mt eyt . Priee
- S 1 Snfnus X0 IEE Luny
S oo, an, S0 phaver, driver e o bag. 10
L S-Sarw ey San Frandics 19000 150 Luwary ool repared. Cverer vy awodabie. Beit Rod

Parametric/field search

= In these examples, we select field values
= Values can be hierarchical, e.g.,
= Geography: Continent — Country — State — City
= A paradigm for navigating through the document
collection, e.g.,
= “Aerospace companies in Brazil” can be arrived at

first by selecting Geography then Line of
Business, or vice versa

= Filter docs in contention and run text searches
scoped to subset

Index support for parametric
search

= Must be able to support queries of the form
= Find pdf documents that contain “stanford
university”
= A field selection (on doc format) and a phrase
query
= Field selection — use inverted index of field
values — docids
= Organized by field name
= Use compression etc. as before

Normalization
—————————————]
= For this to work, fielded data needs normalization
= E.g., prices expressed variously as 13K, 28,500,

$25,200, 28000
= Simple grammars/rules normalize these into a
single sort order

Parametric index support

= Optional — provide richer search on field values —
e.g., wildcards
= Find books whose Author field contains s*trup
= Range search — find docs authored between
September and December
= Inverted index doesn’t work (as well)
= Use techniques from database range search
= See for instance www.bluerwhite.org/btree/ for a
summary of B-trees
= Use query optimization heuristics as before

Field retrieval
-
= In some cases, must retrieve field values
= E.g., ISBN numbers of books by s*trup
= Maintain “forward” index — for each doc, those
field values that are “retrievable”

= Indexing control file specifies which fields are
retrievable (and can be updated)

= Storing primary data here, not just an index

(as opposed
to “inverted”)

Zones
]
= A zone is an identified region within a doc
= E.g., Title, Abstract, Bibliography
= Generally culled from marked-up input or
document metadata (e.g., powerpoint)
= Contents of a zone are free text
= Not a “finite” vocabulary
= Indexes for each zone - allow queries like
= sorting in Title AND smith in Bibliography AND
recur* in Body

= Not queries like “all papers whose authors citeclwhy?
themselves” %:

Zone indexes — simple view

Title Author Body etc.

So we have a database now?

]
= Not really.
= Databases do lots of things we don’t need

= Transactions

= Recovery (our index is not the system of record; if
it breaks, simply reconstruct from the original
source)

= Indeed, we never have to store text in a search
engine — only indexes

= We're focusing on optimized indexes for text-
oriented queries, not a SQL engine.

Scoring

Scoring
e ————]
= Thus far, our queries have all been Boolean
= Docs either match or not
= Good for expert users with precise understanding
of their needs and the corpus
= Applications can consume 1000’s of results
= Not good for (the majority of) users with poor
Boolean formulation of their needs
= Most users don’t want to wade through 1000’s of
results — cf. altavista

Scoring

= We wish to return in order the documents most
likely to be useful to the searcher
= How can we rank order the docs in the corpus
with respect to a query?
= Assign a score — say in [0,1]
= for each doc on each query
= Begin with a perfect world — no spammers

= Nobody stuffing keywords into a doc to make it
match queries

= More on this in 276B under web search

Linear zone combinations
]
= First generation of scoring methods: use a linear
combination of Booleans:

« Eg.,

= Each expression such as <sorting in Title> takes
on a value in {0,1}.

= Then the overall score is in [0,1].

For this example the scores can only take
on a finite set of values - what are they?

Linear zone combinations
]
= In fact, the expressions between <> on the last
slide could be any Boolean query
= Who generates the Score expression (with
weights such as 0.6 etc.)?
= In uncommon cases — the user through the Ul

= Most commonly, a query parser that takes the
user's Boolean query and runs it on the indexes
for each zone

= Weights determined from user studies and hard-
coded into the query parser.

Exercise

= On the query bill OR rights suppose that we
retrieve the following docs from the various zone

indexes:

Author bill n Compute
rights the score

. fi h

Title bill d%rcel:acsed
rights on the

weightings

Body P Nl 9/ 0.6,0.3,0.1

rights E E

General idea

= We are given a weight vector whose components

sum up to 1.
= There is a weight for each zone/field.

= Given a Boolean query, we assign a score to
each doc by adding up the weighted
contributions of the zones/fields.

= Typically — users want to see the K highest-
scoring docs.

Index support for zone
combinations

= In the simplest version we have a separate
inverted index for each zone

= Variant: have a single index with a separate
dictionary entry for each term and zone

* B9 pill.author n
bill.title 18]
bill.body n E

Of course, compress zone names
like author/title/body.

Zone combinations index

= The above scheme is still wasteful: each term is
potentially replicated for each zone

= In a slightly better scheme, we encode the zone
in the postings:

bill ‘ 1.author, 1.body H 2.author, 2.body H 3.tit|e‘

As before, the zone names get compressed.

= At query time, accumulate contributions to the
total score of a document from the various
postings, e.g.,

1 0.7
2 0.7
3 04
5 0.4

Score accumulation

bill ‘ 1.author, 1 .body}-l» 2.author, 2.bodyH—H 3.title ‘|
rights || 3.title, 3.body [5.title, 5.body}-|—'

= As we walk the postings for the query bill OR
rights, we accumulate scores for each doc in a
linear merge as before.

= Note: we get both bill and rights in the Title field
of doc 3, but score it no higher.

= Should we give more weight to more hits?

Free text queries
]
= Before we raise the score for more hits:
= We just scored the Boolean query bill OR rights

= Most users more likely to type bill rights or bill
of rights

= How do we interpret these “free text” queries?
= No Boolean connectives

= Of several query terms some may be missing in a
doc

= Only some query terms may occur in the title, etc.

Free text queries
]

= To use zone combinations for free text queries,
we need

= A way of assigning a score to a pair <free text
query, zone>

= Zero query terms in the zone should mean a zero
score

= More query terms in the zone should mean a
higher score

= Scores don’t have to be Boolean
= Will look at some alternatives now

Incidence matrices

= Recall: Document (or a zone in it) is binary vector
Xin{0,1}

= Query is a vector
= Score: Overlap measure:

IX Y

Antony and Cleopatra Julius Caesar The Tempest ~ Hamlet ~ Othello Macbeth

Antony 1 1 0 0 0 1
Brutus
Caesar

Calpurnia

Cleopatra

1
1
0
1
mercy 1
1

ke oo oo

1
1
0
0
1
1

o ook Rk R
ke OO RO
o+ oo r o

worser

Example

e ————]
= On the query ides of march, Shakespeare’s
Julius Caesar has a score of 3
= All other Shakespeare plays have a score of 2
(because they contain march) or 1
= Thus in a rank order, Julius Caesar would come
out tops

Overlap matching

= What's wrong with the overlap measure?
= It doesn't consider:
= Term frequency in document
= Term scarcity in collection (document
mention frequency)
= of is more common than ides or march
= Length of documents
= (And queries: score not normalized)

Overlap matching

= One can normalize in various ways:
= Jaccard coefficient:

X AY[/|X VY|

= Cosine measure:

X Y| 7|X]x]Y]

= What documents would score best using Jaccard
against a typical query?
= Does the cosine measure fix this problem?

Scoring: density-based

—
= Thus far: position and overlap of terms in a doc —
title, author etc.

= Obvious next idea: if a document talks about a
topic more, then it is a better match

= This applies even when we only have a single
query term.

= Document relevant if it has a lot of the terms
= This leads to the idea of term weighting.

Term weighting

Term-document count matrices

= Consider the number of occurrences of a term in
a document:

= Bag of words model
= Document is a vector in NV: a column below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth
Antony 157 73 0 0 0 0
Brutus 4 157
Caesar 232 227
Calpurnia 0 10
Cleopatra 57 0
mercy 2 0

» ®w o oo o

1
2
0
0
5
1

koo o r o
o+ oo r o

worser 2 0

Bag of words view of a doc
———————————]
= Thus the doc
= John is quicker than Mary.
is indistinguishable from the doc
= Mary is quicker than John.

Which of the indexes discussed
so far distinguish these two docs?

Counts vs. frequencies
e —
= Consider again the ides of march query.
= Julius Caesar has 5 occurrences of ides
= No other play has ides
= march occurs in over a dozen
= All the plays contain of
= By this scoring measure, the top-scoring play is
likely to be the one with the most ofs

Digression: terminology

= WARNING: In a lot of IR literature,
“frequency” is used to mean “count”
= Thus term frequency in IR literature is used
to mean number of occurrences in a doc
= Not divided by document length (which
would actually make it a frequency)
= We will conform to this misnomer

= In saying term frequency we mean the
number of occurrences of a term in a
document.

Term frequency tf

]
= Long docs are favored because they're
more likely to contain query terms

= Can fix this to some extent by normalizing
for document length

= Butis raw tf the right measure?

Weighting term frequency: tf

= What is the relative importance of
= 0vs. 1 occurrence of a term in a doc
= 1vs. 2 occurrences
= 2vs. 3 occurrences ...

= Unclear: while it seems that more is better, a lot
isn’'t proportionally better than a few
= Can just use raw tf
= Another option commonly used in practice:

wf,, =0if tf , =0, 1+logtf, , otherwise

Score computation

= Score for a qguery g = sum over terms tin qg:
= Z[sq tft*d

» [Note: 0 if no query terms in document]
= This score can be zone-combined
s Can use wf instead of tf in the above

= Still doesn’t consider term scarcity in collection
(ides is rarer than of)

Weighting should depend on the
term overall

= Which of these tells you more about a doc?
= 10 occurrences of hernia?
= 10 occurrences of the?
= Would like to attenuate the weight of a common
term
= But what is “common”?
= Suggest looking at collection frequency (cf)

= The total number of occurrences of the term in the
entire collection of documents

Document frequency

= But document frequency (df) may be better:

= df = number of docs in the corpus containing the
term

Word cf df
try 10422 8760
insurance 10440 3997

= Document/collection frequency weighting is only
possible in known (static) collection.

= So how do we make use of df ?

tf x idf term weights

= tf x idf measure combines:
= term frequency (tf)
= or wf, measure of term density in a doc
= inverse document frequency (idf)
= measure of informativeness of a term: its rarity across
the whole corpus
= could just be raw count of number of documents the term
occurs in (idf, = 1/df;)
= but by far the most commonly used version is:

idf, = 'Og(d”

= See Kishore Papineni, NAACL 2, 2002 for theoretical justification

Summary: tf x idf (or tf.idf)

= Assign a tf.idf weight to each term i in each

document d What is the wt
of a term that
occurs in all

of the docs?

W, 4 =tf, 4 xlog(n/df;)

tf, , = frequency of termiin document j
n = total number of documents
df; = the number of documents that contain term i

= Increases with the number of occurrences within a doc
= Increases with the rarity of the term across the whole corpus

Real-valued term-document
matrices

= Function (scaling) of count of a word in a
document:
= Bag of words model
= Each is a vector in R

= Here log-scaled tf.idf Note can be >1!

Antony and Cleopatra aSCaesar The Tempest Hamlet ~ Othello Macheth

Antony 114 0.0 0.0 0.0 0.0
Brutus 3.0 8.3 0.0 1.0 0.0 0.0
Caesar 2.3 23 0.0 0.5 0.3 0.3
Calpurnia 0.0 112 0.0 0.0 0.0 0.0
Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0
mercy 0.5 0.0 0.7 0.9 0.9 0.3
worser 12 0.0 0.6 0.6 0.6 0.0

Documents as vectors
]
= Each doc j can now be viewed as a vector of
wfxidf values, one component for each term
= So we have a vector space
= terms are axes
= docs live in this space
= even with stemming, may have 20,000+
dimensions
» (The corpus of documents gives us a matrix,
which we could also view as a vector space in
which words live — transposable data)

Recap

= We began by looking at zones at scoring
= Ended up viewing documents as vectors
= Will pursue this view next time.

