
1

CS276A
Information Retrieval

Lecture 6

Plan

Last lecture
Index construction

This lecture
Parametric and field searches

Zones in documents

Scoring documents: zone weighting
Index support for scoring

Term weighting

Parametric search

Each document has, in addition to text, some
“meta-data” in fields e.g.,

Language = French
Format = pdf
Subject = Physics etc.
Date = Feb 2000

A parametric search interface allows the user to
combine a full-text query with selections on these
field values e.g.,

language, date range, etc.

Fields Values
Notice that the output is a (large) table.
Various parameters in the table (column
headings) may be clicked on to effect a sort.

Parametric search example

Parametric search example

We can add text search.
Parametric/field search

In these examples, we select field values
Values can be hierarchical, e.g.,
Geography: Continent → Country → State → City

A paradigm for navigating through the document
collection, e.g.,

“Aerospace companies in Brazil” can be arrived at
first by selecting Geography then Line of
Business, or vice versa
Filter docs in contention and run text searches
scoped to subset

2

Index support for parametric
search

Must be able to support queries of the form
Find pdf documents that contain “stanford
university”
A field selection (on doc format) and a phrase
query

Field selection – use inverted index of field
values → docids

Organized by field name
Use compression etc. as before

Parametric index support

Optional – provide richer search on field values –
e.g., wildcards

Find books whose Author field contains s*trup
Range search – find docs authored between
September and December

Inverted index doesn’t work (as well)
Use techniques from database range search
See for instance www.bluerwhite.org/btree/ for a
summary of B-trees

Use query optimization heuristics as before

Normalization

For this to work, fielded data needs normalization
E.g., prices expressed variously as 13K, 28,500,
$25,200, 28000
Simple grammars/rules normalize these into a
single sort order

Field retrieval

In some cases, must retrieve field values
E.g., ISBN numbers of books by s*trup

Maintain “forward” index – for each doc, those
field values that are “retrievable”

Indexing control file specifies which fields are
retrievable (and can be updated)
Storing primary data here, not just an index

(as opposed
to “inverted”)

Zones

A zone is an identified region within a doc
E.g., Title, Abstract, Bibliography
Generally culled from marked-up input or
document metadata (e.g., powerpoint)

Contents of a zone are free text
Not a “finite” vocabulary

Indexes for each zone - allow queries like
sorting in Title AND smith in Bibliography AND
recur* in Body

Not queries like “all papers whose authors cite
themselves”

Why?

Zone indexes – simple view

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Tot Freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Tot Freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Tot Freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Title Author Body etc.

3

So we have a database now?

Not really.
Databases do lots of things we don’t need

Transactions
Recovery (our index is not the system of record; if
it breaks, simply reconstruct from the original
source)
Indeed, we never have to store text in a search
engine – only indexes

We’re focusing on optimized indexes for text-
oriented queries, not a SQL engine.

Scoring

Scoring

Thus far, our queries have all been Boolean
Docs either match or not

Good for expert users with precise understanding
of their needs and the corpus
Applications can consume 1000’s of results
Not good for (the majority of) users with poor
Boolean formulation of their needs
Most users don’t want to wade through 1000’s of
results – cf. altavista

Scoring

We wish to return in order the documents most
likely to be useful to the searcher
How can we rank order the docs in the corpus
with respect to a query?
Assign a score – say in [0,1]

for each doc on each query
Begin with a perfect world – no spammers

Nobody stuffing keywords into a doc to make it
match queries
More on this in 276B under web search

Linear zone combinations

First generation of scoring methods: use a linear
combination of Booleans:

E.g.,
Score = 0.6*<sorting in Title> + 0.3*<sorting in

Abstract> + 0.05*<sorting in Body> +
0.05*<sorting in Boldface>
Each expression such as <sorting in Title> takes
on a value in {0,1}.
Then the overall score is in [0,1].

For this example the scores can only take
on a finite set of values – what are they?

Linear zone combinations

In fact, the expressions between <> on the last
slide could be any Boolean query
Who generates the Score expression (with
weights such as 0.6 etc.)?

In uncommon cases – the user through the UI
Most commonly, a query parser that takes the
user’s Boolean query and runs it on the indexes
for each zone
Weights determined from user studies and hard-
coded into the query parser.

4

Exercise

On the query bill OR rights suppose that we
retrieve the following docs from the various zone
indexes:

bill
rights

bill
rights

bill
rights

Author

Title

Body

1

5

2

83

3 5 9

2 51

5 83

9

9

Compute
the score

for each
doc based
on the
weightings
0.6,0.3,0.1

General idea

We are given a weight vector whose components
sum up to 1.

There is a weight for each zone/field.
Given a Boolean query, we assign a score to
each doc by adding up the weighted
contributions of the zones/fields.
Typically – users want to see the K highest-
scoring docs.

Index support for zone
combinations

In the simplest version we have a separate
inverted index for each zone
Variant: have a single index with a separate
dictionary entry for each term and zone
E.g., bill.author

bill.title

bill.body

1 2

5 83

2 51 9

Of course, compress zone names
like author/title/body.

Zone combinations index

The above scheme is still wasteful: each term is
potentially replicated for each zone
In a slightly better scheme, we encode the zone
in the postings:

At query time, accumulate contributions to the
total score of a document from the various
postings, e.g.,

bill 1.author, 1.body 2.author, 2.body 3.title

As before, the zone names get compressed.

bill 1.author, 1.body 2.author, 2.body 3.title

rights 3.title, 3.body 5.title, 5.body

Score accumulation

As we walk the postings for the query bill OR
rights, we accumulate scores for each doc in a
linear merge as before.
Note: we get both bill and rights in the Title field
of doc 3, but score it no higher.
Should we give more weight to more hits?

1
2
3
5

0.7
0.7
0.4
0.4 Free text queries

Before we raise the score for more hits:
We just scored the Boolean query bill OR rights
Most users more likely to type bill rights or bill
of rights

How do we interpret these “free text” queries?
No Boolean connectives
Of several query terms some may be missing in a
doc
Only some query terms may occur in the title, etc.

5

Free text queries

To use zone combinations for free text queries,
we need

A way of assigning a score to a pair <free text
query, zone>
Zero query terms in the zone should mean a zero
score
More query terms in the zone should mean a
higher score
Scores don’t have to be Boolean

Will look at some alternatives now

Incidence matrices

Recall: Document (or a zone in it) is binary vector
X in {0,1}v

Query is a vector
Score: Overlap measure:

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

YX ∩

Example

On the query ides of march, Shakespeare’s
Julius Caesar has a score of 3
All other Shakespeare plays have a score of 2
(because they contain march) or 1
Thus in a rank order, Julius Caesar would come
out tops

Overlap matching

What’s wrong with the overlap measure?
It doesn’t consider:

Term frequency in document
Term scarcity in collection (document
mention frequency)

of is more common than ides or march
Length of documents

(And queries: score not normalized)

Overlap matching

One can normalize in various ways:
Jaccard coefficient:

Cosine measure:

What documents would score best using Jaccard
against a typical query?

Does the cosine measure fix this problem?

YXYX ∪∩ /

YXYX ×∩ /

Scoring: density-based

Thus far: position and overlap of terms in a doc –
title, author etc.
Obvious next idea: if a document talks about a
topic more, then it is a better match
This applies even when we only have a single
query term.
Document relevant if it has a lot of the terms
This leads to the idea of term weighting.

6

Term weighting
Term-document count matrices

Consider the number of occurrences of a term in
a document:

Bag of words model
Document is a vector in ℕv: a column below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Bag of words view of a doc

Thus the doc
John is quicker than Mary.

is indistinguishable from the doc
Mary is quicker than John.

Which of the indexes discussed
so far distinguish these two docs?

Counts vs. frequencies

Consider again the ides of march query.
Julius Caesar has 5 occurrences of ides
No other play has ides
march occurs in over a dozen
All the plays contain of

By this scoring measure, the top-scoring play is
likely to be the one with the most ofs

Digression: terminology

WARNING: In a lot of IR literature,
“frequency” is used to mean “count”

Thus term frequency in IR literature is used
to mean number of occurrences in a doc
Not divided by document length (which
would actually make it a frequency)

We will conform to this misnomer
In saying term frequency we mean the
number of occurrences of a term in a
document.

Term frequency tf

Long docs are favored because they’re
more likely to contain query terms
Can fix this to some extent by normalizing
for document length
But is raw tf the right measure?

7

Weighting term frequency: tf

What is the relative importance of
0 vs. 1 occurrence of a term in a doc
1 vs. 2 occurrences
2 vs. 3 occurrences …

Unclear: while it seems that more is better, a lot
isn’t proportionally better than a few

Can just use raw tf
Another option commonly used in practice:

otherwise log1 ,0 if 0 ,,, dtdtdt tftfwf +==

Score computation

Score for a query q = sum over terms t in q:

[Note: 0 if no query terms in document]
This score can be zone-combined
Can use wf instead of tf in the above
Still doesn’t consider term scarcity in collection
(ides is rarer than of)

∑∈
=

qt dttf ,

Weighting should depend on the
term overall

Which of these tells you more about a doc?
10 occurrences of hernia?
10 occurrences of the?

Would like to attenuate the weight of a common
term

But what is “common”?
Suggest looking at collection frequency (cf)

The total number of occurrences of the term in the
entire collection of documents

Document frequency

But document frequency (df) may be better:
df = number of docs in the corpus containing the
term

Word cf df
try 10422 8760
insurance 10440 3997

Document/collection frequency weighting is only
possible in known (static) collection.
So how do we make use of df ?

tf x idf term weights

tf x idf measure combines:
term frequency (tf)

or wf, measure of term density in a doc
inverse document frequency (idf)

measure of informativeness of a term: its rarity across
the whole corpus
could just be raw count of number of documents the term
occurs in (idfi = 1/dfi)
but by far the most commonly used version is:

See Kishore Papineni, NAACL 2, 2002 for theoretical justification

⎟
⎠
⎞

⎜
⎝
⎛= df

nidf
i

i log

Summary: tf x idf (or tf.idf)

Assign a tf.idf weight to each term i in each
document d

Increases with the number of occurrences within a doc
Increases with the rarity of the term across the whole corpus

)/log(,, ididi dfntfw ×=

 rmcontain te that documents ofnumber the
documents ofnumber total

document in termoffrequency ,

idf
n

jitf

i

di

=
=
=

What is the wt
of a term that
occurs in all
of the docs?

8

Real-valued term-document
matrices

Function (scaling) of count of a word in a
document:

Bag of words model
Each is a vector in ℝv

Here log-scaled tf.idf

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 13.1 11.4 0.0 0.0 0.0 0.0

Brutus 3.0 8.3 0.0 1.0 0.0 0.0

Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0

Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3

worser 1.2 0.0 0.6 0.6 0.6 0.0

Note can be >1!

Documents as vectors

Each doc j can now be viewed as a vector of
wf×idf values, one component for each term
So we have a vector space

terms are axes
docs live in this space
even with stemming, may have 20,000+
dimensions

(The corpus of documents gives us a matrix,
which we could also view as a vector space in
which words live – transposable data)

Recap

We began by looking at zones at scoring
Ended up viewing documents as vectors
Will pursue this view next time.

