CS276A

Information Retrieval

Lecture 5

Plan
—
» Last lecture: Tolerant retrieval
= Wildcards
= Spell correction
= Soundex
= This time:
= Index construction

Matching trigrams

= Consider the query lord — we wish to identify
words matching 2 of its 3 bigrams (lo, or, rd)

uul:DF ‘ alone FH lord %—-{ sloth H ‘

uul: ‘ borderH lord }»—-{ morbidH

”D': ‘ ardenlJr borde»H-H canﬂ‘
Standard postings “merge” will enumerate ...

Adapt this to using Jaccard (or another) measure.

=

Index construction
|

= How do we construct an index?

= What strategies can we use with limited
main memory?

Recall our corpus
]

= Number of docs =n = 1M
= Each doc has 1K terms
= Number of distinct terms = m = 500K
= Use Zipf to estimate number of postings entries

Zipf estimation of postings

= Recall the blocks in the matrix of Lecture 3
= Each row corresponds to term

= Rows ordered by diminishing term frequency
= Each column corresponds to a document
= We broke up the matrix into blocks.
= We are asking: how many 1's in this matrix?

Rows by decreasing frequency

n docs

frequent n 1’s in each row.
terms.

J next mostl

J most I

frequent
terms.

J next mostI

n/2 1’s per row. m

terms
r%{ 1’s per row.

frequent
terms.

etc.

Overestimate or underestimate, by how much?

How many postings?

= Number of 1's in the i th block = nJ/i
= Summing this over m/J blocks, we have

Z.m; nJ/i=nJ H_,~nJInm/J.

= For our numbers, this should be about 667
million postings.

. . Term Doc #

Recall index construction " i

— M 1

julius 1

= Documents are parsed to extract words and paesar I

these are saved with the Document ID. was 1

killed 1

it 1

the 1

capitol 1

brutus 1

killed 1

Doc 1 Doc 2 > 2

" :

| did enact Julius | | 50 let it be with win :

Caesar | was killed| | caesar. The noble e .

i’ the Capitol; Brutus hath told you poble. 2

Brutus killed me. Caesar was ambitious hath 2
tol

cacsar :

was 2

ambitious 2

Key Step Term Doc # Term
I 1 ambitious
did e
| — R [
julius brutus
= After all documents have paesar v
been parsed the inverted file was

killed

is sorted by terms. i

the

capitol
brutus

caesar
did
enact
hath

|

1

killed

We focus on this sort step. me

so

We have 667M items to sort. let

it

it
= juivs

killed

killed
let
me
noble
so
the
the
told
you
was
was
with

be
with
caesar
the

noble
brutus
hath

told

you
caesar
was
ambitious

NNNRNNNNNNNNNNNRN R RRRRRR R R R R R

Doc #

NN R RNNNRENNRENR R RN R RR R R R NN R RN RN

Index construction
]
= As we build up the index, cannot exploit
compression tricks
= Parse docs one at a time.
= Final postings for any term — incomplete until the
end.
= (actually you can exploit compression, but this
becomes a lot more complex)
= At 10-12 bytes per postings entry, demands
several temporary gigabytes

System parameters for design

= Disk seek ~ 10 milliseconds

= Block transfer from disk ~ 1 microsecond per
byte (following a seek)

= All other ops ~ 10 microseconds

= E.g., compare two postings entries and decide
their merge order

Bottleneck

]
= Parse and build postings entries one doc at a
time
= Now sort postings entries by term (then by doc
within each term)

= Doing this with random disk seeks would be too
slow — must sort n=667M records

A

If every comparison took 2 disk seeks, and n items could be
sorted with nlog,n comparisons, how long would this take?

Sorting with fewer disk seeks

» 12-byte (4+4+4) records (term, doc, freq).

= These are generated as we parse docs.

= Must now sort 667M such 12-byte records by
term.

= Define a Block|~ 10M |such records
= can “easily” fita couple into memory.
= Will havi such blocks to start with.

= Will sort within blocks first, then merge the blocks
into one long sorted order.

Sorting 64 blocks of 10M records

= First, read each block and sort within:
= Quicksort takes 2n In n expected steps
= Inour case 2 x (10M In 10M) steps

n Exercise: estimate total time to read each block
from disk and and quicksort it.

= 64 times this estimate - gives us 64 sorted runs
of 10M records each.

= Need 2 copies of data on disk, throughout.

Merging 64 sorted runs

= Merge tree of log,64= 6 layers.

= During each layer, read into memory runs in
blocks of 10M, merge, write back.

| 2 | [Merged run.|

Runs eing
merged.
Disk

Merge tree
1run..?
2runs..?
4 runs ...?

8 runs, 80M/run

16 runs, 40M/run
32 runs, 20M/run

\

Bottom level
of tree.

Sorted runs.

1 2 63 64

Merging 64 runs

= Time estimate for disk transfer:
= 6 X (64runs x 120MB x 10-%sec) x 2 ~ 25hrs.

\
Work out how these

Disk block transfers are staged,
transfer time. and the total time for
Why is this an merging.
Overestimate?

Layers in Read +
merge tree Write

Exercise - fill in this table

Step Time

1 | 64 initial quicksorts of 10M records each

2 | Read 2 sorted blocks for merging, write back

3 | Merge 2 sorted blocks

? b 4 | Add (2) + (3) = time to read/merge/write

5 | 64 times (4) = total merge time

Large memory indexing

= Suppose instead that we had 16GB of memory
for the above indexing task.

= Exercise: What initial block sizes would we
choose? What index time does this yield?
= Repeat with a couple of values of n, m.
= In practice, spidering often interlaced with
indexing.
= Spidering bottlenecked by WAN speed and many
other factors - more on this later.

Improvements on basic merge
e ———]
= Compressed temporary files
= compress terms in temporary dictionary runs

= How do we merge compressed runs to generate
a compressed run?

= Given two y-encoded runs, merge them into a new
y-encoded run

= To do this, first y-decode a run into a sequence of
gaps, then actual records:

= 33,14,107,5... — 33, 47, 154, 159
= 13,12,109,5... — 13, 25, 134, 139

Merging compressed runs

= Now merge:
= 13, 25, 33, 47, 134, 139, 154, 159
= Now generate new gap sequence
= 13,12,8,14,87,5,15,5
= Finish by y-encoding the gap sequence
= But what was the point of all this?

= If we were to uncompress the entire run in
memory, we save N0 memory

= How do we gain anything?

“Zipper” uncompress/decompress

= When merging two runs, bring their y-encoded
versions into memory

= Do NOT uncompress the entire gap sequence at
once — only a small segment at a time
= Merge the uncompressed segments
= Compress merged segments again

[Compressed, merged output]

Compressed Uncdmpressed| :>[:|
inputs segments

Improving on binary merge tree
]

= Merge more than 2 runs at a time
= Merge k>2 runs at a time for a shallower tree
= maintain heap of candidates from each run

Dynamic indexing
]
= Docs come in over time
= postings updates for terms already in dictionary
= new terms added to dictionary
= Docs get deleted

Simplest approach
]
= Maintain “big” main index
= New docs go into “small” auxiliary index
= Search across both, merge results
= Deletions
= Invalidation bit-vector for deleted docs

= Filter docs output on a search result by this
invalidation bit-vector

= Periodically, re-index into one main index

Issue with big and small indexes
m m-———————
= Corpus-wide statistics are hard to maintain
= E.g., when we spoke of spell-correction: which of
several corrected alternatives do we present to
the user?
= We said, pick the one with the most hits
= How do we maintain the top ones with multiple
indexes?
= One possibility: ignore the small index for such
ordering
= Will see more such statistics used in results
ranking

More complex approach

= Fully dynamic updates
= Only one index at all times
= No big and small indices
= Active management of a pool of space

Fully dynamic updates

= Inserting a (variable-length) record
= e.g., a typical postings entry
= Maintain a pool of (say) 64KB chunks

= Chunk header maintains metadata on records in
chunk, and its free space

Header

Free space

Record
Record
Record
Record

Global tracking

= In memory, maintain a global record address

table that says, for each record, the chunk it's in.
= Define one chunk to be current.
= Insertion

= if current chunk has enough free space

= extend record and update metadata.
= else look in other chunks for enough space.
= else open new chunk.

Building positional indexes

= Still a sorting problem (but Iarger

= Recall the harder exercise of Lecture 3 for
estimating the number of positional index entries

= Exercise: given 1GB of memory, how would you
adapt the block merge described above?

Building n-gram indexes

= As text is parsed, enumerate n-grams.

= For each n-gram, need pointers to all dictionary
terms containing it — the “postings”.
= Note that the same “postings entry” can arise
repeatedly in parsing the docs — need efficient
“hash” to keep track of this.
= E.g., that the trigram uou occurs in the term
deciduous will be discovered on each text
occurrence of deciduous

Building n-gram indexes
e —————]
= Once all (n-grameterm) pairs have been
enumerated, must sort for inversion
= Recall average English dictionary term is ~8
characters
= So about 6 trigrams per term on average

= For a vocabulary of 500K terms, this is about 3
million pointers — can compress

Changes to dictionary
——————————]
= New terms appear over time
= cannot use a static perfect hash for dictionary

= OK to use term character string w/pointers from
postings as in Lecture 3.

Index on disk vs. memory

]
= Most retrieval systems keep the dictionary in
memory and the postings on disk

= Web search engines frequently keep both in
memory

= massive memory requirement
= feasible for large web service installations

= less so for commercial usage where query loads
are lighter

Indexing in the real world

= Typically, don’t have all documents sitting on a
local filesystem
= Documents need to be spidered
= Could be dispersed over a WAN with varying
connectivity
= Must schedule distributed spiders/indexers
= Could be (secure content) in
= Databases
= Content management applications
= Email applications

Content residing in applications

= Mail systems/groupware, content management
contain the most “valuable” documents

= http often not the most efficient way of fetching
these documents - native API fetching
= Specialized, repository-specific connectors

= These connectors also facilitate document viewing
when a search result is selected for viewing

Secure documents
]
= Each document is accessible to a subset of users

= Usually implemented through some form of
Access Control Lists (ACLS)
= Search users are authenticated
= Query should retrieve a document only if user
can access it
= So if there are docs matching your search but
you’re not privy to them, “Sorry no results found”
= E.g., as a lowly employee in the company, | get
“No results” for the query “salary roster”

Users in groups, docs from groups

= Index the ACLs and filter results by them

Documents

Users ‘O if user can't read

doc, 1 otherwise.

= Often, user membership in an ACL group verified
at query time — slowdown

Exercise

e ————————]
= Can spelling suggestion compromise such
document-level security?

» Consider the case when there are documents
matching my query, but | lack access to them.

Compound documents

= What if a doc consisted of components
= Each component has its own ACL.

= Your search should get a doc only if your query
meets one of its components that you have
access to.

= More generally: doc assembled from
computations on components

= e.g., in Lotus databases or in content
management systems

= How do you index such docs?

(ﬁ
[No good answers ... |

“Rich” documents

]
= (How) Do we index images?
= Researchers have devised Query Based on
Image Content (QBIC) systems
= “show me a picture similar to this orange circle”
= watch for lecture on vector space retrieval

= In practice, image search based on meta-data
such as file name e.g., monalisa.jpg

Passage/sentence retrieval
]

= Suppose we want to retrieve not an entire
document matching a query, but only a
passage/sentence - say, in a very long document

= Can index passages/sentences as mini-
documents — what should the index units be?

= More on this when discussing XML search

Next up — scoring/ranking

= Thus far, documents either match a query or do
not.

= [t's time to become more discriminating - how
well does a document match a query?

= Gives rise to ranking and scoring

Resources
|

= MG Chapter 5

