
1

CS276A
Information Retrieval

Lecture 5

Plan

Last lecture: Tolerant retrieval
Wildcards
Spell correction
Soundex

This time:
Index construction

Matching trigrams

Consider the query lord – we wish to identify
words matching 2 of its 3 bigrams (lo, or, rd)

lo

or

rd

alone lord sloth

lord morbid

border card

border

ardent

Standard postings “merge” will enumerate …

Adapt this to using Jaccard (or another) measure.

Index construction

How do we construct an index?
What strategies can we use with limited
main memory?

Recall our corpus

Number of docs = n = 1M
Each doc has 1K terms

Number of distinct terms = m = 500K
Use Zipf to estimate number of postings entries

Zipf estimation of postings

Recall the blocks in the matrix of Lecture 3
Each row corresponds to term

Rows ordered by diminishing term frequency
Each column corresponds to a document
We broke up the matrix into blocks.
We are asking: how many 1’s in this matrix?

2

Rows by decreasing frequency
n docs

m
terms

J most
frequent
terms.

J next most
frequent
terms.

J next most
frequent
terms.

etc.

n 1’s in each row.

n/2 1’s per row.

n/3 1’s per row.

Overestimate or underestimate, by how much?

How many postings?

Number of 1’s in the i th block = nJ/i
Summing this over m/J blocks, we have

For our numbers, this should be about 667
million postings.

./ ln~ / m/J
/

1
JmnJHnJinJJm

i
=∑ =

Documents are parsed to extract words and
these are saved with the Document ID.

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Recall index construction Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Key step

After all documents have
been parsed the inverted file
is sorted by terms.

We focus on this sort step.
We have 667M items to sort.

Index construction

As we build up the index, cannot exploit
compression tricks

Parse docs one at a time.
Final postings for any term – incomplete until the
end.
(actually you can exploit compression, but this
becomes a lot more complex)

At 10-12 bytes per postings entry, demands
several temporary gigabytes

System parameters for design

Disk seek ~ 10 milliseconds
Block transfer from disk ~ 1 microsecond per
byte (following a seek)
All other ops ~ 10 microseconds

E.g., compare two postings entries and decide
their merge order

3

Bottleneck

Parse and build postings entries one doc at a
time
Now sort postings entries by term (then by doc
within each term)
Doing this with random disk seeks would be too
slow – must sort n=667M records

If every comparison took 2 disk seeks, and n items could be
sorted with nlog2n comparisons, how long would this take?

Sorting with fewer disk seeks

12-byte (4+4+4) records (term, doc, freq).
These are generated as we parse docs.
Must now sort 667M such 12-byte records by
term.
Define a Block ~ 10M such records

can “easily” fit a couple into memory.
Will have 64 such blocks to start with.

Will sort within blocks first, then merge the blocks
into one long sorted order.

Sorting 64 blocks of 10M records

First, read each block and sort within:
Quicksort takes 2n ln n expected steps
In our case 2 x (10M ln 10M) steps

Exercise: estimate total time to read each block Exercise: estimate total time to read each block
from disk and and from disk and and quicksortquicksort it.it.
64 times this estimate - gives us 64 sorted runs
of 10M records each.
Need 2 copies of data on disk, throughout.

Merging 64 sorted runs

Merge tree of log264= 6 layers.
During each layer, read into memory runs in
blocks of 10M, merge, write back.

Disk

1

3 4

2
2

1

4

3

Runs being
merged.

Merged run.

Merge tree

…

…

Sorted runs.

1 2 6463

32 runs, 20M/run

16 runs, 40M/run
8 runs, 80M/run
4 runs … ?
2 runs … ?
1 run … ?

Bottom level
of tree.

Merging 64 runs

Time estimate for disk transfer:
6 x (64runs x 120MB x 10-6sec) x 2 ~ 25hrs.

Disk block
transfer time.
Why is this an
Overestimate?

Work out how these
transfers are staged,
and the total time for
merging.

Layers in
merge tree

Read +
Write

4

Exercise - fill in this table

TimeStep

64 initial quicksorts of 10M records each

Read 2 sorted blocks for merging, write back

Merge 2 sorted blocks

1

2

3

4

5

Add (2) + (3) = time to read/merge/write

64 times (4) = total merge time

?

Large memory indexing

Suppose instead that we had 16GB of memory
for the above indexing task.
Exercise: What initial block sizes would we
choose? What index time does this yield?
Repeat with a couple of values of n, m.
In practice, spidering often interlaced with
indexing.

Spidering bottlenecked by WAN speed and many
other factors - more on this later.

Improvements on basic merge

Compressed temporary files
compress terms in temporary dictionary runs

How do we merge compressed runs to generate
a compressed run?

Given two γ-encoded runs, merge them into a new
γ-encoded run
To do this, first γ-decode a run into a sequence of
gaps, then actual records:
33,14,107,5… → 33, 47, 154, 159
13,12,109,5… → 13, 25, 134, 139

Merging compressed runs

Now merge:
13, 25, 33, 47, 134, 139, 154, 159

Now generate new gap sequence
13,12,8,14,87,5,15,5

Finish by γ-encoding the gap sequence
But what was the point of all this?

If we were to uncompress the entire run in
memory, we save no memory
How do we gain anything?

“Zipper” uncompress/decompress

When merging two runs, bring their γ-encoded
versions into memory
Do NOT uncompress the entire gap sequence at
once – only a small segment at a time

Merge the uncompressed segments
Compress merged segments again

Compressed
inputs

Compressed, merged outputUncompressed
segments

Improving on binary merge tree

Merge more than 2 runs at a time
Merge k>2 runs at a time for a shallower tree
maintain heap of candidates from each run

….

….

1 5 2 4 3 6

5

Dynamic indexing

Docs come in over time
postings updates for terms already in dictionary
new terms added to dictionary

Docs get deleted

Simplest approach

Maintain “big” main index
New docs go into “small” auxiliary index
Search across both, merge results
Deletions

Invalidation bit-vector for deleted docs
Filter docs output on a search result by this
invalidation bit-vector

Periodically, re-index into one main index

Issue with big and small indexes

Corpus-wide statistics are hard to maintain
E.g., when we spoke of spell-correction: which of
several corrected alternatives do we present to
the user?

We said, pick the one with the most hits
How do we maintain the top ones with multiple
indexes?

One possibility: ignore the small index for such
ordering

Will see more such statistics used in results
ranking

More complex approach

Fully dynamic updates
Only one index at all times

No big and small indices
Active management of a pool of space

Fully dynamic updates

Inserting a (variable-length) record
e.g., a typical postings entry

Maintain a pool of (say) 64KB chunks
Chunk header maintains metadata on records in
chunk, and its free space

Record
Record
Record
Record

Header

Free space

Global tracking

In memory, maintain a global record address
table that says, for each record, the chunk it’s in.
Define one chunk to be current.
Insertion

if current chunk has enough free space
extend record and update metadata.

else look in other chunks for enough space.
else open new chunk.

6

Building positional indexes

Still a sorting problem (but larger)
Recall the harder exercise of Lecture 3 for
estimating the number of positional index entries
Exercise: given 1GB of memory, how would you
adapt the block merge described above?

Why?

Building n-gram indexes

As text is parsed, enumerate n-grams.
For each n-gram, need pointers to all dictionary
terms containing it – the “postings”.
Note that the same “postings entry” can arise
repeatedly in parsing the docs – need efficient
“hash” to keep track of this.

E.g., that the trigram uou occurs in the term
deciduous will be discovered on each text
occurrence of deciduous

Building n-gram indexes

Once all (n-gram∈term) pairs have been
enumerated, must sort for inversion
Recall average English dictionary term is ~8
characters

So about 6 trigrams per term on average
For a vocabulary of 500K terms, this is about 3
million pointers – can compress

Changes to dictionary

New terms appear over time
cannot use a static perfect hash for dictionary

OK to use term character string w/pointers from
postings as in Lecture 3.

Index on disk vs. memory

Most retrieval systems keep the dictionary in
memory and the postings on disk
Web search engines frequently keep both in
memory

massive memory requirement
feasible for large web service installations
less so for commercial usage where query loads
are lighter

Indexing in the real world

Typically, don’t have all documents sitting on a
local filesystem

Documents need to be spidered
Could be dispersed over a WAN with varying
connectivity
Must schedule distributed spiders/indexers
Could be (secure content) in

Databases
Content management applications
Email applications

7

Content residing in applications

Mail systems/groupware, content management
contain the most “valuable” documents
http often not the most efficient way of fetching
these documents - native API fetching

Specialized, repository-specific connectors
These connectors also facilitate document viewing
when a search result is selected for viewing

Secure documents

Each document is accessible to a subset of users
Usually implemented through some form of
Access Control Lists (ACLs)

Search users are authenticated
Query should retrieve a document only if user
can access it

So if there are docs matching your search but
you’re not privy to them, “Sorry no results found”
E.g., as a lowly employee in the company, I get
“No results” for the query “salary roster”

Users in groups, docs from groups

Index the ACLs and filter results by them

Often, user membership in an ACL group verified
at query time – slowdown

Users

Documents

0/1 0 if user can’t read
doc, 1 otherwise.

Exercise

Can spelling suggestion compromise such
document-level security?
Consider the case when there are documents
matching my query, but I lack access to them.

Compound documents

What if a doc consisted of components
Each component has its own ACL.

Your search should get a doc only if your query
meets one of its components that you have
access to.
More generally: doc assembled from
computations on components

e.g., in Lotus databases or in content
management systems

How do you index such docs?

No good answers …

“Rich” documents

(How) Do we index images?
Researchers have devised Query Based on
Image Content (QBIC) systems

“show me a picture similar to this orange circle”
watch for lecture on vector space retrieval

In practice, image search based on meta-data
such as file name e.g., monalisa.jpg

8

Passage/sentence retrieval

Suppose we want to retrieve not an entire
document matching a query, but only a
passage/sentence - say, in a very long document
Can index passages/sentences as mini-
documents – what should the index units be?
More on this when discussing XML search

Next up – scoring/ranking

Thus far, documents either match a query or do
not.
It’s time to become more discriminating - how
well does a document match a query?
Gives rise to ranking and scoring

Resources

MG Chapter 5

