

Recap of last time

- Index compression
- Space estimation

This lecture

- "Tolerant" retrieval
 - Wild-card queries
 - Spelling correction
 - Soundex

Wild-card queries

Wild-card queries: *

- mon*: find all docs containing any word beginning "mon".
- Easy with binary tree (or B-tree) lexicon: retrieve all words in range: *mon* ≤ *w* < *moo*
- *mon: find words ending in "mon": harder
 Maintain an additional B-tree for terms backwards. Can retrieve all words in range: nom ≤ w < non.

Exercise: from this, how can we enumerate all terms meeting the wild-card query *pro*cent*?

Query processing

- At this point, we have an enumeration of all terms in the dictionary that match the wild-card query.
- We still have to look up the postings for each enumerated term.
- E.g., consider the query: se*ate AND fil*er

This may result in the execution of many Boolean *AND* queries.

B-trees handle *'s at the end of a query term

- How can we handle *'s in the middle of query term?
 - (Especially multiple *'s)
- The solution: transform every wild-card query so that the *'s occur at the end
- This gives rise to the Permuterm Index.

Permuterm index

- For term *hello* index under:
 hello\$, ello\$h, llo\$he, lo\$hel, o\$hell where \$ is a special symbol.
- Queries:
 - X lookup on X\$
 - *X lookup on X\$*
 - X*Y lookup on Y\$X*
- X*
 lookup on
 X*\$

 X
 lookup on
 X*
- X*Y*Z ???
- Exercise!

Permuterm query processing

- Rotate query wild-card to the right
- Now use B-tree lookup as before.
- Permuterm problem: \approx quadruples lexicon size

Empirical observation for English.

Bigram indexes Enumerate all *k*-grams (sequence of *k* chars)

- Entimierate all A-grains (sequence of a chars) occurring in any term
 a.g. from text "April is the enuclest month" a
- e.g., from text "April is the cruelest month" we get the 2-grams (bigrams)

\$a,ap,pr,ri,il,l\$,\$i,is,s\$,\$t,th,he,e\$,\$c,cr,ru, ue,el,le,es,st,t\$, \$m,mo,on,nt,h\$

- \$ is a special word boundary symbol
- Maintain an "inverted" index from bigrams to <u>dictionary terms</u> that match each bigram.

Advanced features

- Avoiding UI clutter is one reason to hide advanced features behind an "Advanced Search" button
- It also deters most users from unnecessarily hitting the engine with fancy queries

Document correction

- Primarily for OCR'ed documents
 Correction algorithms tuned for this
- Goal: the index (dictionary) contains fewer OCRinduced misspellings
- Can use domain-specific knowledge
- E.g., OCR can confuse O and D more often than it would confuse O and I (adjacent on the QWERTY keyboard, so more likely interchanged in typing).

Query mis-spellings

- Our principal focus here
 E.g., the query *Alanis Morisett*
- E.g., the que
- We can either
 - Retrieve documents indexed by the correct spelling, OR
 - Return several suggested alternative queries with the correct spelling
 - Google's Did you mean ... ?

Isolated word correction

- Fundamental premise there is a lexicon from which the correct spellings come
- Two basic choices for this
 - A standard lexicon such as
 - Webster's English Dictionary
 - An "industry-specific" lexicon hand-maintained
 - The lexicon of the indexed corpus
 - . E.g., all words on the web
 - All names, acronyms etc.
 - (Including the mis-spellings)

Isolated word correction

- Given a lexicon and a character sequence Q, return the words in the lexicon closest to Q
- What's "closest"?
- We'll study several alternatives
 - Edit distance
 - Weighted edit distance
 - *n*-gram overlap

Edit distance

- Given two strings S₁ and S₂, the minimum number of basic operations to covert one to the other
- Basic operations are typically character-level
 - Insert
 - Delete
 - Replace
- E.g., the edit distance from *cat* to *dog* is 3.
- Generally found by dynamic programming.

Edit distance

- Also called "Levenshtein distance"
- See <u>http://www.merriampark.com/ld.htm</u> for a nice example plus an applet to try on your own

Weighted edit distance

- As above, but the weight of an operation depends on the character(s) involved
 - Meant to capture keyboard errors, e.g. *m* more likely to be mis-typed as *n* than as *q*
 - Therefore, replacing *m* by *n* is a smaller edit distance than by *q*
 - (Same ideas usable for OCR, but with different weights)
- Require weight matrix as input
- Modify dynamic programming to handle weights

Using edit distances

- Given query, first enumerate all dictionary terms within a preset (weighted) edit distance
- (Some literature formulates weighted edit distance as a probability of the error)
- Then look up enumerated dictionary terms in the term-document inverted index
 - Slow but no real fix
 - Tries help
- Better implementations see Kukich, Zobel/Dart references.

n-gram overlap

- Enumerate all the *n*-grams in the query string as well as in the lexicon
- Use the *n*-gram index (recall wild-card search) to retrieve all lexicon terms matching any of the query *n*-grams
- Rank by number of matching n-grams
- Variants weight by keyboard layout, etc.

Example with trigrams

- Suppose the text is *november*Trigrams are *nov*, *ove*, *vem*, *emb*, *mbe*, *ber*.
- The query is *december*Trigrams are *dec*, *ece*, *cem*, *emb*, *mbe*, *ber*.
- So 3 trigrams overlap (of 6 in each term)
- How can we turn this into a normalized measure of overlap?

One option – Jaccard coefficient

- A commonly-used measure of overlap
- Let X and Y be two sets; then the J.C. is

$|X \cap Y| / |X \cup Y|$

- Equals 1 when X and Y have the same elements and zero when they are disjoint
- X and Y don't have to be of the same size
- Always assigns a number between 0 and 1
 - Now threshold to decide if you have a match
 - E.g., if J.C. > 0.8, declare a match

Caveat

- Even for isolated-word correction, the notion of an index token is critical – what's the unit we're trying to correct?
- In Chinese/Japanese, the notions of spellcorrection and wildcards are poorly formulated/understood

Context-sensitive spell correction

- Text: I flew from Heathrow to Narita.
- Consider the phrase query "flew form Heathrow"
- We'd like to respond
- Did you mean "flew from Heathrow"?

because no docs matched the query phrase.

Context-sensitive correction

- Need surrounding context to catch this.
 NLP too heavyweight for this.
- First idea: retrieve dictionary terms close (in weighted edit distance) to each query term
- Now try all possible resulting phrases with one word "fixed" at a time
 - flew from heathrow
 - fled form heathrow
 - flea form heathrow
 - etc.
- Suggest the alternative that has lots of hits?

Exercise

- Suppose that for "flew form Heathrow" we have 7 alternatives for flew, 19 for form and 3 for heathrow.
- How many "corrected" phrases will we enumerate in this scheme?

Another approach

- Break phrase query into a conjunction of biwords (lecture 2).
- Look for biwords that need only one term corrected.
- Enumerate phrase matches and ... rank them!

General issue in spell correction

- Will enumerate multiple alternatives for "Did you mean"
- Need to figure out which one (or small number) to present to the user
- Use heuristics
 - The alternative hitting most docs
 - Query log analysis + tweaking
 - For especially popular, topical queries

Computational cost

- Spell-correction is computationally expensive
- Avoid running routinely on every query?
- Run only on queries that matched few docs

Thesauri

- <u>Thesaurus</u>: language-specific list of synonyms for terms likely to be queried
 - car \rightarrow automobile, etc.
 - Machine learning methods can assist more on this in later lectures.
- Can be viewed as hand-made alternative to editdistance, etc.

Query expansion

- Usually do query expansion rather than index expansion
 - No index blowup
 - Query processing slowed down
 - Docs frequently contain equivalences
 - May retrieve more junk
 - puma → jaguar retrieves documents on cars instead of on sneakers.

Soundex

- Class of heuristics to expand a query into phonetic equivalents
 - Language specific mainly for names
 - E.g., chebyshev → tchebycheff

Soundex - typical algorithm

- Turn every token to be indexed into a 4-character reduced form
- Do the same with query terms
- Build and search an index on the reduced forms (when the query calls for a soundex match)
- http://www.creativyst.com/Doc/Articles/SoundEx1/SoundEx1.htm#Top

Soundex - typical algorithm

- 1. Retain the first letter of the word.
- 2. Change all occurrences of the following letters to '0' (zero): 'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'.
- 3. Change letters to digits as follows:
- B, F, P, V \rightarrow 1
- C, G, J, K, Q, S, X, $Z \rightarrow 2$
- $D,T \rightarrow 3$ •
- $L \rightarrow 4$ •
- M, N \rightarrow 5
- $R \rightarrow 6$

Soundex continued

- 4. Remove all pairs of consecutive digits.
- 5. Remove all zeros from the resulting string.
- 6. Pad the resulting string with trailing zeros and return the first four positions, which will be of the form <uppercase letter> <digit> <digit> <digit>.
- E.g., Herman becomes H655.

Will hermann generate the same code?

Exercise

- Using the algorithm described above, find the soundex code for your name
- Do you know someone who spells their name differently from you, but their name yields the same soundex code?

Language detection

- Many of the components described above require language detection
 - For docs/paragraphs at indexing time
 - For query terms at query time much harder
- For docs/paragraphs, generally have enough text to apply machine learning methods
- For queries, lack sufficient text
 - Augment with other cues, such as client properties/specification from application
 - Domain of query origination, etc.

What queries can we process?

- We have
 - Basic inverted index with skip pointers
 - Wild-card index
 - Spell-correction
 - Soundex
- Queries such as
- (SPELL(moriset) /3 toron*to) OR SOUNDEX(chaikofski)

Aside - results caching

 If 25% of your users are searching for britney AND spears

then you probably *do* need spelling correction, but you *don't* need to keep on intersecting those two postings lists

 Web query distribution is extremely skewed, and you can usefully cache results for common queries – more later.

Exercise

- Draw yourself a diagram showing the various indexes in a search engine incorporating all this functionality
- Identify some of the key design choices in the index pipeline:
 - Does stemming happen before the Soundex index?
 - What about n-grams?
- Given a query, how would you parse and dispatch sub-queries to the various indexes?

Exercise on previous slide

- Is the beginning of "what do we we need in our search engine?"
- Even if you're not building an engine (but instead use someone else's toolkit), it's good to have an understanding of the innards

Resources

MG 4.2

- Efficient spell retrieval:
 - K. Kukich. Techniques for automatically correcting words in text. ACM Computing Surveys 24(4), Dec 1992.
 - J. Zobel and P. Dart. Finding approximate matches in large lexicons. Software - practice and experience 25(3), March 1995. http://citeseer.ist.psu.edu/zobel95finding.html

Nice, easy reading on spell correction:

Mikael Tillenius: Efficient Generation and Ranking of Spelling Error Corrections. Master's thesis at Sweden's Royal Institute of Technology. <u>http://citeseer.ist.psu.edu/179155.html</u>