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CS276A
Information Retrieval

Lecture 4

Recap of last time

Index compression
Space estimation

This lecture

“Tolerant” retrieval
Wild-card queries
Spelling correction
Soundex

Wild-card queries

Wild-card queries: *

mon*: find all docs containing any word beginning 
“mon”.
Easy with binary tree (or B-tree) lexicon: retrieve 
all words in range: mon ≤ w < moo
*mon: find words ending in “mon”: harder

Maintain an additional B-tree for terms backwards.
Can retrieve all words in range: nom ≤ w < non.

Exercise: from this, how can we enumerate all terms
meeting the wild-card query pro*cent ?

Query processing

At this point, we have an enumeration of all terms 
in the dictionary that match the wild-card query.
We still have to look up the postings for each 
enumerated term.
E.g., consider the query:
se*ate AND fil*er
This may result in the execution of many Boolean 
AND queries.
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B-trees handle *’s at the end of a 
query term

How can we handle *’s in the middle of query 
term?

(Especially multiple *’s)
The solution: transform every wild-card query so 
that the *’s occur at the end
This gives rise to the Permuterm Index.

Permuterm index

For term hello index under:
hello$, ello$h, llo$he, lo$hel, o$hell

where $ is a special symbol.
Queries:

X lookup on X$ X*   lookup on   X*$
*X   lookup on X$* *X* lookup on   X*
X*Y lookup on Y$X* X*Y*Z ??? 

Exercise!

Permuterm query processing

Rotate query wild-card to the right
Now use B-tree lookup as before.
Permuterm problem: ≈ quadruples lexicon size

Empirical observation for English.

Bigram indexes

Enumerate all k-grams (sequence of k chars) 
occurring in any term
e.g., from text “April is the cruelest month” we 
get the 2-grams (bigrams)

$ is a special word boundary symbol
Maintain an “inverted” index from bigrams to 
dictionary terms that match each bigram.

$a,ap,pr,ri,il,l$,$i,is,s$,$t,th,he,e$,$c,cr,ru,
ue,el,le,es,st,t$, $m,mo,on,nt,h$

Bigram index example

mo

on

among

$m mace

among

amortize

madden

around

Processing n-gram wild-cards

Query mon* can now be run as
$m AND mo AND on

Fast, space efficient.
Gets terms that match AND version of our 
wildcard query.
But we’d enumerate moon.
Must post-filter these terms against query.
Surviving enumerated terms are then looked up 
in the term-document inverted index.
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Processing wild-card queries

As before, we must execute a Boolean query for 
each enumerated, filtered term.
Wild-cards can result in expensive query 
execution

Avoid encouraging “laziness” in the UI: 

Search
Type your search terms, use ‘*’ if you need to.
E.g., Alex* will match Alexander.

Advanced features

Avoiding UI clutter is one reason to hide 
advanced features behind an “Advanced Search”
button
It also deters most users from unnecessarily 
hitting the engine with fancy queries

Spelling correction
Spell correction

Two principal uses
Correcting document(s) being indexed
Retrieve matching documents when query 
contains a spelling error

Two main flavors:
Isolated word

Check each word on its own for misspelling
Will not catch typos resulting in correctly spelled words 
e.g., from → form

Context-sensitive
Look at surrounding words, e.g., I flew form Heathrow 
to Narita.

Document correction

Primarily for OCR’ed documents
Correction algorithms tuned for this

Goal: the index (dictionary) contains fewer OCR-
induced misspellings
Can use domain-specific knowledge

E.g., OCR can confuse O and D more often than it 
would confuse O and I (adjacent on the QWERTY 
keyboard, so more likely interchanged in typing).

Query mis-spellings

Our principal focus here
E.g., the query Alanis Morisett

We can either
Retrieve documents indexed by the correct 
spelling, OR
Return several suggested alternative queries with 
the correct spelling

Google’s Did you mean … ?
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Isolated word correction

Fundamental premise – there is a lexicon from 
which the correct spellings come
Two basic choices for this

A standard lexicon such as
Webster’s English Dictionary
An “industry-specific” lexicon – hand-maintained

The lexicon of the indexed corpus
E.g., all words on the web
All names, acronyms etc.
(Including the mis-spellings)

Isolated word correction

Given a lexicon and a character sequence Q, 
return the words in the lexicon closest to Q
What’s “closest”?
We’ll study several alternatives

Edit distance
Weighted edit distance
n-gram overlap

Edit distance

Given two strings S1 and S2, the minimum 
number of basic operations to covert one to the 
other
Basic operations are typically character-level

Insert
Delete
Replace

E.g., the edit distance from cat to dog is 3.
Generally found by dynamic programming.

Edit distance

Also called “Levenshtein distance”
See http://www.merriampark.com/ld.htm for a 
nice example plus an applet to try on your own

Weighted edit distance

As above, but the weight of an operation 
depends on the character(s) involved

Meant to capture keyboard errors, e.g. m more 
likely to be mis-typed as n than as q
Therefore, replacing m by n is a smaller edit 
distance than by q
(Same ideas usable for OCR, but with different 
weights)

Require weight matrix as input
Modify dynamic programming to handle weights

Using edit distances

Given query, first enumerate all dictionary terms 
within a preset (weighted) edit distance
(Some literature formulates weighted edit 
distance as a probability of the error)
Then look up enumerated dictionary terms in the 
term-document inverted index

Slow but no real fix
Tries help

Better implementations – see Kukich, Zobel/Dart 
references.
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n-gram overlap

Enumerate all the n-grams in the query string as 
well as in the lexicon
Use the n-gram index (recall wild-card search) to 
retrieve all lexicon terms matching any of the 
query n-grams
Rank by number of matching n-grams
Variants – weight by keyboard layout, etc.

Example with trigrams

Suppose the text is november
Trigrams are nov, ove, vem, emb, mbe, ber.

The query is december
Trigrams are dec, ece, cem, emb, mbe, ber.

So 3 trigrams overlap (of 6 in each term)
How can we turn this into a normalized measure 
of overlap?

One option – Jaccard coefficient

A commonly-used measure of overlap
Let X and Y be two sets; then the J.C. is

Equals 1 when X and Y have the same elements 
and zero when they are disjoint
X and Y don’t have to be of the same size
Always assigns a number between 0 and 1

Now threshold to decide if you have a match
E.g., if J.C. > 0.8, declare a match 

YXYX ∪∩ /

Caveat

Even for isolated-word correction, the notion of 
an index token is critical – what’s the unit we’re 
trying to correct?
In Chinese/Japanese, the notions of spell-
correction and wildcards are poorly 
formulated/understood

Context-sensitive spell correction

Text: I flew from Heathrow to Narita.
Consider the phrase query “flew form
Heathrow”
We’d like to respond

Did you mean “flew from Heathrow”?
because no docs matched the query phrase.

Context-sensitive correction

Need surrounding context to catch this.
NLP too heavyweight for this.

First idea: retrieve dictionary terms close (in 
weighted edit distance) to each query term
Now try all possible resulting phrases with one 
word “fixed” at a time

flew from heathrow
fled form heathrow
flea form heathrow
etc.

Suggest the alternative that has lots of hits?



6

Exercise

Suppose that for “flew form Heathrow” we 
have 7 alternatives for flew, 19 for form and 3 for 
heathrow.

How many “corrected” phrases will we enumerate 
in this scheme?

Another approach

Break phrase query into a conjunction of biwords
(lecture 2).
Look for biwords that need only one term 
corrected.
Enumerate phrase matches and … rank them!

General issue in spell correction

Will enumerate multiple alternatives for “Did you 
mean”
Need to figure out which one (or small number) 
to present to the user
Use heuristics

The alternative hitting most docs
Query log analysis + tweaking

For especially popular, topical queries

Computational cost

Spell-correction is computationally expensive
Avoid running routinely on every query?
Run only on queries that matched few docs

Thesauri

Thesaurus: language-specific list of synonyms for 
terms likely to be queried

car → automobile, etc.
Machine learning methods can assist – more on 
this in later lectures.

Can be viewed as hand-made alternative to edit-
distance, etc.

Query expansion

Usually do query expansion rather than 
index expansion

No index blowup
Query processing slowed down

Docs frequently contain equivalences
May retrieve more junk

puma → jaguar  retrieves documents on cars 
instead of on sneakers.
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Soundex
Soundex

Class of heuristics to expand a query into 
phonetic equivalents

Language specific – mainly for names
E.g., chebyshev → tchebycheff

Soundex – typical algorithm

Turn every token to be indexed into a 4-character 
reduced form
Do the same with query terms
Build and search an index on the reduced forms

(when the query calls for a soundex match)

http://www.creativyst.com/Doc/Articles/SoundEx1/SoundEx1.htm#Top

Soundex – typical algorithm

1. Retain the first letter of the word. 
2. Change all occurrences of the following letters 

to '0' (zero):
'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'. 

3. Change letters to digits as follows: 
B, F, P, V → 1
C, G, J, K, Q, S, X, Z → 2
D,T → 3
L → 4
M, N → 5
R → 6

Soundex continued

4. Remove all pairs of consecutive digits.
5. Remove all zeros from the resulting string.
6. Pad the resulting string with trailing zeros and 

return the first four positions, which will be of the 
form <uppercase letter> <digit> <digit> <digit>. 

E.g., Herman becomes H655.

Will hermann generate the same code?

Exercise

Using the algorithm described above, find the 
soundex code for your name
Do you know someone who spells their name 
differently from you, but their name yields the 
same soundex code?
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Language detection

Many of the components described above 
require language detection

For docs/paragraphs at indexing time
For query terms at query time – much harder

For docs/paragraphs, generally have enough text 
to apply machine learning methods
For queries, lack sufficient text

Augment with other cues, such as client 
properties/specification from application
Domain of query origination, etc.

What queries can we process?

We have
Basic inverted index with skip pointers
Wild-card index
Spell-correction
Soundex

Queries such as
(SPELL(moriset) /3 toron*to) OR 

SOUNDEX(chaikofski)

Aside – results caching

If 25% of your users are searching for
britney AND spears

then you probably do need spelling correction, 
but you don’t need to keep on intersecting those 
two postings lists
Web query distribution is extremely skewed, and 
you can usefully cache results for common 
queries – more later.

Exercise

Draw yourself a diagram showing the various 
indexes in a search engine incorporating all this 
functionality
Identify some of the key design choices in the 
index pipeline:

Does stemming happen before the Soundex
index?
What about n-grams?

Given a query, how would you parse and 
dispatch sub-queries to the various indexes?

Exercise on previous slide

Is the beginning of “what do we we need in our 
search engine?”
Even if you’re not building an engine (but instead 
use someone else’s toolkit), it’s good to have an 
understanding of the innards

Resources

MG 4.2
Efficient spell retrieval:

K. Kukich. Techniques for automatically correcting words in 
text. ACM Computing Surveys 24(4), Dec 1992.
J. Zobel and P. Dart. Finding approximate matches in large 
lexicons. Software - practice and experience 25(3), March 
1995. http://citeseer.ist.psu.edu/zobel95finding.html

Nice, easy reading on spell correction:
Mikael Tillenius: Efficient Generation and Ranking of Spelling Error 

Corrections. Master’s thesis at Sweden’s Royal Institute of 
Technology. http://citeseer.ist.psu.edu/179155.html


