
1

CS276A
Information Retrieval

Lecture 3

Recap: lecture 2

Stemming, tokenization etc.
Faster postings merges
Phrase queries

This lecture

Index compression
Space estimation

Corpus size for estimates

Consider n = 1M documents, each with about
L=1K terms.
Avg 6 bytes/term incl spaces/punctuation

6GB of data.
Say there are m = 500K distinct terms among
these.

Don’t build the matrix

500K x 1M matrix has half-a-trillion 0’s and 1’s.
But it has no more than one billion 1’s.

matrix is extremely sparse.
So we devised the inverted index

Devised query processing for it
Where do we pay in storage?

Where do we pay in storage?

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Tot Freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Pointers

Terms

2

Storage analysis

First will consider space for postings pointers
Basic Boolean index only

Devise compression schemes
Then will do the same for dictionary
No analysis for positional indexes, etc.

Pointers: two conflicting forces

A term like Calpurnia occurs in maybe one doc
out of a million - would like to store this pointer
using log2 1M ~ 20 bits.
A term like the occurs in virtually every doc, so
20 bits/pointer is too expensive.

Prefer 0/1 vector in this case.

Postings file entry

Store list of docs containing a term in increasing
order of doc id.

Brutus: 33,47,154,159,202 …
Consequence: suffices to store gaps.

33,14,107,5,43 …
Hope: most gaps encoded with far fewer than 20
bits.

Variable encoding

For Calpurnia, will use ~20 bits/gap entry.
For the, will use ~1 bit/gap entry.
If the average gap for a term is G, want to use
~log2G bits/gap entry.
Key challenge: encode every integer (gap) with ~
as few bits as needed for that integer.

γ codes for gap encoding (Elias)

Represent a gap G as the pair <length,offset>
length is in unary and uses ⎣log2G⎦ +1 bits to specify
the length of the binary encoding of
offset = G - 2⎣log2G⎦ in binary.

Length Offset

Recall that the unary encoding of x is
a sequence of x 1’s followed by a 0.

γ codes for gap encoding

e.g., 9 represented as <1110,001>.
2 is represented as <10,1>.
Exercise: does zero have a γ code?
Encoding G takes 2 ⎣log2G⎦ +1 bits.

γ codes are always of odd length.

3

Exercise

Given the following sequence of γ−coded gaps,
reconstruct the postings sequence:

1110001110101011111101101111011

From these γ−decode and reconstruct gaps,
then full postings.

What we’ve just done

Encoded each gap as tightly as possible, to
within a factor of 2.
For better tuning (and a simple analysis) - need a
handle on the distribution of gap values.

Zipf’s law

The kth most frequent term has frequency
proportional to 1/k.
Use this for a crude analysis of the space used
by our postings file pointers.

Not yet ready for analysis of dictionary space.

Zipf’s law log-log plot

Rough analysis based on Zipf
The i th most frequent term has frequency
proportional to 1/i
Let this frequency be c/i.
Then
The k th Harmonic number is
Thus c = 1/Hm , which is ~ 1/ln m = 1/ln(500k) ~
1/13.
So the i th most frequent term has frequency
roughly 1/13i.

∑=
=

k

ik iH
1

./1
.1/000,500

1∑ =
=

i
ic

Postings analysis contd.

Expected number of occurrences of the i th most
frequent term in a doc of length L is:

Lc/i ~ L/13i ~ 76/i for L=1000.

Let J = Lc ~ 76.
Then the J most frequent terms are likely to occur

in every document.
Now imagine the term-document incidence matrix

with rows sorted in decreasing order of term
frequency:

4

Rows by decreasing frequency
n docs

m
terms

J most
frequent
terms.

J next most
frequent
terms.

J next most
frequent
terms.

etc.

n gaps of ‘1’ each.

n/2 gaps of ‘2’ each.

n/3 gaps of ‘3’ each.

J-row blocks

In the i th of these J-row blocks, we have J rows
each with n/i gaps of i each.
Encoding a gap of i takes us 2log2 i +1 bits.
So such a row uses space ~ (2n log2 i)/i bits.
For the entire block, (2n J log2 i)/i bits, which in
our case is ~ 1.5 x 108 (log2 i)/i bits.

Sum this over i from 1 upto m/J = 500K/76~
6500. (Since there are m/J blocks.)

Exercise

Work out the above sum and show it adds up to
about 53 x 150 Mbits, which is about 1GByte.
So we’ve taken 6GB of text and produced from it
a 1GB index that can handle Boolean queries!

Make sure you understand all the approximations
in our probabilistic calculation.

Caveats

This is not the entire space for our index:
does not account for dictionary storage – next up;
as we get further, we’ll store even more stuff in the
index.

Assumes Zipf’s law applies to occurrence of
terms in docs.
All gaps for a term taken to be the same.
Does not talk about query processing.

More practical caveat

γ codes are neat but in reality, machines have
word boundaries – 16, 32 bits etc

Compressing and manipulating at individual bit-
granularity is overkill in practice
Slows down architecture

In practice, simpler word-aligned compression
(see Scholer reference) better

Word-aligned compression

Simple example: fix a word-width (say 16 bits)
Dedicate one bit to be a continuation bit c.
If the gap fits within 15 bits, binary-encode it in
the 15 available bits and set c=0.
Else set c=1 and use additional words until you
have enough bits for encoding the gap.

5

Exercise

How would you adapt the space analysis for γ−
coded indexes to the scheme using continuation
bits?

Exercise (harder)

How would you adapt the analysis for the case of
positional indexes?
Intermediate step: forget compression. Adapt the
analysis to estimate the number of positional
postings entries.

Dictionary and postings files
Term Doc # Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Tot Freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Usually in memory
Gap-encoded,
on disk

Inverted index storage

Have estimated pointer storage
Next up: Dictionary storage

Dictionary in main memory, postings on disk
This is common, especially for something like a search
engine where high throughput is essential, but can also
store most of it on disk with small, in-memory index

Tradeoffs between compression and query
processing speed

Cascaded family of techniques

How big is the lexicon V?

Grows (but more slowly) with corpus size
Empirically okay model:

m = kNb

where b ≈ 0.5, k ≈ 30–100; N = # tokens
For instance TREC disks 1 and 2 (2 Gb; 750,000
newswire articles): ~ 500,000 terms
V is decreased by case-folding, stemming
Indexing all numbers could make it extremely
large (so usually don’t*)
Spelling errors contribute a fair bit of size

Exercise: Can one
derive this from

Zipf’s Law?

Dictionary storage - first cut

Array of fixed-width entries
500,000 terms; 28 bytes/term = 14MB.

Terms Freq. Postings ptr.

a 999,712

aardvark 71

…. ….

zzzz 99

Allows for fast binary
search into dictionary

20 bytes 4 bytes each

6

Exercises

Is binary search really a good idea?
What are the alternatives?

Fixed-width terms are wasteful

Most of the bytes in the Term column are wasted
– we allot 20 bytes for 1 letter terms.

And still can’t handle supercalifragilisticexpialidocious.

Written English averages ~4.5 characters.
Exercise: Why is/isn’t this the number to use for
estimating the dictionary size?
Short words dominate token counts.

Average word in English: ~8 characters.

Explain this.

Compressing the term list

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

Binary search
these pointers

Total string length =
500K x 8B = 4MB

Pointers resolve 4M
positions: log24M =

22bits = 3bytes

Store dictionary as a (long) string of characters:
Pointer to next word shows end of current word
Hope to save up to 60% of dictionary space.

Total space for compressed list

4 bytes per term for Freq.
4 bytes per term for pointer to Postings.
3 bytes per term pointer
Avg. 8 bytes per term in term string
500K terms ⇒ 9.5MB

⎫ Now avg. 11
⎬ bytes/term,
⎭ not 20.

Blocking

Store pointers to every kth on term string.
Example below: k=4.

Need to store term lengths (1 extra byte)
….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

7

⎫ Save 9 bytes
⎬ on 3
⎭ pointers.

Lose 4 bytes on
term lengths.

Net

Where we used 3 bytes/pointer without blocking
3 x 4 = 12 bytes for k=4 pointers,

now we use 3+4=7 bytes for 4 pointers.

Shaved another ~0.5MB; can save more with larger k.

Why not go with larger k?

7

Exercise

Estimate the space usage (and savings
compared to 9.5MB) with blocking, for block
sizes of k = 4, 8 and 16.

Impact on search

Binary search down to 4-term block;
Then linear search through terms in block.
8 documents: binary tree ave. = 2.6 compares
Blocks of 4 (binary tree), ave. = 3 compares

= (1+2·2+4·3+4)/8 =(1+2·2+2·3+2·4+5)/8

3

7

5
7

432

8

6

4

2

8

1

65

1

Exercise

Estimate the impact on search performance (and
slowdown compared to k=1) with blocking, for
block sizes of k = 4, 8 and 16.

Total space

By increasing k, we could cut the pointer space in
the dictionary, at the expense of search time;
space 9.5MB → ~8MB
Net – postings take up most of the space

Generally kept on disk
Dictionary compressed in memory

Some complicating factors

Accented characters
Do we want to support accent-sensitive as well as
accent-insensitive characters?
E.g., query resume expands to resume as well as
résumé
But the query résumé should be executed as only
résumé
Alternative, search application specifies

If we store the accented as well as plain terms in
the dictionary string, how can we support both
query versions?

Index size

Stemming/case folding cut
number of terms by ~40%
number of pointers by 10-20%
total space by ~30%

Stop words
Rule of 30: ~30 words account for ~30% of all
term occurrences in written text
Eliminating 150 commonest terms from indexing
will cut almost 25% of space

8

Extreme compression (see MG)

Front-coding:
Sorted words commonly have long common prefix
– store differences only
(for last k-1 in a block of k)

8automata8automate9automatic10automation

→8{automat}a1◊e2◊ic3◊ion

Encodes automat Extra length
beyond automat.

Begins to resemble general string compression.

Extreme compression

Using (perfect) hashing to store terms “within”
their pointers

not great for vocabularies that change.
Large dictionary: partition into pages

use B-tree on first terms of pages
pay a disk seek to grab each page
if we’re paying 1 disk seek anyway to get the
postings, “only” another seek/query term.

Compression: Two alternatives

Lossless compression: all information is
preserved, but we try to encode it compactly

What IR people mostly do
Lossy compression: discard some information

Using a stopword list can be viewed this way
Techniques such as Latent Semantic Indexing
(later) can be viewed as lossy compression
One could prune from postings entries unlikely to
turn up in the top k list for query on word

Especially applicable to web search with huge numbers of
documents but short queries (e.g., Carmel et al. SIGIR
2002)

Top k lists

Don’t store all postings entries for each term
Only the “best ones”
Which ones are the best ones?

More on this subject later, when we get into
ranking

Resources

MG 3.3, 3.4.
F. Scholer, H.E. Williams and J. Zobel. Compression of Inverted
Indexes For Fast Query Evaluation. Proc. ACM-SIGIR 2002.

