CS276A

Information Retrieval

Lecture 3

Recap: lecture 2

—
= Stemming, tokenization etc.
= Faster postings merges
= Phrase queries

This lecture

= Index compression
= Space estimation

Corpus size for estimates

-
= Consider n = 1M documents, each with about
L=1K terms.
= Avg 6 bytes/term incl spaces/punctuation
= 6GB of data.

= Say there are m = 500K distinct terms among
these.

Don’t build the matrix
—
= 500K x 1M matrix has half-a-trillion 0’s and 1’s.
= But it has no more than one billion 1’s.
= Mmatrix is extremely sparse.
= So we devised the inverted index
= Devised query processing for it
= Where do we pay in storage?

= Where do we pay in storage?

Term Ndocs TotFreq —*
F

ambitious
be 1 —
——

E

brutus
capitol
caesar
did
enact
hath

'

5

it

julius
killed
et
me

noble

1S 0
HYH
/ ‘
/
v vy

Storage analysis

= First will consider space for postings pointers
= Basic Boolean index only
= Devise compression schemes
= Then will do the same for dictionary
= No analysis for positional indexes, etc.

Pointers: two conflicting forces
]

= Aterm like Calpurnia occurs in maybe one doc
out of a million - would like to store this pointer
using log, 1M ~ 20 bits.

= Aterm like the occurs in virtually every doc, so
20 bits/pointer is too expensive.
= Prefer 0/1 vector in this case.

Postings file entry

= Store list of docs containing a term in increasing
order of doc id.
= Brutus;33,47,154,159,202 ...

= Consequefice: suffices to store gaps.
= 33[14/107,5,43 ...

= Hope: most gaps encoded with far fewer than 20
bits.

Variable encoding
- -—————
= For Calpurnia, will use ~20 bits/gap entry.
= For the, will use ~1 bit/gap entry.
= If the average gap for a term is G, want to use
~log,G bits/gap entry.
= Key challenge: encode every integer (gap) with ~
as few bits as needed for that integer.

v codes for gap encoding (Elias)

‘Length |Offset ‘

= Represent a gap G as the pair <length,offset>

= length is in[unaryjand uses | log,G] +1 bits to specify
the length of the binary~encoding of

= offset = G - 209,86l in binary.

Recall that the unary encoding of x is
a sequence of x 1’s followed by a 0.

v codes for gap encoding

e.g., 9 represented as <1110,001>.
= 2 is represented as <10,1>.
Exercise: does zero have a y code?

Encoding G takes 2 | log,G] +1 bits.
= y codes are always of odd length.

Exercise

= Given the following sequence of y—coded gaps,
reconstruct the postings sequence:

1110001110101011111101101111011

From these y—decode and reconstruct gaps,
then full postings.

What we’ve just done

= Encoded each gap as tightly as possible, to
within a factor of 2.

= For better tuning (and a simple analysis) - need a
handle on the distribution of gap values.

Zipf's law
e ————]
= The kth most frequent term has frequency
proportional to 1/k.
= Use this for a crude analysis of the space used
by our postings file pointers.
= Not yet ready for analysis of dictionary space.

Zipf's law log-log plot

100000

10000
Vi

1000

frequency

100

1 10 100 000 10000 100000

Rough analysis based on Zipf

= The i th most frequent term has frequency
proportional to 1/i

= Let this frequency be cfi.

= Then Y. "c/i=1

= The k th Harmonic numberis H, :Zill/i.

= Thus c = 1/H,, , which is ~ 1/ln m = 1/In(500k) ~
1/13.

= So the i th most frequent term has frequency
roughly 1/13i.

Postings analysis contd.

e
= Expected number of occurrences of the i th most
frequent term in a doc of length L is:
Lcf/i ~ L/13i~ 76/i for L=1000.

LetJ=Lc~76.

Then the J most frequent terms are likely to occur
in every document.

Now imagine the term-document incidence matrix
with rows sorted in decreasing order of term
frequency:

Rows by decreasing frequency

n docs
J most
frequent n gaps of ‘1’ each.
terms.
J next most
frequent n/2 gaps of ‘2’ each. m
terms. terms

n/3 gaps of ‘3’ each.

frequent

J next most
terms.

etc.

J-row blocks

]
= Inthe i th of these J-row blocks, we have J rows
each with n/i gaps of i each.
= Encoding a gap of i takes us 2log, i +1 bits.
= So such a row uses space ~ (2n log, i)/i bits.

= For the entire block, (2n J log, i)/i bits, which in
our case is ~ 1.5 x 108 (log, i)/i bits.

= Sum this over i from 1 upto m/J = 500K/76~
6500. (Since there are m/J blocks.)

Exercise
e mw————
= Work out the above sum and show it adds up to
about 53 x 150 Mbits, which is about 1GByte.
= So we've taken 6GB of text and produced from it
a 1GB index that can handle Boolean queries!

Make sure you understand all the approximations
in our probabilistic calculation.

Caveats
e ———
= This is not the entire space for our index:
= does not account for dictionary storage — next up;

= as we get further, we’'ll store even more stuff in the
index.

= Assumes Zipf's law applies to occurrence of
terms in docs.

= All gaps for a term taken to be the same.
= Does not talk about query processing.

More practical caveat

= y codes are neat but in reality, machines have
word boundaries — 16, 32 bits etc

= Compressing and manipulating at individual bit-
granularity is overkill in practice

= Slows down architecture

= In practice, simpler word-aligned compression
(see Scholer reference) better

Word-aligned compression

= Simple example: fix a word-width (say 16 bits)

= Dedicate one bit to be a continuation bit c.

= [f the gap fits within 15 bits, binary-encode it in
the 15 available bits and set c=0.

= Else set c=1 and use additional words until you
have enough bits for encoding the gap.

Exercise

= How would you adapt the space analysis for y—
coded indexes to the scheme using continuation
bits?

Exercise (harder)

= How would you adapt the analysis for the case of
positional indexes?

= Intermediate step: forget compression. Adapt the
analysis to estimate the number of positional
postings entries.

Dictionary and postings files

Doc# Freq
Term Doc# Freq Term Ndocs Tot qu/' 2 1
ambitious 2 1 ambitious 1 1/ 2 1
on i H o H]%: 1 B
brutus H ! brutus 2 [7
itol —
capitol 1 1 capitol : [— 1 1
caesar 1 1 caesar 2 2
.
caesar 2 2 did 1 L 1 1
did 1 1 enact 1 > 1 1
enact 1 1 hath 1 S 2 1
hath 2 1 | 1 —_ ; i
1 1 2 it 1 L — e
it 1 1 it 1 1> 2 H
> PO
it 2 1 julius 1 1 1 2
julius 1 1 killed 1 22— 2 1
killed 1 2 et 1 I ———— 1 1
let 2 1 me 1 1 2 1
.
me 1 1 ‘ 2 :
noble 2 1 noble 1 1
so 1 1— 1 1
so 2 1 3 1
s 2 ' the 2 ——— 2 T
the 2 1 told 1 1 2 N
wold 2 1 you i | 21
you 2 1 was 2 — > 2 1
s 1 p vith 1 — > 1
was 2 1
with 21) Gap-encoded,
Usually in memory) on disk [0

Inverted index storage

e ————————]
= Have estimated pointer storage

= Next up: Dictionary storage

= Dictionary in main memory, postings on disk

= This is common, especially for something like a search
engine where high throughput is essential, but can also
store most of it on disk with small, in-memory index

= Tradeoffs between compression and query
processing speed
= Cascaded family of techniques

How big is the lexicon V?

= Grows (but more slowly) with corpus size

= Empirically okay model: Exercise: Can one
_ b derive this from
m=kN Zipf's Law?

= where b= 0.5, k = 30-100; N = # tokens

= Forinstance TREC disks 1 and 2 (2 Gb; 750,000
newswire articles): ~ 500,000 terms

= Vis decreased by case-folding, stemming

= Indexing all numbers could make it extremely
large (so usually don't*)

= Spelling errors contribute a fair bit of size

Dictionary storage - first cut

= Array of fixed-width entries
= 500,000 terms; 28 bytes/term = 14MB.

Terms |Freq. Postings ptr.
a 999,712

P

/O<:aardvark 71 —_—t
Q\Q< -+ —

‘ 20 bytes ‘ ‘ 4 bytes each ‘

Allows for fast binary|
search into dictionary

Exercises

= Is binary search really a good idea?
= What are the alternatives?

Fixed-width terms are wasteful

= Most of the bytes in the Term column are wasted
— we allot 20 bytes for 1 letter terms.
= And still can’t handle supercalifragilisticexpialidocious.

= Written English averages

= Exercise: Why is/isn’t this the nu
estimating the dictionary size?

= Short words dominate token counts.
= Average word in English: haracters.

nber to use for

Explain this.

Compressing the term list

sStore dictionary as a (long) string of characters:
=Pointer to next word shows end of current word
=Hope to save up to 60% of dictionary space.

‘systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo..... ‘

Freq. Postings ptr, Term ptr. J
33

29 —
44
126

Total string length =
500K x 8B = 4MB

Pointers resolve 4M
positions: log,4M =

22bits = 3bytes
Binary search
these pointers

Total space for compressed list

= 4 bytes per term for Freqg.

= 4 bytes per term for pointer to Postings.

= 3 bytes per term pointer] Now avg. 11
= Avg. 8 bytes per term in term string Eztezs(/;em’
= 500K terms = 9.5MB

Blocking
]
= Store pointers to every kth on term string.
= Example below: k=4.
= Need to store term lengths (1 extra byte)

‘7systile9syzygetic8syzygial 6syzygy1 1szaibelyite8szczecin9szomo. ...

Freq. Postings ptr| Term ptr.

& N

» | Save 9 bytes Lose 4 bytes on
> f on3 term lengths.
12 J pointers.

7

Net

= Where we used 3 bytes/pointer without blocking
= 3 x4 =12 bytes for k=4 pointers,
now we use 3+4=7 bytes for 4 pointers.

Shaved another ~0.5MB; can save more with larger k.

Why not go with larger k?

Exercise

= Estimate the space usage (and savings
compared to 9.5MB) with blocking, for block
sizes of k = 4, 8 and 16.

Impact on search

= Binary search down to 4-term block;

= Then linear search through terms in block.

= 8 documents: binary tree ave. = 2.6 compares
= Blocks of 4 (binary tree), ave. = 3 compares

Exercise
|

= Estimate the impact on search performance (and
slowdown compared to k=1) with blocking, for
block sizes of k = 4, 8 and 16.

@@
@ @
II‘
—® é;aa © 2 ®
—®
= (1+2-2+4-3+4)/8 =(1+2:2+2:3+2-4+5)/8
Total space

= By increasing k, we could cut the pointer space in
the dictionary, at the expense of search time;
space 9.5MB — ~8MB

= Net — postings take up most of the space
= Generally kept on disk
= Dictionary compressed in memory

Some complicating factors

= Accented characters
= Do we want to support accent-sensitive as well as
accent-insensitive characters?

= E.g., query resume expands to resume as well as
résumeé
= But the query résumé should be executed as only
résume
= Alternative, search application specifies
= If we store the accented as well as plain terms in
the dictionary string, how can we support both
query versions?

Index size
]
= Stemming/case folding cut
= number of terms by ~40%
= number of pointers by 10-20%
= total space by ~30%
= Stop words

= Rule of 30: ~30 words account for ~30% of all
term occurrences in written text

= Eliminating 150 commonest terms from indexing
will cut almost 25% of space

Extreme compression (see MG)

= Front-coding:
= Sorted words commonly have long common prefix
— store differences only

= (for last k-1 in a block of k)
8automata8automateQautomaticl0automation

—8{automatial Oe2¢ic30ion

Extra length

Encodes automat
beyond automat.

Begins to resemble general string compression.

Extreme compression
e —— |
= Using (perfect) hashing to store terms “within”
their pointers
= not great for vocabularies that change.
= Large dictionary: partition into pages
= use B-tree on first terms of pages
= pay a disk seek to grab each page
= if we're paying 1 disk seek anyway to get the
postings, “only” another seek/query term.

Compression: Two alternatives
]

= Lossless compression: all information is
preserved, but we try to encode it compactly
= What IR people mostly do

= Lossy compression: discard some information
= Using a stopword list can be viewed this way
= Techniques such as Latent Semantic Indexing
(later) can be viewed as lossy compression
= One could prune from postings entries unlikely to
turn up in the top k list for query on word

= Especially applicable to web search with huge numbers of
documents but short queries (e.g., Carmel et al. SIGIR
2002)

Top k lists
e ————]
= Don't store all postings entries for each term
= Only the “best ones”
= Which ones are the best ones?
= More on this subject later, when we get into
ranking

Resources
]

= MG 3.3, 3.4.
= F. Scholer, H.E. Williams and J. Zobel. Compression of Inverted
Indexes For Fast Query Evaluation. Proc. ACM-SIGIR 2002.

