
1

CS276A
Information Retrieval

Lecture 2

Recap of the previous lecture

Basic inverted indexes:
Structure – Dictionary and Postings
Key steps in construction – sorting

Boolean query processing
Simple optimization
Linear time merging

Overview of course topics

Plan for this lecture

Finish basic indexing
Tokenization
What terms do we put in the index?

Query processing – speedups
Proximity/phrase queries

Recall basic indexing pipeline

Tokenizer

Token stream. Friends Romans Countrymen
Linguistic
modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed.

Friends, Romans, countrymen.

Tokenization
Tokenization

Input: “Friends, Romans and Countrymen”
Output: Tokens

Friends
Romans
Countrymen

Each such token is now a candidate for an index
entry, after further processing

Described below
But what are valid tokens to emit?

2

Parsing a document

What format is it in?
pdf/word/excel/html?

What language is it in?
What character set is in use?

Each of these is a classification problem,
which we will study later in the course.

But there are complications …

Format/language stripping

Documents being indexed can include docs from
many different languages

A single index may have to contain terms of
several languages.

Sometimes a document or its components can
contain multiple languages/formats

French email with a Portuguese pdf attachment.
What is a unit document?

An email?
With attachments?
An email with a zip containing documents?

Tokenization

Issues in tokenization:
Finland’s capital → Finland? Finlands?
Finland’s?
Hewlett-Packard → Hewlett and Packard
as two tokens?
San Francisco: one token or two? How
do you decide it is one token?

Language issues

Accents: résumé vs. resume.
L'ensemble → one token or two?

L ? L’ ? Le ?
How are your users like to write their
queries for these words?

Tokenization: language issues
Chinese and Japanese have no spaces between
words:

Not always guaranteed a unique tokenization
Further complicated in Japanese, with multiple
alphabets intermingled

Dates/amounts in multiple formats
フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Katakana Hiragana Kanji “Romaji”

End-user can express query entirely in (say) Hiragana!

Normalization

In “right-to-left languages” like Hebrew and
Arabic: you can have “left-to-right” text
interspersed (e.g., for dollar amounts).
Need to “normalize” indexed text as well as query
terms into the same form

Character-level alphabet detection and
conversion

Tokenization not separable from this.
Sometimes ambiguous:

7月30日 vs. 7/30

Morgen will ich in MIT …
Is this

German “mit”?

3

Punctuation

Ne’er: use language-specific, handcrafted
“locale” to normalize.

Which language?
Most common: detect/apply language at a pre-
determined granularity: doc/paragraph.

State-of-the-art: break up hyphenated
sequence. Phrase index?
U.S.A. vs. USA - use locale.
a.out

Numbers

3/12/91
Mar. 12, 1991
55 B.C.
B-52
My PGP key is 324a3df234cb23e
100.2.86.144

Generally, don’t index as text.
Will often index “meta-data” separately

Creation date, format, etc.

Case folding

Reduce all letters to lower case
exception: upper case (in mid-sentence?)

e.g., General Motors
Fed vs. fed
SAIL vs. sail

Thesauri and soundex

Handle synonyms and homonyms
Hand-constructed equivalence classes

e.g., car = automobile
your you’re

Index such equivalences
When the document contains automobile, index it
under car as well (usually, also vice-versa)

Or expand query?
When the query contains automobile, look under
car as well

Soundex

Class of heuristics to expand a query into
phonetic equivalents

Language specific – mainly for names
E.g., chebyshev → tchebycheff

More on this later ...

Lemmatization

Reduce inflectional/variant forms to base form
E.g.,

am, are, is → be
car, cars, car's, cars' → car

the boy's cars are different colors → the boy car
be different color

4

Dictionary entries – first cut

tokenization.english

sometimes.english

entries.english

guaranteed.english

mit.german

MIT.english

時間.japanese

ensemble.french

These may be
grouped by

language. More
on this in

ranking/query
processing.

Stemming

Reduce terms to their “roots” before indexing
language dependent
e.g., automate(s), automatic, automation all
reduced to automat.

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compres and
compres are both accept
as equival to compres.

Porter’s algorithm

Commonest algorithm for stemming English
Conventions + 5 phases of reductions

phases applied sequentially
each phase consists of a set of commands
sample convention: Of the rules in a compound
command, select the one that applies to the
longest suffix.

Typical rules in Porter

sses → ss
ies → i
ational → ate
tional → tion

Other stemmers

Other stemmers exist, e.g., Lovins stemmer
http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

Single-pass, longest suffix removal (about 250
rules)
Motivated by Linguistics as well as IR
Full morphological analysis - modest benefits for
retrieval

Language-specificity

Many of the above features embody
transformations that are

Language-specific and
Often, application-specific

These are “plug-in” addenda to the indexing
process
Both open source and commercial plug-ins
available for handling these

5

Faster postings merges:
Skip pointers

Recall basic merge

Walk through the two postings simultaneously, in
time linear in the total number of postings entries

128

31

2 4 8 16 32 64

1 2 3 5 8 17 21

Brutus

Caesar2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes, if index isn’t changing too fast.

Augment postings with skip
pointers (at indexing time)

Why?
To skip postings that will not figure in the search
results.
How?
Where do we place skip pointers?

1282 4 8 16 32 64

311 2 3 5 8 17 21
318

16 128

Query processing with skip
pointers

1282 4 8 16 32 64

311 2 3 5 8 17 21
318

16 128

Suppose we’ve stepped through the lists until we
process 8 on each list.

When we get to 16 on the top list, we see that its
successor is 32.

But the skip successor of 8 on the lower list is 31, so
we can skip ahead past the intervening postings.

Where do we place skips?

Tradeoff:
More skips → shorter skip spans ⇒ more likely to
skip. But lots of comparisons to skip pointers.
Fewer skips → few pointer comparison, but then
long skip spans ⇒ few successful skips.

Placing skips

Simple heuristic: for postings of length L, use √L
evenly-spaced skip pointers.
This ignores the distribution of query terms.
Easy if the index is relatively static; harder if L
keeps changing because of updates.

6

Phrase queries
Phrase queries

Want to answer queries such as stanford
university – as a phrase
Thus the sentence “I went to university at
Stanford” is not a match.
No longer suffices to store only

<term : docs> entries

A first attempt: Biword indexes

Index every consecutive pair of terms in the text
as a phrase
For example the text “Friends, Romans,
Countrymen” would generate the biwords

friends romans
romans countrymen

Each of these biwords is now a dictionary term
Two-word phrase query-processing is now
immediate.

Longer phrase queries

Longer phrases are processed as we did with
wild-cards:
stanford university palo alto can be broken into
the Boolean query on biwords:

stanford university AND university palo AND
palo alto

Without the docs, we cannot verify that the docs
matching the above Boolean query do contain
the phrase.

Can have false positives!

Extended biwords

Parse the indexed text and perform part-of-
speech-tagging (POST).
Bucket the terms into (say) Nouns (N) and
articles/prepositions (X).
Now deem any string of terms of the form NX*N
to be an extended biword.

Each such extended biword is now made a term in
the dictionary.

Example:
catcher in the rye

N X X N

Query processing

Given a query, parse it into N’s and X’s
Segment query into enhanced biwords
Look up index

Issues
Parsing longer queries into conjunctions
E.g., the query tangerine trees and marmalade
skies is parsed into
tangerine trees AND trees and marmalade AND
marmalade skies

7

Other issues

False positives, as noted before
Index blowup due to bigger dictionary

Solution 2: Positional indexes

Store, for each term, entries of the form:
<number of docs containing term;
doc1: position1, position2 … ;
doc2: position1, position2 … ;
etc.>

Positional index example

Can compress position values/offsets
Nevertheless, this expands postings storage
substantially

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of docs 1,2,4,5
could contain “to be

or not to be”?

Processing a phrase query

Extract inverted index entries for each distinct
term: to, be, or, not.
Merge their doc:position lists to enumerate all
positions with “to be or not to be”.

to:

2:1,17,74,222,551; 4:8,16,190,429,433;
7:13,23,191; ...

be:

1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

Same general method for proximity searches

Proximity queries

LIMIT! /3 STATUTE /3 FEDERAL /2 TORT
Here, /k means “within k words of”.
Clearly, positional indexes can be used for
such queries; biword indexes cannot.
Exercise: Adapt the linear merge of postings
to handle proximity queries. Can you make it
work for any value of k?

Positional index size

Can compress position values/offsets as we did
with docs in the last lecture
Nevertheless, this expands postings storage
substantially

8

Positional index size

Need an entry for each occurrence, not just once
per document
Index size depends on average document size

Average web page has <1000 terms
SEC filings, books, even some epic poems …
easily 100,000 terms

Consider a term with frequency 0.1%

Why?

1001100,000

111000

Positional postingsPostingsDocument size

Rules of thumb

Positional index size factor of 2-4 over non-
positional index
Positional index size 35-50% of volume of
original text
Caveat: all of this holds for “English-like”
languages

Resources for today’s lecture

MG 3.6, 4.3; MIR 7.2
Porter’s stemmer:
http//www.sims.berkeley.edu/~hearst/irbook/porter.html
H.E. Williams, J. Zobel, and D. Bahle, “Fast Phrase Querying
with Combined Indexes”, ACM Transactions on Information
Systems.

http://www.seg.rmit.edu.au/research/research.php?author=4

