CS276A

Information Retrieval

Lecture 2

Recap of the previous lecture

= Basic inverted indexes:
= Structure — Dictionary and Postings
= Key steps in construction — sorting
= Boolean query processing
= Simple optimization
= Linear time merging
= Overview of course topics

Plan for this lecture

= Finish basic indexing

= Tokenization

= What terms do we put in the index?
= Query processing — speedups
= Proximity/phrase queries

Recall basic indexing pipeline

Documents to e i halt] ‘ Friends, Romans, countrymen. ‘
l .

be indexed.

Token stream. ﬂ ‘Friends H Romans‘ ‘Countrymen‘
Linguistic
modules

Modified tokens. friend‘ ‘roman‘ ‘countryman‘

0] e
Inverted index. ﬁ >

Tokenization

Tokenization
—
= [nput: “Friends, Romans and Countrymen”
= Output: Tokens
= Friends
= Romans
= Countrymen
= Each such token is now a candidate for an index
entry, after further processing
= Described below
= But what are valid tokens to emit?

Parsing a document

—
= What format is it in?
= pdf/word/excel/html?
= What language is it in?
= What character set is in use?

Each of these is a classification problem,
which we will study later in the course.

But there are complications ...

Format/language stripping

= Documents being indexed can include docs from
many different languages

= A single index may have to contain terms of
several languages.

= Sometimes a document or its components can
contain multiple languages/formats
= French email with a Portuguese pdf attachment.
= What is a unit document?
= An email?
= With attachments?
= An email with a zip containing documents?

Tokenization

= Issues in tokenization:
= Finland’s capital — Finland? Finlands?
Finland’s?
= Hewlett-Packard — Hewlett and Packard
as two tokens?

= San Francisco: one token or two? How
do you decide it is one token?

Language issues
]

= Accents: résumé vs. resume.

= L'ensemble — one token or two?
s L?2L'?Le?

= How are your users like to write their
queries for these words?

Tokenization: language issues

= Chinese and Japanese have no spaces between
words:
= Not always guaranteed a unique tokenization

= Further complicated in Japanese, with multiple
alphabets intermingled
= Dates/amounts in multiple formats

-
Z7=F2 500t AT EOL B AS ¢$5Wom)

Katakana Hiragana Kanji “Romaji”

End-user can express query entirely in (say) Hiragana!

Normalization

]
= In “right-to-left languages” like Hebrew and
Arabic: you can have “left-to-right” text
interspersed (e.g., for dollar amounts).
= Need to “normalize” indexed text as well as query
terms into the same form
7H30H vs. 7/130
= Character-level alphabet detection and
conversion
= Tokenization not separable from this.

= Sometimes ambiguous: Is this
Morgen will ich l@/ German “mit"?

Punctuation

= Ne’'er: use language-specific, handcrafted
“locale” to normalize.
= Which language?
= Most common: detect/apply language at a pre-
determined granularity: doc/paragraph.

= State-of-the-art: break up hyphenated
sequence. Phrase index?

s U.S.A. vs. USA - use locale.
= a.out

Numbers

= 3/12/91
= Mar. 12, 1991
= 55B.C.
s B-52
= My PGP key is 324a3df234cb23e
= 100.2.86.144
= Generally, don't index as text.

= Will often index “meta-data” separately
= Creation date, format, etc.

Case folding

= Reduce all letters to lower case

= exception: upper case (in mid-sentence?)
= e.g., General Motors
= Fed vs. fed
= SAIL vs. sail

Thesauri and soundex
——————————]
= Handle synonyms and homonyms
= Hand-constructed equivalence classes
= €.g., car = automobile
» your & you're
= Index such equivalences
= When the document contains automobile, index it
under car as well (usually, also vice-versa)
= Or expand query?

= When the query contains automobile, look under
car as well

Soundex

= Class of heuristics to expand a query into
phonetic equivalents
= Language specific — mainly for names
= E.g., chebyshev — tchebycheff

= More on this later ...

Lemmatization
—
= Reduce inflectional/variant forms to base form
[] E.g.,
= am, are, is > be
= car, cars, car's, cars' — car

= the boy's cars are different colors — the boy car
be different color

Dictionary entries — first cut

ensemble.french

R japanese

MIT.english These may be

mit.german grouped by
language. More

guaranteed.english on this in
ranking/query

entries.english processing.

sometimes.english

tokenization.english

Stemming
]
= Reduce terms to their “roots” before indexing
= language dependent

= €.g., automate(s), automatic, automation all
reduced to automat.

for example compressed for exampl compres and
and compression are both [compres are both accept
accepted as equivalent to as equival to compres.

compress.

Porter’s algorithm
m m-—m—————
= Commonest algorithm for stemming English
= Conventions + 5 phases of reductions
= phases applied sequentially
= each phase consists of a set of commands

= sample convention: Of the rules in a compound
command, select the one that applies to the
longest suffix.

Typical rules in Porter
]

= SSes — SS
= ies—i

= ational — ate
= tional — tion

Other stemmers

= Other stemmers exist, e.g., Lovins stemmer

http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

= Single-pass, longest suffix removal (about 250
rules)

= Motivated by Linguistics as well as IR

= Full morphological analysis - modest benefits for
retrieval

Language-specificity

= Many of the above features embody
transformations that are
= Language-specific and
= Often, application-specific
= These are “plug-in” addenda to the indexing
process
= Both open source and commercial plug-ins
available for handling these

Faster postings merges:
Skip pointers

Recall basic merge

= Walk through the two postings simultaneously, in
time linear in the total number of postings entries

_
Caesar

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes, if index isn’t changing too fast.

Augment postings with skip
pointers (at indexing time)

Je——— 12—

2}{4}-{8}{16}{32} {ea} {128

[] Why’>

= To skip postings that will not figure in the search
results.

= How?

= Where do we place skip pointers?

Query processing with skip
pointers

16— J2g———

2}{4] {l{ie}32} {64} 128]

Suppose we’ve stepped through the lists until we
process 8 on each list.

When we get to 16 on the top list, we see that its
successor is 32.

But the skip successor of 8 on the lower list is 31, so
we can skip ahead past the intervening postings.

Where do we place skips?

= Tradeoff:

= More skips — shorter skip spans = more likely to
skip. But lots of comparisons to skip pointers.

= Fewer skips — few pointer comparison, but then
long skip spans = few successful skips.

CHOH R
CFHH R H

Placing skips

]
= Simple heuristic: for postings of length L, use VL
evenly-spaced skip pointers.
= This ignores the distribution of query terms.

= Easy if the index is relatively static; harder if L
keeps changing because of updates.

Phrase queries

Phrase queries
]

= Want to answer queries such as stanford
university — as a phrase

= Thus the sentence “l went to university at
Stanford” is not a match.

= No longer suffices to store only
<term : docs> entries

A first attempt: Biword indexes
e m _————
= Index every consecutive pair of terms in the text
as a phrase
= For example the text “Friends, Romans,
Countrymen” would generate the biwords
= friends romans
= romans countrymen
= Each of these biwords is now a dictionary term
= Two-word phrase query-processing is now
immediate.

Longer phrase queries

= Longer phrases are processed as we did with
wild-cards:

= stanford university palo alto can be broken into
the Boolean query on biwords:

stanford university AND university palo AND
palo alto

Without the docs, we cannot verify that the docs
matching the above Boolean query do contain
the phrase.

A
\Can have false positives! \

Extended biwords
]
= Parse the indexed text and perform part-of-
speech-tagging (POST).
= Bucket the terms into (say) Nouns (N) and
articles/prepositions (X).
= Now deem any string of terms of the form NX*N
to be an extended biword.
= Each such extended biword is now made a term in
the dictionary.
= Example:

= catcherin the rye
N X X N

Query processing

= Given a query, parse it into N's and X's
= Segment query into enhanced biwords
= Look up index
= |ssues
= Parsing longer queries into conjunctions
=« E.g., the query tangerine trees and marmalade
skies is parsed into
= tangerine trees AND trees and marmalade AND
marmalade skies

Other issues

= False positives, as noted before
= Index blowup due to bigger dictionary

Solution 2: Positional indexes
—
» Store, for each term, entries of the form:
<number of docs containing term;
docl: positionl, position2 ... ;
doc2: position1, position2 ... ;
etc.>

Positional index example
]

<be: 993427;

L7 A8 5 o 28 hich of docs 1,2.4,5
2:3, 149; could contain “to be
4:17,191, 291, 430, 434; or not to be”?

5: 363, 367, ...>

= Can compress position values/offsets
= Nevertheless, this expands postings storage
substantially

Processing a phrase query

= Extract inverted index entries for each distinct
term: to, be, or, not.
= Merge their doc:position lists to enumerate all
positions with “to be or not to be”.
= to:
» 2:1,17,74,222,551; 4:8,16,190,429,433;
7:13,23,191; ...
= be:
= 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

= Same general method for proximity searches

Proximity queries
]
= LIMIT!/3 STATUTE /3 FEDERAL /2 TORT
Here, /k means “within k words of”.
= Clearly, positional indexes can be used for
such queries; biword indexes cannot.
= Exercise: Adapt the linear merge of postings
to handle proximity queries. Can you make it
work for any value of k?

Positional index size
]
= Can compress position values/offsets as we did
with docs in the last lecture
= Nevertheless, this expands postings storage
substantially

Positional index size

= Need an entry for each occurrence, not just once

per document
= Index size depends on average document size <:W_Tﬁ|
= Average web page has <1000 terms
= SEC filings, books, even some epic poems ...
easily 100,000 terms

= Consider a term with frequency 0.1%

Document size Postings Positional postings
1000 1 1
100,000 1 100

Rules of thumb
—
= Positional index size factor of 2-4 over non-
positional index
= Positional index size 35-50% of volume of
original text
= Caveat: all of this holds for “English-like”
languages

Resources for today’s lecture
]

= MG3.6,4.3MR7.2

= Porter's stemmer:
http//www.sims.berkeley.edu/~hearst/irbook/porter.html

= H.E. Williams, J. Zobel, and D. Bahle, “Fast Phrase Querying
with Combined Indexes”, ACM Transactions on Information
Systems.

http://www.seg.rmit.edu.au/research/research.php?author=4

