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CS276A
Text Retrieval and Mining 

Lecture 17

[Borrows some slides from Ray Mooney]

Recap of the last lecture

(Re)Introduction to Text Classification 
3 algorithms for text classification

K Nearest Neighbor classification
Simple, expensive at test time, high variance, non-linear

Vector space classification using centroids and 
hyperplanes that split them

Simple, linear classifier; too simple

Decision Trees
Pick out hyperboxes; nonlinear; use just a few features

Recall: Linear classifiers

Want to find a,b,c, such that
ax + by ≥ c for red points
ax + by ≤ c for green points.

This line 
represents the 

decision boundary:
ax + by - c = 0

The missing slide from last time: 
Choosing the correct model capacity

Naive Bayes is a linear classifier

Binary Naive Bayes. We compute:

Decide class C if the odds ratio is greater than 1, 
i.e., if the log odds is greater than 0.
So decision boundary is hyperplane:
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This Week’s Topics: More Text 
Classification

Today
One more machine learning method for text 
classification

Support vector machines
Some empirical evaluation and comparison

Thursday (last class!)
Text-specific issues in classification
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Which Hyperplane?

Lots of possible solutions for a,b,c.
Some methods find a separating 
hyperplane, but not the optimal one 
[according to some criterion of expected goodness]

E.g., perceptron
Support Vector Machine (SVM) finds an 
optimal solution.

Maximizes the distance between the 
hyperplane and the “difficult points” close 
to decision boundary
One intuition: if there are no points near 
the decision surface, then there are no 
very uncertain classification decisions

Another intuition

If you have to place a fat separator between 
classes, you have less choices, and so  the 
capacity of the model has been decreased

Support Vector Machine (SVM)
Support vectors

Maximize
margin

SVMs maximize the margin
around the separating 
hyperplane.

A.k.a. large margin classifiers

The decision function is fully 
specified by a subset of training 
samples, the support vectors.
Quadratic programming
problem
Seen by many as most 
successful current text 
classification method 

If not linearly separable
Allow some errors

Let some points be 
moved to where they 
belong, at a cost

Still, try to place 
hyperplane “far” from 
each class

Large margin classifiers

w: decision hyperplane normal
xi: data point i
yi: class of data point i (+1 or -1)     NB: Not 1/0
Classifier is: sign(wTxi + b)
Functional margin of xi is: yi (wTxi + b)

But note that we can increase this margin simply by scaling w, b….
Functional margin of dataset is min of above

Maximum Margin: Formalization Geometric Margin

Distance from example to the separator is 

Examples closest to the hyperplane are support vectors. 

Margin ρ of the separator is the width of separation between support 
vectors of classes.
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Linear SVM Mathematically
Assume all data is at least distance 1 from the hyperplane, then the 
following two constraints follow for a training set {(xi ,yi)} 

For support vectors, the inequality becomes an equality; then, since 
each example’s distance from the hyperplane is                       the 
margin is:

wTxi + b ≥ 1    if yi = 1

wTxi + b ≤ -1   if yi = -1

w
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=ρ
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Linear Support Vector Machine (SVM)

Hyperplane
wT x + b = 0

Extra constraint:
mini=1,…,n |wTxi + b| = 1

This implies:
wT(xa–xb) = 2
ρ = ||xa–xb||2 = 2/||w||2

wT x + b = 0

wTxa + b = 1

wTxb + b = -1

ρ

Linear SVMs Mathematically 
(cont.)

Then we can formulate the quadratic optimization 
problem: 

A better formulation (min ||w|| = max 1/ ||w|| ): 

Find w and b such that

is maximized; and for all {(xi , yi)}
wTxi + b ≥ 1 if yi=1;   wTxi + b ≤ -1   if yi = -1

w
2

=ρ

Find w and b such that

Φ(w) =½ wTw is minimized; 

and for all {(xi ,yi)}:    yi (wTxi + b) ≥ 1

Solving the Optimization Problem

This is now optimizing a quadratic function subject to linear constraints
Quadratic optimization problems are a well-known class of 
mathematical programming problems, and many (rather intricate) 
algorithms exist for solving them
The solution involves constructing a dual problem where a Lagrange 
multiplier αi is associated with every constraint in the primary problem:

Find w and b such that
Φ(w) =½ wTw is minimized; 
and for all {(xi ,yi)}:  yi (wTxi + b) ≥ 1

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and 
(1) Σαiyi = 0
(2) αi ≥ 0 for all αi

The Optimization Problem Solution
The solution has the form: 

Each non-zero αi indicates that corresponding xi is a support vector.
Then the classifying function will have the form:

Notice that it relies on an inner product between the test point x and the 
support vectors xi – we will return to this later.
Also keep in mind that solving the optimization problem involved
computing the inner products xi

Txj between all pairs of training points.

w =Σαiyixi b= yk- wTxk for any xk such that αk≠ 0

f(x) = Σαiyixi
Tx + b

Soft Margin Classification  

If the training set is not linearly separable, slack 
variables ξi can be added to allow misclassification of 
difficult or noisy examples.

ξi

ξi
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Soft Margin Classification 
Mathematically

The old formulation:

The new formulation incorporating slack variables:

Parameter C can be viewed as a way to control overfitting.

Find w and b such that
Φ(w) =½ wTw is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1

Find w and b such that
Φ(w) =½ wTw + CΣξi is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1- ξi and    ξi≥ 0 for all i

Soft Margin Classification –
Solution

The dual problem for soft margin classification:

Neither slack variables ξi nor their Lagrange multipliers appear in the 
dual problem!
Again, xi with non-zero αi will be support vectors.
Solution to the dual problem is:

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and 
(1) Σαiyi = 0
(2)  0 ≤ αi≤ C for all αi

w =Σαiyixi
b= yk(1- ξk) - wTxk where k = argmax αk

k f(x) = Σαiyixi
Tx + b

But w not needed explicitly 
for classification!

Classification with SVMs

Given a new point (x1,x2), can score its 
projection onto the hyperplane normal:

In 2 dims: score = w1x1+w2x2+b.
I.e., compute score: wx + b = Σαiyixi

Tx + b
Set confidence threshold t.

3
5
7

Score > t: yes

Score < -t: no

Else: don’t know

Linear SVMs:  Summary
The classifier is a separating hyperplane.

Most “important” training points are support vectors; they define the 
hyperplane.

Quadratic optimization algorithms can identify which training points xi 
are support vectors with non-zero Lagrangian multipliers αi.

Both in the dual formulation of the problem and in the solution training 
points appear only inside inner products: 

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and 
(1) Σαiyi = 0
(2)  0 ≤ αi ≤ C for all αi

f(x) = Σαiyixi
Tx + b

Non-linear SVMs
Datasets that are linearly separable with some noise work out great:

But what are we going to do if the dataset is just too hard? 

How about… mapping data to a higher-dimensional space:

0

x2

x

0 x

0 x

Non-linear SVMs:  Feature spaces

General idea:   the original feature space can 
always be mapped to some higher-dimensional 
feature space where the training set is separable:

Φ:  x→ φ(x)
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The “Kernel Trick”
The linear classifier relies on inner product between vectors 
K(xi,xj)=xi

Txj

If every datapoint is mapped into high-dimensional space via some 
transformation Φ:  x→ φ(x), the inner product becomes:

K(xi,xj)= φ(xi) Tφ(xj)
A kernel function is some function that corresponds to an inner 
product in some expanded feature space.
Example: 
2-dimensional vectors x=[x1   x2];  let K(xi,xj)=(1 + xi

Txj)2
,

Need to show that K(xi,xj)= φ(xi) Tφ(xj):

K(xi,xj)=(1 + xi
Txj)2

,= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2=

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]T [1  xj1
2  √2 xj1xj2  xj2

2  √2xj1  √2xj2] 

= φ(xi) Tφ(xj)          where φ(x) = [1  x1
2  √2 x1x2  x2

2   √2x1  √2x2]

Kernels
Why use kernels?

Make non-separable problem separable.
Map data into better representational space

Common kernels
Linear
Polynomial K(x,z) = (1+xTz)d

Radial basis function (infinite space)

SVMs: Predicting Generalization

We want the classifier with the best 
generalization (best accuracy on new data).
What are clues for good generalization?

Large training set
Low error on training set
Capacity/variance (number of parameters in the 
model, expressive power of model)

SVMs give you an explicit bound on error on new 
data based on these.

Capacity/Variance: VC Dimension

Theoretical risk boundary:

Risk = mean error rate
α – the model (defined by its parameters)
Remp - empirical risk, l - #observations, h – VC dimension, 
the above holds with prob. (1-η)

VC (Vapnik-Chervonenkis) dimension/Capacity: max number 
of points that can be shattered
A set can be shattered if the classifier can learn every 
possible labeling.

Important theoretical property; Not very often used in 
practice

Exercise

Suppose you have n points in d dimensions, 
labeled red or green.  How big need n be (as a 
function of d) in order to create an example with 
the red and green points not linearly separable?
E.g., for d=2, n ≥ 4.

Sketch Theoretical Justification for 
Maximum Margins

Vapnik has proved the following:
The class of optimal linear separators has VC dimension h 
bounded from above as 

where ρ is the margin, D is the diameter of the smallest sphere 
that can enclose all of the training examples, and m0 is the 
dimensionality.

Intuitively, this implies that regardless of dimensionality m0 we 
can minimize the VC dimension by maximizing the margin ρ.

Thus, complexity of the classifier is kept small regardless of 
dimensionality.
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Performance of SVM

SVM are seen as best-performing method by 
many.
Statistical significance of most results not clear.
There are many methods that perform about as 
well as SVM.
Example: regularized logistic regression 
(Zhang&Oles)
Example of a comparison study: Yang & Liu

Most (over)used data set
21578 documents
9603 training, 3299 test articles (ModApte split)
118 categories

An article can be in more than one category
Learn 118 binary category distinctions

Average document: about 90 types, 200 tokens
Average number of classes assigned

1.24 for docs with at least one category
Only about 10 out of 118 categories are large

Common categories
(#train, #test)

Evaluation: Classic Reuters Data Set 

• Earn (2877, 1087) 
• Acquisitions (1650, 179)
• Money-fx (538, 179)
• Grain (433, 149)
• Crude (389, 189)

• Trade (369,119)
• Interest (347, 131)
• Ship (197, 89)
• Wheat (212, 71)
• Corn (182, 56)

Reuters Text Categorization data set 
(Reuters-21578) document

<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET" OLDID="12981" 
NEWID="798">

<DATE> 2-MAR-1987 16:51:43.42</DATE>

<TOPICS><D>livestock</D><D>hog</D></TOPICS>

<TITLE>AMERICAN PORK CONGRESS KICKS OFF TOMORROW</TITLE>

<DATELINE>    CHICAGO, March 2 - </DATELINE><BODY>The American Pork Congress kicks off

tomorrow, March 3, in Indianapolis with 160 of the nations pork producers from 44 member states determining 
industry positions on a number of issues, according to the National Pork Producers Council, NPPC.

Delegates to the three day Congress will be considering 26 resolutions concerning various issues, including the 
future direction of farm policy and the tax law as it applies to the agriculture sector. The delegates will also debate 
whether to endorse concepts of a national PRV (pseudorabies virus) control and eradication program, the NPPC 
said.

A large trade show, in conjunction with the congress, will feature the latest in technology in all areas of the 
industry, the NPPC added. Reuter

&#3;</BODY></TEXT></REUTERS>

New Reuters: RCV1: 810,000 docs

Top topics in Reuters RCV1

Per class evaluation measures

Recall: Fraction of docs in class i
classified correctly:

Precision: Fraction of docs assigned 
class i that are actually about class i:

“Correct rate”: (1- error rate) Fraction of 
docs classified correctly:

∑
j

ij
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c
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∑
j
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c
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Category: “interest” – Dumais et al. (Microsoft) Decision Tree

rate=1

lending=0

prime=0

discount=0

pct=1

year=1year=0

rate.t=1
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Dumais et al. 1998: 
Reuters - Accuracy

Recall: % labeled in category among those stories that are really in category
Precision: % really in category among those stories labeled in category
Break Even: (Recall + Precision) / 2

Rocchio NBayes Trees LinearSVM
earn 92.9% 95.9% 97.8% 98.2%
acq 64.7% 87.8% 89.7% 92.8%
money-fx 46.7% 56.6% 66.2% 74.0%
grain 67.5% 78.8% 85.0% 92.4%
crude 70.1% 79.5% 85.0% 88.3%
trade 65.1% 63.9% 72.5% 73.5%
interest 63.4% 64.9% 67.1% 76.3%
ship 49.2% 85.4% 74.2% 78.0%
wheat 68.9% 69.7% 92.5% 89.7%
corn 48.2% 65.3% 91.8% 91.1%

Avg Top 10 64.6% 81.5% 88.4% 91.4%
Avg All Cat 61.7% 75.2% na 86.4%

Reuters ROC - Category Grain
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Recall: % labeled in category among those stories that are really in category
Precision: % really in category among those stories labeled in category

ROC for Category - Earn
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Results for Kernels (Joachims)
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Yang&Liu: SVM vs Other Methods Yang&Liu: Statistical Significance

Summary

Support vector machines (SVM)
Choose hyperplane based on support vectors

Support vector = “critical” point close to decision boundary

(Degree-1) SVMs are linear classifiers.
Kernels: powerful and elegant way to define 
similarity metric
Bound on “risk” (expected error on test set)
Best performing text classifier?
Partly popular due to availability of SVMlight

SVMlight is accurate and fast – and free (for research)

Now lots of software: libsvm, TinySVM, ….

Resources
A Tutorial on Support Vector Machines for Pattern Recognition 
(1998) Christopher J. C. Burges
S. T. Dumais, Using SVMs for text categorization, IEEE Intelligent 
Systems, 13(4), Jul/Aug 1998
S. T. Dumais, J. Platt, D. Heckerman and M. Sahami. 1998. Inductive 
learning algorithms and representations for text categorization.
Proceedings of CIKM ’98, pp. 148-155. 
A re-examination of text categorization methods (1999) Yiming Yang, 
Xin Liu 22nd Annual International SIGIR
Tong Zhang, Frank J. Oles: Text Categorization Based on Regularized 
Linear Classification Methods. Information Retrieval 4(1): 5-31 (2001) 
Trevor Hastie, Robert Tibshirani and Jerome Friedman, "Elements of 
Statistical Learning: Data Mining, Inference and Prediction" Springer-
Verlag, New York. 
‘Classic’ Reuters data set: http://www.daviddlewis.com /resources 
/testcollections/reuters21578/
T. Joachims, Learning to Classify Text using Support Vector Machines. 
Kluwer, 2002.


