
1

CS276A
Text Retrieval and Mining

Lecture 16

[Borrows slides from Ray Mooney and Barbara Rosario]

Recap of the last lecture

Linear Algebra
SVD
Latent Semantic Analysis

Okay, today’s lecture doesn’t very directly follow on
from these topics…
We’re returning to text classification
But we will continue a focus on a vector-space
representation of texts

Text Classification

Today:
Introduction to Text Classification

K Nearest Neighbors
Decision boundaries
Vector space classification using centroids
Decision Trees (briefly)

Next week (last week of classes!)
More text classification

Support Vector Machines
Text-specific issues in classification

Text Categorization Examples

Assign labels to each document or web-page:
Labels are most often topics such as Yahoo-categories
e.g., "finance," "sports," "news>world>asia>business"
Labels may be genres
e.g., "editorials" "movie-reviews" "news“
Labels may be opinion
e.g., “like”, “hate”, “neutral”
Labels may be domain-specific binary
e.g., "interesting-to-me" : "not-interesting-to-me”
e.g., “spam” : “not-spam”
e.g., “contains adult language” :“doesn’t”

Categorization/Classification

Given:
A description of an instance, x∈X, where X is the
instance language or instance space.

Issue: how to represent text documents.

A fixed set of categories:
C = {c1, c2,…, cn}

Determine:
The category of x: c(x)∈C, where c(x) is a
categorization function whose domain is X and
whose range is C.

We want to know how to build categorization functions
(“classifiers”).

Recall: Vector Space Representation

Each document is a vector, one component for
each term (= word).
Normalize to unit length.
High-dimensional vector space:

Terms are axes
10,000+ dimensions, or even 100,000+
Docs are vectors in this space

Exercise: think how this compares with probabilistic
representations (multinomial and multivariate Bernoulli)

2

Classification Using Vector Spaces

Each training doc a point (vector) labeled by its
topic (= class)
Hypothesis: docs of the same class form a
contiguous region of space
We define surfaces to delineate classes in space

Classes in a Vector Space

Government

Science

Arts

Test Document = Government

Government

Science

Arts

Similarity
hypothesis
true in
general?

k Nearest Neighbor Classification

To classify document d into class c
Define k-neighborhood N as k nearest neighbors of d
Count number of documents i in N that belong to c
Estimate P(c|d) as i/k
Choose as class argmaxc P(c|d) [= majority class]

Example: k=6 (6NN)

Government

Science

Arts

P(science|)?

Nearest-Neighbor Learning
Algorithm

Learning is just storing the representations of the training
examples in D.
Testing instance x:

Compute similarity between x and all examples in D.
Assign x the category of the most similar example in D.

Does not explicitly compute a generalization or category
prototypes.
Also called:

Case-based learning
Memory-based learning
Lazy learning

3

kNN Is Close to Optimal

Cover and Hart 1967
Asymptotically, the error rate of 1-nearest-
neighbor classification is less than twice the
Bayes rate [error rate of classifier knowing model that generated data]

In particular, asymptotic error rate is 0 if Bayes
rate is 0.
Assume: query point coincides with a training
point.
Both query point and training point contribute
error → 2 times Bayes rate

K Nearest-Neighbor

Using only the closest example to determine the
categorization is subject to errors due to:

A single atypical example.
Noise (i.e. error) in the category label of a single
training example.

More robust alternative is to find the k most-
similar examples and return the majority category
of these k examples.
Value of k is typically odd to avoid ties; 3 and 5
are most common.

kNN decision boundaries

Government

Science

Arts

Boundaries
are in
principle
arbitrary
surfaces –
but usually
polyhedra

Similarity Metrics

Nearest neighbor method depends on a similarity
(or distance) metric.
Simplest for continuous m-dimensional instance
space is Euclidian distance.
Simplest for m-dimensional binary instance
space is Hamming distance (number of feature
values that differ).
For text, cosine similarity of tf.idf weighted
vectors is typically most effective.

Illustration of 3 Nearest Neighbor
for Text Vector Space

Nearest Neighbor with Inverted
Index

Naively finding nearest neighbors requires a
linear search through |D| documents in collection
But determining k nearest neighbors is the same
as determining the k best retrievals using the test
document as a query to a database of training
documents.
Use standard vector space inverted index
methods to find the k nearest neighbors.
Testing Time: O(B|Vt|) where B is the average
number of training documents in which a test-
document word appears.

Typically B << |D|

4

kNN: Discussion

No feature selection necessary
Scales well with large number of classes

Don’t need to train n classifiers for n classes
Classes can influence each other

Small changes to one class can have ripple effect
Scores can be hard to convert to probabilities
No training necessary

Actually: perhaps not true. (Data editing, etc.)

kNN vs. Naive Bayes
Bias/Variance tradeoff

Variance ≈ Capacity
kNN has high variance and low bias.

Infinite memory
NB has low variance and high bias.

Decision surface has to be linear (hyperplane – see later)
Consider: Is an object a tree? (Burges)

Too much capacity/variance, low bias
Botanist who memorizes
Will always say “no” to new object (e.g., # leaves)

Not enough capacity/variance, high bias
Lazy botanist
Says “yes” if the object is green

Want the middle ground

Binary Classification

Consider 2 class problems
Deciding between two classes, perhaps,
government and non-government
[one-versus-rest classification]

How do we define (and find) the separating
surface?
How do we test which region a test doc is in?

Separation by Hyperplanes

A strong high-bias assumption is linear separability:
in 2 dimensions, can separate classes by a line
in higher dimensions, need hyperplanes

Can find separating hyperplane by linear programming
(or can iteratively fit solution via perceptron):

separator can be expressed as ax + by = c

Linear programming / Perceptron

Find a,b,c, such that

ax + by ≥ c for red points

ax + by ≤ c for green
points.

Which Hyperplane?

In general, lots of possibl

solutions for a,b,c.

5

Which Hyperplane?
Lots of possible solutions for a,b,c.
Some methods find a separating
hyperplane, but not the optimal one
[according to some criterion of expected goodness]

E.g., perceptron
Most methods find an optimal separating
hyperplane
Which points should influence optimality?

All points
Linear regression
Naïve Bayes

Only “difficult points” close to decision
boundary

Support vector machines

Linear classifier: Example

Class: “interest” (as in interest rate)
Example features of a linear classifier

wi ti wi ti

To classify, find dot product of feature vector and weights

• 0.70 prime
• 0.67 rate
• 0.63 interest
• 0.60 rates
• 0.46 discount
• 0.43 bundesbank

• -0.71 dlrs
• -0.35 world
• -0.33 sees
• -0.25 year
• -0.24 group
• -0.24 dlr

Linear Classifiers
Many common text classifiers are linear classifiers

Naïve Bayes
Perceptron
Rocchio
Logistic regression
Support vector machines (with linear kernel)
Linear regression
(Simple) perceptron neural networks

Despite this similarity, large performance differences
For separable problems, there is an infinite number of
separating hyperplanes. Which one do you choose?
What to do for non-separable problems?
Different training methods pick different hyperplanes

Classifiers more powerful than linear often don’t perform
better. Why?

Exercise: show
Naive Bayes is
linear in log space

High Dimensional Data

Pictures like the one at right are absolutely
misleading!
Documents are zero along almost all axes
Most document pairs are very far apart
(i.e., not strictly orthogonal, but only share
very common words and a few scattered
others)
In classification terms: virtually all
document sets are separable, for most any
classification
This is part of why linear classifiers are
quite successful in this domain

29

Aside: Author identification

Federalist papers
77 short essays written in 1787-1788 by Hamilton,
Jay and Madison to persuade NY to ratify the US
Constitution; published under a pseudonym
The authorships of 12 papers was in dispute
In 1964 Mosteller and Wallace* solved the problem
They identified 70 function words as good
candidates for authorship analysis
Using statistical inference they concluded the
author was Madison

*Mosteller, Frederick and Wallace, David L. 1964. Inference and
Disputed Authorship: The Federalist.

Function words for Author
Identification

6

Function Words for Author
Identification More Than Two Classes

Any-of or multivalue classification
Classes are independent of each other.
A document can belong to 0, 1, or >1 classes.
Decompose into n binary problems
Quite common for documents

One-of or multinomial or polytomous
classification

Classes are mutually exclusive.
Each document belongs to exactly one class
E.g., digit recognition is polytomous classification

Digits are mutually exclusive

Composing Surfaces: Issues

?

?

?

Set of Binary Classifiers: Any of

Build a separator between each class and its
complementary set (docs from all other classes).
Given test doc, evaluate it for membership in
each class.
Apply decision criterion of classifiers
independently
Done

Set of Binary Classifiers: One of

Build a separator between each class and its
complementary set (docs from all other classes).
Given test doc, evaluate it for membership in
each class.
Assign document to class with:

maximum score
maximum confidence
maximum probability

Why different from multiclass/any of
classification?

Using Relevance Feedback
(Rocchio)

Relevance feedback methods can be adapted for text
categorization.
Use standard TF/IDF weighted vectors to represent text
documents
For each category, compute a prototype vector by
summing the vectors of the training documents in the
category.

Prototype = centroid of members of class
Assign test documents to the category with the closest
prototype vector based on cosine similarity.

7

Illustration of Rocchio Text
Categorization Rocchio Properties

Forms a simple generalization of the examples in
each class (a prototype).
Prototype vector does not need to be averaged
or otherwise normalized for length since cosine
similarity is insensitive to vector length.
Classification is based on similarity to class
prototypes.
Does not guarantee classifications are consistent
with the given training data.

Why not?

Rocchio Time Complexity
Note: The time to add two sparse vectors is proportional
to minimum number of non-zero entries in the two vectors.
Training Time: O(|D|(Ld + |Vd|)) = O(|D| Ld) where Ld is the
average length of a document in D and Vd is the average
vocabulary size for a document in D.
Test Time: O(Lt + |C||Vt|)
where Lt is the average length of a test document and |Vt | is the
average vocabulary size for a test document.

Assumes lengths of centroid vectors are computed and stored
during training, allowing cosSim(d, ci) to be computed in time
proportional to the number of non-zero entries in d (i.e. |Vt|)

Rocchio Anomaly

Prototype models have problems with
polymorphic (disjunctive) categories.

3 Nearest Neighbor Comparison

Nearest Neighbor tends to handle polymorphic
categories better.

Decision Tree Classification

Tree with internal nodes labeled by terms
Branches are labeled by tests on the weight that
the term has
Leaves are labeled by categories
Classifier categorizes document by descending
tree following tests to leaf
The label of the leaf node is then assigned to the
document
Most decision trees are binary trees (never
disadvantageous; may require extra internal
nodes)
DT make good use of a few high-leverage features

8

Decision Tree Categorization:
Example

Geometric interpretation of DT?

Decision Tree Learning

Learn a sequence of tests on features, typically
using top-down, greedy search

At each stage choose the unused feature with
highest Information Gain (feature/class MI)

Binary (yes/no) or continuous decisions

f1 !f1

f7 !f7

P(class) = .6

P(class) = .9

P(class) = .2

Decision Tree Learning
Fully grown trees tend to have decision rules that are
overly specific and are therefore unable to categorize
documents well

Therefore, pruning or early stopping methods for Decision
Trees are normally a standard part of classification packages

Use of small number of features is potentially bad in text
cat, but in practice decision trees do well for some text
classification tasks
Decision trees are very easily interpreted by humans –
much more easily than probabilistic methods like Naive
Bayes
Decision Trees are normally regarded as a symbolic
machine learning algorithm, though they can be used
probabilistically

Category: “interest” – Dumais et al. (Microsoft) Decision Tree

rate=1

lending=0

prime=0

discount=0

pct=1

year=1year=0

rate.t=1

Summary: Representation of
Text Categorization Attributes

Representations of text are usually very high
dimensional (one feature for each word)
High-bias algorithms that prevent overfitting in
high-dimensional space generally work best
For most text categorization tasks, there are
many relevant features and many irrelevant ones
Methods that combine evidence from many or all
features (e.g. naive Bayes, kNN, neural-nets)
generally tend to work better than ones that try to
isolate just a few relevant features (standard
decision-tree or rule induction)*

*Although one can compensate by using many rules

References
Fabrizio Sebastiani. Machine Learning in Automated Text
Categorization. ACM Computing Surveys, 34(1):1-47,
2002.
Tom Mitchell, Machine Learning. McGraw-Hill, 1997.
Yiming Yang & Xin Liu, A re-examination of text
categorization methods. Proceedings of SIGIR, 1999.
Evaluating and Optimizing Autonomous Text Classification
Systems (1995) David Lewis. Proceedings of the 18th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval
Foundations of Statistical Natural Language Processing.
Chapter 16. MIT Press. Manning and Schütze.
Trevor Hastie, Robert Tibshirani and Jerome Friedman,
Elements of Statistical Learning: Data Mining, Inference
and Prediction. Springer-Verlag, New York.

