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CS276A
Text Retrieval and Mining 

Lecture 16

[Borrows slides from Ray Mooney and Barbara Rosario]

Recap of the last lecture

Linear Algebra
SVD
Latent Semantic Analysis

Okay, today’s lecture doesn’t very directly follow on 
from these topics…
We’re returning to text classification
But we will continue a focus on a vector-space 
representation of texts

Text Classification

Today:
Introduction to Text Classification

K Nearest Neighbors
Decision boundaries
Vector space classification using centroids
Decision Trees (briefly)

Next week (last week of classes!)
More text classification

Support Vector Machines
Text-specific issues in classification

Text Categorization Examples

Assign labels to each document or web-page:
Labels are most often topics such as Yahoo-categories
e.g., "finance," "sports," "news>world>asia>business"
Labels may be genres
e.g., "editorials" "movie-reviews" "news“
Labels may be opinion
e.g., “like”, “hate”, “neutral”
Labels may be domain-specific binary
e.g., "interesting-to-me" : "not-interesting-to-me”
e.g., “spam” : “not-spam”
e.g., “contains adult language” :“doesn’t”

Categorization/Classification

Given:
A description of an instance, x∈X, where X is the 
instance language or instance space.

Issue: how to represent text documents.

A fixed set of categories:
C = {c1, c2,…, cn}

Determine:
The category of x: c(x)∈C, where c(x) is a 
categorization function whose domain is X and 
whose range is C.

We want to know how to build categorization functions 
(“classifiers”).

Recall: Vector Space Representation

Each document is a vector, one component for 
each term (= word).
Normalize to unit length.
High-dimensional vector space:

Terms are axes
10,000+ dimensions, or even 100,000+
Docs are vectors in this space

Exercise: think how this compares with probabilistic
representations (multinomial and multivariate Bernoulli)
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Classification Using Vector Spaces

Each training doc a point (vector) labeled by its 
topic (= class)
Hypothesis: docs of the same class form a 
contiguous region of space
We define surfaces to delineate classes in space

Classes in a Vector Space

Government

Science

Arts

Test Document = Government

Government

Science

Arts

Similarity
hypothesis
true in
general?

k Nearest Neighbor Classification

To classify document d into class c
Define k-neighborhood N as k nearest neighbors of d
Count number of documents i in N that belong to c
Estimate P(c|d) as i/k
Choose as class argmaxc P(c|d)    [ = majority class]

Example: k=6 (6NN)

Government

Science

Arts

P(science|   )?

Nearest-Neighbor Learning 
Algorithm

Learning is just storing the representations of the training 
examples in D.
Testing instance x:

Compute similarity between x and all examples in D.
Assign x the category of the most similar example in D.

Does not explicitly compute a generalization or category 
prototypes.
Also called:

Case-based learning
Memory-based learning
Lazy learning
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kNN Is Close to Optimal

Cover and Hart 1967
Asymptotically, the error rate of 1-nearest-
neighbor classification is less than twice the 
Bayes rate [error rate of classifier knowing model that generated data]

In particular, asymptotic error rate is 0 if Bayes
rate is 0.
Assume: query point coincides with a training 
point.
Both query point and training point contribute 
error → 2 times Bayes rate

K Nearest-Neighbor

Using only the closest example to determine the 
categorization is subject to errors due to:

A single atypical example. 
Noise (i.e. error) in the category label of a single 
training example.

More robust alternative is to find the k most-
similar examples and return the majority category 
of these k examples.
Value of k is typically odd to avoid ties; 3 and 5 
are most common.

kNN decision boundaries

Government

Science

Arts

Boundaries 
are in 
principle 
arbitrary 
surfaces –
but usually 
polyhedra

Similarity Metrics

Nearest neighbor method depends on a similarity 
(or distance) metric.
Simplest for continuous m-dimensional instance 
space is Euclidian distance.
Simplest for m-dimensional binary instance 
space is Hamming distance (number of feature 
values that differ).
For text, cosine similarity of tf.idf weighted 
vectors is typically most effective.

Illustration of 3 Nearest Neighbor 
for Text Vector Space

Nearest Neighbor with Inverted 
Index

Naively finding nearest neighbors requires a 
linear search through |D| documents in collection
But determining k nearest neighbors is the same 
as determining the k best retrievals using the test 
document as a query to a database of training 
documents.
Use standard vector space inverted index 
methods to find the k nearest neighbors.
Testing Time: O(B|Vt|)         where B is the average 
number of training documents in which a test-
document word appears.

Typically B << |D|
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kNN: Discussion

No feature selection necessary
Scales well with large number of classes

Don’t need to train n classifiers for n classes
Classes can influence each other

Small changes to one class can have ripple effect
Scores can be hard to convert to probabilities
No training necessary

Actually: perhaps not true.  (Data editing, etc.)

kNN vs. Naive Bayes
Bias/Variance tradeoff

Variance ≈ Capacity
kNN has high variance and low bias.

Infinite memory
NB has low variance and high bias.

Decision surface has to be linear (hyperplane – see later)
Consider: Is an object a tree? (Burges)

Too much capacity/variance, low bias
Botanist who memorizes
Will always say “no” to new object (e.g., # leaves)

Not enough capacity/variance, high bias
Lazy botanist
Says “yes” if the object is green

Want the middle ground

Binary Classification

Consider 2 class problems
Deciding between two classes, perhaps, 
government and non-government
[one-versus-rest classification]

How do we define (and find) the separating 
surface?
How do we test which region a test doc is in?

Separation by Hyperplanes

A strong high-bias assumption is linear separability:
in 2 dimensions, can separate classes by a line
in higher dimensions, need hyperplanes

Can find separating hyperplane by linear programming 
(or can iteratively fit solution via perceptron):

separator can be expressed as ax + by = c

Linear programming / Perceptron

Find a,b,c, such that

ax + by ≥ c for red points

ax + by ≤ c for green
points.

Which Hyperplane?

In general, lots of possibl

solutions for a,b,c.
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Which Hyperplane?
Lots of possible solutions for a,b,c.
Some methods find a separating 
hyperplane, but not the optimal one 
[according to some criterion of expected goodness]

E.g., perceptron
Most methods find an optimal separating 
hyperplane
Which points should influence optimality?

All points
Linear regression
Naïve Bayes

Only “difficult points” close to decision 
boundary

Support vector machines

Linear classifier: Example

Class: “interest” (as in interest rate)
Example features of a linear classifier

wi ti wi ti

To classify, find dot product of feature vector and weights

• 0.70 prime
• 0.67 rate
• 0.63 interest
• 0.60 rates
• 0.46 discount
• 0.43 bundesbank

• -0.71 dlrs
• -0.35 world
• -0.33 sees
• -0.25 year
• -0.24 group
• -0.24 dlr

Linear Classifiers
Many common text classifiers are linear classifiers

Naïve Bayes
Perceptron
Rocchio
Logistic regression
Support vector machines (with linear kernel)
Linear regression
(Simple) perceptron neural networks

Despite this similarity, large performance differences
For separable problems, there is an infinite number of 
separating hyperplanes. Which one do you choose?
What to do for non-separable problems?
Different training methods pick different hyperplanes

Classifiers more powerful than linear often don’t perform 
better. Why?

Exercise: show
Naive Bayes is
linear in log space

High Dimensional Data

Pictures like the one at right are absolutely 
misleading!
Documents are zero along almost all axes
Most document pairs are very far apart 
(i.e., not strictly orthogonal, but only share 
very common words and a few scattered 
others)
In classification terms: virtually all 
document sets are separable, for most any 
classification
This is part of why linear classifiers are 
quite successful in this domain

29

Aside: Author identification

Federalist papers 
77 short essays written in 1787-1788 by Hamilton, 
Jay and Madison to persuade NY to ratify the US 
Constitution; published under a pseudonym
The authorships of 12 papers was in dispute 
In 1964 Mosteller and Wallace* solved the problem
They identified 70 function words as good 
candidates for authorship analysis 
Using statistical inference they concluded the 
author was Madison 

*Mosteller, Frederick and Wallace, David L. 1964. Inference and 
Disputed Authorship: The Federalist.

Function words for Author 
Identification
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Function Words for Author 
Identification More Than Two Classes

Any-of or multivalue classification
Classes are independent of each other.
A document can belong to 0, 1, or >1 classes.
Decompose into n binary problems
Quite common for documents

One-of or multinomial or polytomous
classification

Classes are mutually exclusive.
Each document belongs to exactly one class
E.g., digit recognition is polytomous classification

Digits are mutually exclusive

Composing Surfaces: Issues

?

?

?

Set of Binary Classifiers: Any of

Build a separator between each class and its 
complementary set (docs from all other classes).
Given test doc, evaluate it for membership in 
each class.
Apply decision criterion of classifiers 
independently
Done

Set of Binary Classifiers: One of

Build a separator between each class and its 
complementary set (docs from all other classes).
Given test doc, evaluate it for membership in 
each class.
Assign document to class with:

maximum score
maximum confidence
maximum probability

Why different from multiclass/any of 
classification?

Using Relevance Feedback 
(Rocchio)

Relevance feedback methods can be adapted for text 
categorization.
Use standard TF/IDF weighted vectors to represent text 
documents 
For each category, compute a prototype vector by 
summing the vectors of the training documents in the 
category.

Prototype = centroid of members of class
Assign test documents to the category with the closest 
prototype vector based on cosine similarity.
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Illustration of Rocchio Text 
Categorization Rocchio Properties 

Forms a simple generalization of the examples in 
each class (a prototype).
Prototype vector does not need to be averaged 
or otherwise normalized for length since cosine 
similarity is insensitive to vector length.
Classification is based on similarity to class 
prototypes.
Does not guarantee classifications are consistent 
with the given training data.  

Why not?

Rocchio Time Complexity
Note: The time to add two sparse vectors is proportional 
to minimum number of non-zero entries in the two vectors.
Training Time:  O(|D|(Ld + |Vd|)) = O(|D| Ld)   where Ld is the 
average length of a document in D and Vd is the average 
vocabulary size for a document in D.
Test Time: O(Lt + |C||Vt|)                                               
where Lt  is the average length of a test document and |Vt | is the 
average vocabulary size for a test document.

Assumes lengths of centroid vectors are computed and stored 
during training, allowing cosSim(d, ci) to be computed  in time 
proportional to the number of non-zero entries in d (i.e. |Vt|)

Rocchio Anomaly   

Prototype models have problems with 
polymorphic (disjunctive) categories.

3 Nearest Neighbor Comparison

Nearest Neighbor tends to handle polymorphic 
categories better. 

Decision Tree Classification

Tree with internal nodes labeled by terms
Branches are labeled by tests on the weight that 
the term has
Leaves are labeled by categories 
Classifier categorizes document by descending 
tree following tests to leaf 
The label of the leaf node is then assigned to the 
document
Most decision trees are binary trees (never 
disadvantageous; may require extra internal 
nodes)
DT make good use of a few high-leverage features
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Decision Tree Categorization:
Example

Geometric interpretation of DT?

Decision Tree Learning

Learn a sequence of tests on features, typically 
using top-down, greedy search

At each stage choose the unused feature with 
highest Information Gain (feature/class MI)

Binary (yes/no) or continuous decisions

f1 !f1

f7 !f7

P(class) = .6

P(class) = .9

P(class) = .2

Decision Tree Learning
Fully grown trees tend to have decision rules that are 
overly specific and are therefore unable to categorize 
documents well

Therefore, pruning or early stopping methods for Decision 
Trees are normally a standard part of classification packages

Use of small number of features is potentially bad in text 
cat, but in practice decision trees do well for some text 
classification tasks
Decision trees are very easily interpreted by humans –
much more easily than probabilistic methods like Naive 
Bayes
Decision Trees are normally regarded as a symbolic 
machine learning algorithm, though they can be used 
probabilistically

Category: “interest” – Dumais et al. (Microsoft) Decision Tree

rate=1

lending=0

prime=0

discount=0

pct=1

year=1year=0

rate.t=1

Summary: Representation of
Text Categorization Attributes

Representations of text are usually very high 
dimensional (one feature for each word)
High-bias algorithms that prevent overfitting in 
high-dimensional space generally work best
For most text categorization tasks, there are 
many relevant features and many irrelevant ones
Methods that combine evidence from many or all 
features (e.g. naive Bayes, kNN, neural-nets) 
generally tend to work better than ones that try to 
isolate just a few relevant features (standard 
decision-tree or rule induction)*

*Although one can compensate by using many rules
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