CS276A
Text Retrieval and Mining

Lecture 16

[Borrows slides from Ray Mooney and Barbara Rosario]

Recap of the last lecture

= Linear Algebra
= SVD
= Latent Semantic Analysis

Okay, today'’s lecture doesn’t very directly follow on
from these topics...

= We're returning to text classification

= But we will continue a focus on a vector-space
representation of texts

Text Classification

= Today:
= Introduction to Text Classification
= K Nearest Neighbors
= Decision boundaries
= Vector space classification using centroids
= Decision Trees (briefly)
= Next week (last week of classes!)
= More text classification
= Support Vector Machines
= Text-specific issues in classification

Text Categorization Examples

Assign labels to each document or web-page:
= Labels are most often topics such as Yahoo-categories
e.g., "finance," "sports," "news>world>asia>business"
= Labels may be genres
e.g., "editorials" "movie-reviews" "news"
= Labels may be opinion
e.g., “like”, “hate”, “neutral”
= Labels may be domain-specific binary
e.g., "interesting-to-me" : "not-interesting-to-me”
e.g., “spam” : “not-spam”
e.g., “contains adult language” :“doesn’t”

Categorization/Classification

= Given:
= A description of an instance, xeX, where X is the
instance language or instance space.
= Issue: how to represent text documents.
= A fixed set of categories:
C={cq, Cy,..., C}
= Determine:
= The category of x: c(x)eC, where c(x) is a
categorization function whose domain is X and
whose range is C.

» We want to know how to build categorization functions
(“classifiers”).

Recall: Vector Space Representation

= Each document is a vector, one component for
each term (= word).
= Normalize to unit length.
= High-dimensional vector space:
= Terms are axes
= 10,000+ dimensions, or even 100,000+
= Docs are vectors in this space

Exercise: think how this compares with probabilistic
representations (multinomial and multivariate Bernoulli)

Classification Using Vector Spaces

= Each training doc a point (vector) labeled by its
topic (= class)

= Hypothesis: docs of the same class form a
contiguous region of space

= We define surfaces to delineate classes in space

Classes in a Vector Space

@ Government

@ Science

® Arts

Test Document = Government

Similarity
hypothesis
true in
general?

@ Government

@ Science

® Arts

k Nearest Neighbor Classification
———————————]
= To classify document d into class c
= Define k-neighborhood N as k nearest neighbors of d
= Count number of documents i in N that belong to ¢
= Estimate P(c|d) as i’k
= Choose as class argmax, P(c|d) [= majority class]

Example: k=6 (6NN)

P(science|<)?

@ Government

[] @ Sci
° Science
[] @ Arts

Nearest-Neighbor Learning
Algorithm

= Learning is just storing the representations of the training
examples in D.
= Testing instance x:
= Compute similarity between x and all examples in D.
= Assign x the category of the most similar example in D.
= Does not explicitly compute a generalization or category
prototypes.
= Also called:
= Case-based learning
= Memory-based learning
= Lazy learning

kNN Is Close to Optimal

= Cover and Hart 1967

= Asymptotically, the error rate of 1-nearest-
neighbor classification is less than twice the
Bayes rate [eror rate of classifier knowing model that generated data]

= In particular, asymptotic error rate is 0 if Bayes
rate is 0.

= Assume: query point coincides with a training
point.

= Both query point and training point contribute
error — 2 times Bayes rate

K Nearest-Neighbor

= Using only the closest example to determine the
categorization is subject to errors due to:
= A single atypical example.
= Noise (i.e. error) in the category label of a single

training example.

= More robust alternative is to find the k most-
similar examples and return the majority category
of these k examples.

= Value of k is typically odd to avoid ties; 3 and 5
are most common.

kNN decision boundaries

Boundaries
are in
principle
arbitrary
surfaces —
but usually
polyhedra

@ Government

@ Science

® Arts

Similarity Metrics

= Nearest neighbor method depends on a similarity
(or distance) metric.

= Simplest for continuous m-dimensional instance
space is Euclidian distance.

= Simplest for m-dimensional binary instance
space is Hamming distance (number of feature
values that differ).

» For text, cosine similarity of tf.idf weighted
vectors is typically most effective.

lllustration of 3 Nearest Neighbor
for Text Vector Space

Nearest Neighbor with Inverted
Index

= Naively finding nearest neighbors requires a
linear search through |D| documents in collection

= But determining k nearest neighbors is the same
as determining the k best retrievals using the test
document as a query to a database of training
documents.

= Use standard vector space inverted index
methods to find the k nearest neighbors.

= Testing Time: O(B|V,|) where B is the average

number of training documents in which a test-
document word appears.

= Typically B << |D|

kNN: Discussion
]
= No feature selection necessary
= Scales well with large number of classes
= Don'’t need to train n classifiers for n classes
= Classes can influence each other
= Small changes to one class can have ripple effect
= Scores can be hard to convert to probabilities
= No training necessary
= Actually: perhaps not true. (Data editing, etc.)

kNN vs. Naive Bayes

= Bias/Variance tradeoff
= Variance = Capacity
= kNN has high variance and low bias.
= Infinite memory
= NB has low variance and high bias.
= Decision surface has to be linear (hyperplane — see later)
= Consider: Is an object a tree? (Burges)
= Too much capacity/variance, low bias
= Botanist who memorizes
= Will always say “no” to new object (e.g., # leaves)
= Not enough capacity/variance, high bias
= Lazy botanist
= Says “yes” if the object is green
= Want the middle ground

Binary Classification
e ——]
= Consider 2 class problems

= Deciding between two classes, perhaps,
government and non-government

[one-versus-rest classification]
= How do we define (and find) the separating
surface?
= How do we test which region a test doc is in?

Separation by Hyperplanes

= A strong high-bias assumption is linear separability:
= in 2 dimensions, can separate classes by a line
= in higher dimensions, need hyperplanes
= Can find separating hyperplane by linear programming
(or can iteratively fit solution via perceptron):
= separator can be expressed as ax + by = ¢

Linear programming / Perceptron

Find a,b,c, such that
ax + by >c for red points

ax + by <c for
points.

Which Hyperplane?

In general, lots of possib
solutions for a,b,c.

Which Hyperplane?

= Lots of possible solutions for a,b,c.

= Some methods find a separating
hyperplane, but not the optimal one
[according to some criterion of expected goodness]

= E.g., perceptron
= Most methods find an optimal separating
hyperplane
= Which points should influence optimality? T
= All points 44
= Linear regression i
= Naive Bayes S
= Only “difficult points” close to decision |
boundary
= Support vector machines .

Linear classifier: Example
]

= Class: “interest” (as in interest rate)
= Example features of a linear classifier

oWt w
«0.70 prime «-0.71 dIrs
* 0.67 rate «-0.35 world
* 0.63 interest *-0.33 sees
+ 0.60 rates +-0.25 year
+ 0.46 discount «-0.24 group

* 0.43 bundesbank «-0.24 diIr

= To classify, find dot product of feature vector and weights

Linear Classifiers

= Many common text classifiers are linear classifiers

Naive Bayes
Perceptron
Rocchio

Exercise: show
Naive Bayes is
linear in log space

Support vector machines (with linear kernel)
Linear regression
= (Simple) perceptron neural networks
= Despite this similarity, large performance differences
= For separable problems, there is an infinite number of
separating hyperplanes. Which one do you choose?
= What to do for non-separable problems?
= Different training methods pick different hyperplanes
= Classifiers more powerful than linear often don’t perform
better. Why?

= Logistic regression
.

High Dimensional Data

= Pictures like the one at right are absolutely
misleading!

= Documents are zero along almost all axes

= Most document pairs are very far apart
(i.e., not strictly orthogonal, but only share
very common words and a few scattered
others)

= In classification terms: virtually all
document sets are separable, for most any
classification

= This is part of why linear classifiers are
quite successful in this domain

Aside: Author identification

= Federalist papers

= 77 short essays written in 1787-1788 by Hamilton,
Jay and Madison to persuade NY to ratify the US
Constitution; published under a pseudonym
The authorships of 12 papers was in dispute
In 1964 Mosteller and Wallace™ solved the problem
They identified 70 function words as good
candidates for authorship analysis

Using statistical inference they concluded the
author was Madison

*Mosteller, Frederick and Wallace, David L. 1964. Inference and
Disputed Authorship: The Federalist.

Function words for Author

|dentification

1 a 15 do 29 s 43 o 57 this

2 all 16 down 30 it 44 our 58 to

3 also 1T cven 3 its 45 shall 59 up

L an 18 every 32 may 46 should 60 wpon
5 and 19 for 33 o 47 =0 61 was

6 any A from 3 must 48 smme 62 were
T oare 21 had 35 my 40 such 63 what
8 as 22 has 36 no 50 than G4 when
9 at 23 have 37 not 51 that 65 which
10 b 24 her 38 now 52 the 66 whe
11 been 25 his 39 of 53 their 67 il
12 but 26 if 40 on 54 then 68 with
13 by 7 in 41 one 55 there 69 would
4 oan 28 into 42 only 56 things T your

Table 1: Function Words and Their Code Numbers

Function Words for Author
Identification

would

Figure 1: Obtained Hyperplane in 3 dimensions

More Than Two Classes

= Any-of or multivalue classification
= Classes are independent of each other.
= A document can belong to 0, 1, or >1 classes.
= Decompose into n binary problems
= Quite common for documents
= One-of or multinomial or polytomous
classification
= Classes are mutually exclusive.
= Each document belongs to exactly one class
= E.g., digit recognition is polytomous classification
= Digits are mutually exclusive

Composing Surfaces: Issues

Set of Binary Classifiers: Any of

= Build a separator between each class and its
complementary set (docs from all other classes).

= Given test doc, evaluate it for membership in
each class.

= Apply decision criterion of classifiers
independently

= Done

Set of Binary Classifiers: One of

= Build a separator between each class and its
complementary set (docs from all other classes).
= Given test doc, evaluate it for membership in
each class.
= Assign document to class with:
= maximum score
= maximum confidence
= maximum probability
= Why different from multiclass/any of
classification?

Using Relevance Feedback
(Rocchio)

= Relevance feedback methods can be adapted for text
categorization.

= Use standard TF/IDF weighted vectors to represent text
documents

= For each category, compute a prototype vector by
summing the vectors of the training documents in the
category.

= Prototype = centroid of members of class

= Assign test documents to the category with the closest

prototype vector based on cosine similarity.

[llustration of Rocchio Text
Categorization

Rocchio Properties

= Forms a simple generalization of the examples in
each class (a prototype).

= Prototype vector does not need to be averaged
or otherwise normalized for length since cosine
similarity is insensitive to vector length.

» Classification is based on similarity to class
prototypes.
= Does not guarantee classifications are consistent

with the given training data.

Rocchio Time Complexity

= Note: The time to add two sparse vectors is proportional
to minimum number of non-zero entries in the two vectors.

= Training Time: O(|D|(Ly + [V4])) = O(ID| Ly) where L, is the
average length of a document in D and V, is the average
vocabulary size for a document in D.

= Test Time: O(L+ [C]||V{])
where L, is the average length of a test document and |V, | is the
average vocabulary size for a test document.

= Assumes lengths of centroid vectors are computed and stored
during training, allowing cosSim(d, c;) to be computed in time
proportional to the number of non-zero entries in d (i.e. |V])

Rocchio Anomaly

= Prototype models have problems with
polymorphic (disjunctive) categories.

3 Nearest Neighbor Comparison

= Nearest Neighbor tends to handle polymorphic
categories better.

Decision Tree Classification
]
= Tree with internal nodes labeled by terms
= Branches are labeled by tests on the weight that
the term has
= Leaves are labeled by categories
= Classifier categorizes document by descending
tree following tests to leaf
= The label of the leaf node is then assigned to the
document
= Most decision trees are binary trees (never
disadvantageous; may require extra internal
nodes)
= DT make good use of a few high-leverage features

Decision Tree Categorization:

- ey
et .
e p T T, Teem tuschl - Bt
-~ A ~
- -
cmncdy N LAl /’\._ Pear
e \ enmmadty ,,w-_;/ mpr
rd Vi
b - -
o/ AHEAT WHEAT
Aricuiune /,/ srcutue HEAT
RN
AHEAT
WHEAT undaine shretes
teaatkn

Geometric interpretation of DT?

Decision Tree Learning

= Learn a sequence of tests on features, typically
using top-down, greedy search

= At each stage choose the unused feature with
highest Information Gain (feature/class MI)

= Binary (yes/no) or continuous decisions

SN
7'\”7

.
[P(class) =.6] [P(class)=.2]

Decision Tree Learning

= Fully grown trees tend to have decision rules that are
overly specific and are therefore unable to categorize
documents well

= Therefore, pruning or early stopping methods for Decision
Trees are normally a standard part of classification packages

= Use of small number of features is potentially bad in text
cat, but in practice decision trees do well for some text
classification tasks

= Decision trees are very easily interpreted by humans —
much more easily than probabilistic methods like Naive
Bayes

= Decision Trees are normally regarded as a symbolic
machine learning algorithm, though they can be used
probabilistically

Category: “interest” — Dumais et al. (Microsoft) Decision Tree
E Dot alelx
Djc{@l miwfeclpsie] fe]efedofope) | ofe wojofe)als] Ls L}
b | | L B

(BT e T

A

L nEg e Lrrned s pree e 0

158y |§su§u /l/ml IK‘I . |y| Jlsrtl ® -_m‘_mw:\;{\um\;m.la
o110 SRmSTA b £1_S2ER0 NEERAD 00 0 X120 IS e £ VeI 1BRSE b 0

TN K

LVIET s DT VT - VT B

—

P T Lazzamy « g LTI D

L 0 14k 0.58 845 0.78

e Ta (BTN]

1156283 0 Liamen
oaar
L8

Summary: Representation of
Text Categorization Attributes

= Representations of text are usually very high
dimensional (one feature for each word)

= High-bias algorithms that prevent overfitting in
high-dimensional space generally work best

= For most text categorization tasks, there are
many relevant features and many irrelevant ones

= Methods that combine evidence from many or all
features (e.g. naive Bayes, kNN, neural-nets)
generally tend to work better than ones that try to
isolate just a few relevant features (standard
decision-tree or rule induction)*

*Although one can compensate by using many rules

References

= Fabrizio Sebastiani. Machine Learning in Automated Text
g&t)%gorization. ACM Computing Surveys, 34(1):1-47,

= Tom Mitchell, Machine Learning. McGraw-Hill, 1997.

= Yiming Yang & Xin Liu, A re-examination of text
categorization methods. Proceedings of SIGIR, 1999.

= Evaluating and Optimizing Autonomous Text Classification
Systems (1995) David Lewis. Proceedings of the 18th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval

= Foundations of Statistical Natural Language Processing.
Chapter 16. MIT Press. Manning and Schutze.

= Trevor Hastie, Robert Tibshirani and Jerome Friedman,
Elements of Statistical Learning: Data Mining, Inference
and Prediction. Springer-Verlag, New York.

